Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,7 @@ models = ["Helsinki-NLP",
|
|
| 21 |
"t5-small", "t5-base", "t5-large",
|
| 22 |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
|
| 23 |
"Argos", "Google",
|
|
|
|
| 24 |
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
|
| 25 |
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
|
| 26 |
"openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
|
|
@@ -63,10 +64,17 @@ def argos(sl, tl, input_text):
|
|
| 63 |
print(error)
|
| 64 |
return translated_text
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def mtom(model_name, sl, tl, input_text):
|
| 72 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
|
@@ -100,8 +108,8 @@ def HelsinkiNLP(sl, tl, input_text):
|
|
| 100 |
try: # Standard bilingual model
|
| 101 |
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 102 |
pipe = pipeline("translation", model=model_name, device=-1)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
except EnvironmentError:
|
| 106 |
try: # Tatoeba models
|
| 107 |
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
|
@@ -120,6 +128,27 @@ def HelsinkiNLP(sl, tl, input_text):
|
|
| 120 |
except KeyError as error:
|
| 121 |
return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
def flan(model_name, sl, tl, input_text):
|
| 124 |
tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
|
| 125 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
@@ -303,7 +332,7 @@ def translate_text(input_text: str, sselected_language: str, tselected_language:
|
|
| 303 |
translated_text = argos(sl, tl, input_text)
|
| 304 |
|
| 305 |
elif model_name == 'Google':
|
| 306 |
-
translated_text =
|
| 307 |
|
| 308 |
elif "m2m" in model_name.lower():
|
| 309 |
translated_text = mtom(model_name, sl, tl, input_text)
|
|
@@ -344,11 +373,14 @@ def translate_text(input_text: str, sselected_language: str, tselected_language:
|
|
| 344 |
|
| 345 |
elif model_name.startswith('t5'):
|
| 346 |
translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
| 348 |
except Exception as error:
|
| 349 |
translated_text = error
|
| 350 |
finally:
|
| 351 |
-
print(translated_text, message_text)
|
| 352 |
return translated_text, message_text
|
| 353 |
|
| 354 |
# Function to swap dropdown values
|
|
|
|
| 21 |
"t5-small", "t5-base", "t5-large",
|
| 22 |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
|
| 23 |
"Argos", "Google",
|
| 24 |
+
"HuggingFaceTB/SmolLM3-3B",
|
| 25 |
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
|
| 26 |
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
|
| 27 |
"openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
|
|
|
|
| 64 |
print(error)
|
| 65 |
return translated_text
|
| 66 |
|
| 67 |
+
class Translators:
|
| 68 |
+
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
|
| 69 |
+
print(self.get_class_method_callables())
|
| 70 |
+
self.model_name = model_name
|
| 71 |
+
self.sl, self.tl = sl, tl
|
| 72 |
+
self.input_text = input_text
|
| 73 |
+
|
| 74 |
+
def google(self):
|
| 75 |
+
url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
|
| 76 |
+
response = requests.get(url)
|
| 77 |
+
return response.json()[0][0][0]
|
| 78 |
|
| 79 |
def mtom(model_name, sl, tl, input_text):
|
| 80 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
|
|
|
| 108 |
try: # Standard bilingual model
|
| 109 |
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 110 |
pipe = pipeline("translation", model=model_name, device=-1)
|
| 111 |
+
translation = pipe(input_text)
|
| 112 |
+
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 113 |
except EnvironmentError:
|
| 114 |
try: # Tatoeba models
|
| 115 |
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
|
|
|
| 128 |
except KeyError as error:
|
| 129 |
return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
|
| 130 |
|
| 131 |
+
def smollm(model_name, sl, tl, input_text):
|
| 132 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 133 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 134 |
+
prompt = f"""Translate the following {sl} text to {tl}, maintaining the original meaning and tone:
|
| 135 |
+
{input_text}
|
| 136 |
+
Translation:"""
|
| 137 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 138 |
+
outputs = model.generate(
|
| 139 |
+
inputs.input_ids,
|
| 140 |
+
max_length=len(inputs.input_ids[0]) + 150,
|
| 141 |
+
temperature=0.3,
|
| 142 |
+
do_sample=True
|
| 143 |
+
)
|
| 144 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 145 |
+
return response.split("Translation:")[-1].strip()
|
| 146 |
+
|
| 147 |
+
# Example usage
|
| 148 |
+
english_text = "The weather today is beautiful and perfect for a picnic."
|
| 149 |
+
spanish_translation = translate_text(english_text, "English", "Spanish")
|
| 150 |
+
print(f"Spanish: {spanish_translation}")
|
| 151 |
+
|
| 152 |
def flan(model_name, sl, tl, input_text):
|
| 153 |
tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
|
| 154 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
| 332 |
translated_text = argos(sl, tl, input_text)
|
| 333 |
|
| 334 |
elif model_name == 'Google':
|
| 335 |
+
translated_text = Translators('Google', sl, tl, input_text).google()
|
| 336 |
|
| 337 |
elif "m2m" in model_name.lower():
|
| 338 |
translated_text = mtom(model_name, sl, tl, input_text)
|
|
|
|
| 373 |
|
| 374 |
elif model_name.startswith('t5'):
|
| 375 |
translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
|
| 376 |
+
|
| 377 |
+
elif model_name == "HuggingFaceTB/SmolLM3-3B":
|
| 378 |
+
translated_text = smollm(model_name, sselected_language, tselected_language, input_text)
|
| 379 |
+
|
| 380 |
except Exception as error:
|
| 381 |
translated_text = error
|
| 382 |
finally:
|
| 383 |
+
print(input_text, translated_text, message_text)
|
| 384 |
return translated_text, message_text
|
| 385 |
|
| 386 |
# Function to swap dropdown values
|