Spaces:
Running
Running
File size: 25,400 Bytes
56f497c 70ebea3 a103fac b73515b cae0132 4a7fa9d 7748528 56f497c a264b08 cae0132 7748528 4045d37 d99f102 4045d37 8b76c73 4894c8f 2da2e03 4045d37 d99f102 53f9025 3e539e5 ec5a10c a50fb3c ae49959 9f0b22d f434999 a50fb3c 309f943 9b5378d e13fba3 310e819 0b61062 f434999 92c9491 f434999 e389a2d 87d4bd8 e389a2d fe11d17 f434999 fe11d17 f434999 fe11d17 f434999 fe11d17 f434999 d99f102 87d4bd8 35be497 0448b0f d99f102 0448b0f d99f102 0448b0f f434999 87d4bd8 f434999 aead9b1 f434999 87d4bd8 f434999 aead9b1 f434999 87d4bd8 f434999 52193d6 21077c7 52193d6 21077c7 92c9491 ec5a10c 92c9491 03dd083 1f3055b 92c9491 03dd083 1f3055b 92c9491 7d0b5b1 92c9491 f15fe8d 92c9491 f434999 a64284b e5ffc74 f434999 3b73549 f434999 4dceed6 f434999 a50fb3c 70ebea3 f434999 135432f 481d87b 135432f 481d87b 135432f f434999 481d87b 135432f 481d87b 4dfd4b1 481d87b 135432f 481d87b 4045d37 f434999 148dd30 d99f102 87d4bd8 f434999 148dd30 f434999 5fc3c5d 148dd30 52193d6 309f943 8be3c99 92c9491 148dd30 21077c7 f434999 21077c7 148dd30 f434999 148dd30 f434999 148dd30 f434999 148dd30 f434999 92c9491 9b5378d 148dd30 f434999 310e819 148dd30 f434999 3e539e5 148dd30 f434999 148dd30 92c9491 f434999 92c9491 f434999 92c9491 f434999 92c9491 148dd30 f434999 e389a2d f434999 e389a2d 148dd30 53f9025 e389a2d 53f9025 56f497c 8be3c99 2169b22 56f497c 9f0b22d 56f497c e647eeb 2169b22 56f497c f434999 fc2994c f434999 56f497c 9f0b22d 56f497c 8b76c73 e06dabc f434999 9f0b22d 56f497c e06dabc f434999 b98b60d 56f497c 28cef2e 16105d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline, logging
import languagecodes
import requests, os
import polars as pl
logging.set_verbosity_error()
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
df = pl.read_parquet("isolanguages.parquet")
non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
# all_langs = languagecodes.iso_languages_byname
all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos}
# Language options as list, add favourite languages first
options = list(favourite_langs.keys())
options.extend(list(all_langs.keys()))
models = ["Helsinki-NLP", "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul",
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
"facebook/m2m100_418M", "facebook/m2m100_1.2B",
"bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
"bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
"t5-small", "t5-base", "t5-large",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
"Argos", "Google",
"HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2",
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
"openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
]
def model_to_cuda(model):
# Move the model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
print("CUDA is available! Using GPU.")
else:
print("CUDA not available! Using CPU.")
return model
def HelsinkiNLPAutoTokenizer(sl, tl, input_text): # deprecated
if model_name == "Helsinki-NLP":
message_text = f'Translated from {sl} to {tl} with {model_name}.'
try:
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
except EnvironmentError:
try:
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return translated_text, message_text
except EnvironmentError as error:
return f"Error finding model: {model_name}! Try other available language combination.", error
class Translators:
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
self.model_name = model_name
self.sl, self.tl = sl, tl
self.input_text = input_text
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def google(self):
url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
response = requests.get(url)
return response.json()[0][0][0]
@classmethod
def download_argos_model(cls, from_code, to_code):
import argostranslate.package
print('Downloading model', from_code, to_code)
# Download and install Argos Translate package
argostranslate.package.update_package_index()
available_packages = argostranslate.package.get_available_packages()
package_to_install = next(
filter(lambda x: x.from_code == from_code and x.to_code == to_code, available_packages)
)
argostranslate.package.install_from_path(package_to_install.download())
def argos(self):
import argostranslate.translate, argostranslate.package
try:
Translators.download_argos_model(self.sl, self.tl) # Download model
translated_text = argostranslate.translate.translate(self.input_text, self.sl, self.tl) # Translate
except StopIteration:
# packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in argostranslate.package.get_available_packages())
packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in argostranslate.package.get_available_packages())
translated_text = f"No Argos model for {self.sl} to {self.tl}. Try other model or languages combination from the available Argos models: {packages_info}."
except Exception as error:
translated_text = error
return translated_text
def HelsinkiNLP_mulmul(self):
try:
pipe = pipeline("translation", model=self.model_name, device=self.device)
iso_dict = {iso[1]: iso[3] for iso in non_empty_isos}
iso3tl = iso_dict.get(self.tl) # 'deu', 'ron', 'eng', 'fra'
translation = pipe(f'>>{iso3tl}<< {self.input_text}')
return translation[0]['translation_text'], f'Translated from {self.sl} to {self.tl} with {self.model_name}.'
except Exception as error:
return f"Error translating with model: {self.model_name}! Try other available language combination.", error
def HelsinkiNLP(self):
try: # Standard bilingual model
model_name = f"Helsinki-NLP/opus-mt-{self.sl}-{self.tl}"
pipe = pipeline("translation", model=model_name, device=self.device)
translation = pipe(self.input_text)
return translation[0]['translation_text'], f'Translated from {self.sl} to {self.tl} with {model_name}.'
except EnvironmentError:
try: # Tatoeba models
model_name = f"Helsinki-NLP/opus-tatoeba-{self.sl}-{self.tl}"
pipe = pipeline("translation", model=model_name, device=self.device)
translation = pipe(self.input_text)
return translation[0]['translation_text'], f'Translated from {self.sl} to {self.tl} with {model_name}.'
except EnvironmentError as error:
self.model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul" # Last resort: try multi to multi
return self.HelsinkiNLP_mulmul()
except KeyError as error:
return f"Error: Translation direction {self.sl} to {self.tl} is not supported by Helsinki Translation Models", error
def smollm(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
prompt = f"""Translate the following {self.sl} text to {self.tl}, generating only the translated text and maintaining the original meaning and tone:
{self.input_text}
Translation:"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_length=len(inputs.input_ids[0]) + 150,
temperature=0.3,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
return response.split("Translation:")[-1].strip()
def flan(self):
tokenizer = T5Tokenizer.from_pretrained(self.model_name, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(self.model_name)
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
def tfive(self):
tokenizer = T5Tokenizer.from_pretrained(self.model_name)
model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
return translated_text
def mbart_many_to_many(self):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
# translate source to target
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_one_to_many(self):
# translate from English
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
model_inputs = tokenizer(self.input_text, return_tensors="pt")
langid = languagecodes.mbart_large_languages[self.tl]
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_many_to_one(self):
# translate to English
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mtom(self):
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
tokenizer.src_lang = self.sl
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def bigscience(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
return translation
def bloomz(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
# inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
translation = translation.split('Translation:')[-1].strip() if 'Translation:' in translation else translation.strip()
return translation
def nllb(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
# model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
translated_text = translator(self.input_text, max_length=512)
return translated_text[0]['translation_text']
def wingpt(self):
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# input_json = '{"input_text": self.input_text}'
messages = [
{"role": "system", "content": f"Translate this to {self.tl} language"},
{"role": "user", "content": self.input_text}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.1
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
result = output.split('\n')[-1].strip() if '\n' in output else output.strip()
return result
def eurollm(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
prompt = f"{self.sl}: {self.input_text} {self.tl}:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output)
# result = output.rsplit(f'{self.tl}:')[-1].strip() if f'{self.tl}:' in output else output.strip()
result = output.rsplit(f'{self.tl}:')[-1].strip() if '\n' in output or f'{self.tl}:' in output else output.strip()
return result
def eurollm_instruct(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {self.sl} source text to {self.tl}:\n{self.sl}: {self.input_text} \n{self.tl}: <|im_end|>\n<|im_start|>assistant\n'
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
if f'{self.tl}:' in output:
output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
return output
def teuken(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = model.to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
use_fast=False,
trust_remote_code=True,
)
translation_prompt = f"Translate the following text from {self.sl} into {self.tl}: {self.input_text}"
messages = [{"role": "User", "content": translation_prompt}]
prompt_ids = tokenizer.apply_chat_template(messages, chat_template="EN", tokenize=True, add_generation_prompt=False, return_tensors="pt")
prediction = model.generate(
prompt_ids.to(model.device),
max_length=512,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
num_return_sequences=1,
)
translation = tokenizer.decode(prediction[0].tolist())
return translation
def unbabel(self):
pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user",
"content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}:"}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
tokenized_input = pipe.tokenizer(self.input_text, return_tensors="pt")
num_input_tokens = len(tokenized_input["input_ids"][0])
max_new_tokens = round(num_input_tokens + 0.25 * num_input_tokens)
outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)
translated_text = outputs[0]["generated_text"]
print(f"Input chars: {len(input_text)}", f"Input tokens: {num_input_tokens}", f"max_new_tokens: {max_new_tokens}",
"Chars to tokens ratio:", round(len(input_text) / num_input_tokens, 2), f"Raw translation: {translated_text}")
markers = ["<end_of_turn>", "<|im_end|>", "<|im_start|>assistant"] # , "\n"
for marker in markers:
if marker in translated_text:
translated_text = translated_text.split(marker)[1].strip()
translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
translated_text = translated_text.split("Translated text:")[0].strip() if "Translated text:" in translated_text else translated_text
split_translated_text = translated_text.split('\n', translated_text.count('\n'))
translated_text = '\n'.join(split_translated_text[:input_text.count('\n')+1])
return translated_text
@spaces.GPU
def translate_text(input_text: str, s_language: str, t_language: str, model_name: str) -> tuple[str, str]:
"""
Translates the input text from the source language to the target language using a specified model.
Parameters:
input_text (str): The source text to be translated
s_language (str): The source language of the input text
t_language (str): The target language in which the input text is translated
model_name (str): The selected translation model name
Returns:
tuple:
translated_text(str): The input text translated to the selected target language
message_text(str): A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
Example:
>>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
"""
sl = all_langs[s_language][0]
tl = all_langs[t_language][0]
message_text = f'Translated from {s_language} to {t_language} with {model_name}'
try:
if model_name == "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul":
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP_mulmul()
elif model_name == "Helsinki-NLP":
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
elif model_name == 'Argos':
translated_text = Translators(model_name, sl, tl, input_text).argos()
elif model_name == 'Google':
translated_text = Translators(model_name, sl, tl, input_text).google()
elif "m2m" in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).mtom()
elif model_name.startswith('t5'):
translated_text = Translators(model_name, s_language, t_language, input_text).tfive()
elif 'flan' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).flan()
elif 'mt0' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).bigscience()
elif 'bloomz' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).bloomz()
elif 'nllb' in model_name.lower():
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[s_language], languagecodes.nllb_language_codes[t_language]
translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_many()
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_one_to_many()
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
elif 'teuken' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).teuken()
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
elif model_name == "utter-project/EuroLLM-1.7B":
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm()
elif 'Unbabel' in model_name:
translated_text = Translators(model_name, s_language, t_language, input_text).unbabel()
elif model_name == "HuggingFaceTB/SmolLM3-3B":
translated_text = Translators(model_name, s_language, t_language, input_text).smollm()
elif model_name == "winninghealth/WiNGPT-Babel-2":
translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()
except Exception as error:
translated_text = error
finally:
print(input_text, translated_text, message_text)
return translated_text, message_text
# Function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
return tgt_lang, src_lang
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")
with gr.Row():
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens")
with gr.Row():
s_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
t_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
swap_button = gr.Button("Swap Languages", size="md")
swap_button.click(fn=swap_languages, inputs=[s_language, t_language], outputs=[s_language, t_language], api_name=False, show_api=False)
model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {models[0]}.", value = models[0], interactive=True)
translate_button = gr.Button("Translate")
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True)
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
value=f'Default translation settings: from {s_language.value} to {t_language.value} with {model_name.value}.')
allmodels = gr.HTML(label="Model links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]))
translate_button.click(
fn=translate_text,
inputs=[input_text, s_language, t_language, model_name],
outputs=[translated_text, message_text]
)
return interface
interface = create_interface()
if __name__ == "__main__":
interface.launch(mcp_server=True)
# interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True) |