TiberiuCristianLeon commited on
Commit
52193d6
·
verified ·
1 Parent(s): 1cfdcef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -75,6 +75,22 @@ class Translators:
75
  response = requests.get(url)
76
  return response.json()[0][0][0]
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  def mtom(model_name, sl, tl, input_text):
79
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
80
  model = M2M100ForConditionalGeneration.from_pretrained(model_name)
@@ -127,22 +143,6 @@ def HelsinkiNLP(sl, tl, input_text):
127
  except KeyError as error:
128
  return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
129
 
130
- def smollm(model_name, sl, tl, input_text):
131
- tokenizer = AutoTokenizer.from_pretrained(model_name)
132
- model = AutoModelForCausalLM.from_pretrained(model_name)
133
- prompt = f"""Translate the following {sl} text to {tl}, maintaining the original meaning and tone:
134
- {input_text}
135
- Translation:"""
136
- inputs = tokenizer(prompt, return_tensors="pt")
137
- outputs = model.generate(
138
- inputs.input_ids,
139
- max_length=len(inputs.input_ids[0]) + 150,
140
- temperature=0.3,
141
- do_sample=True
142
- )
143
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
144
- return response.split("Translation:")[-1].strip()
145
-
146
  def flan(model_name, sl, tl, input_text):
147
  tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
148
  model = T5ForConditionalGeneration.from_pretrained(model_name)
@@ -326,7 +326,7 @@ def translate_text(input_text: str, sselected_language: str, tselected_language:
326
  translated_text = argos(sl, tl, input_text)
327
 
328
  elif model_name == 'Google':
329
- translated_text = Translators('Google', sl, tl, input_text).google()
330
 
331
  elif "m2m" in model_name.lower():
332
  translated_text = mtom(model_name, sl, tl, input_text)
@@ -369,7 +369,7 @@ def translate_text(input_text: str, sselected_language: str, tselected_language:
369
  translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
370
 
371
  elif model_name == "HuggingFaceTB/SmolLM3-3B":
372
- translated_text = smollm(model_name, sselected_language, tselected_language, input_text)
373
 
374
  except Exception as error:
375
  translated_text = error
 
75
  response = requests.get(url)
76
  return response.json()[0][0][0]
77
 
78
+ def smollm(self):
79
+ tokenizer = AutoTokenizer.from_pretrained(self.model_name)
80
+ model = AutoModelForCausalLM.from_pretrained(self.model_name)
81
+ prompt = f"""Translate the following {self.sl} text to {self.tl}, generating only the translated text and maintaining the original meaning and tone:
82
+ {self.input_text}
83
+ Translation:"""
84
+ inputs = tokenizer(prompt, return_tensors="pt")
85
+ outputs = model.generate(
86
+ inputs.input_ids,
87
+ max_length=len(inputs.input_ids[0]) + 150,
88
+ temperature=0.3,
89
+ do_sample=True
90
+ )
91
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
92
+ return response.split("Translation:")[-1].strip()
93
+
94
  def mtom(model_name, sl, tl, input_text):
95
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
96
  model = M2M100ForConditionalGeneration.from_pretrained(model_name)
 
143
  except KeyError as error:
144
  return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  def flan(model_name, sl, tl, input_text):
147
  tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
148
  model = T5ForConditionalGeneration.from_pretrained(model_name)
 
326
  translated_text = argos(sl, tl, input_text)
327
 
328
  elif model_name == 'Google':
329
+ translated_text = Translators(model_name, sl, tl, input_text).google()
330
 
331
  elif "m2m" in model_name.lower():
332
  translated_text = mtom(model_name, sl, tl, input_text)
 
369
  translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
370
 
371
  elif model_name == "HuggingFaceTB/SmolLM3-3B":
372
+ translated_text = Translators(model_name, sselected_language, tselected_language, input_text).smollm()
373
 
374
  except Exception as error:
375
  translated_text = error