Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -64,6 +64,49 @@ def argos(sl, tl, input_text):
|
|
| 64 |
print(error)
|
| 65 |
return translated_text
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
class Translators:
|
| 68 |
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
|
| 69 |
self.model_name = model_name
|
|
@@ -109,57 +152,75 @@ class Translators:
|
|
| 109 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
| 110 |
return translated_text
|
| 111 |
|
| 112 |
-
def
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
def
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 146 |
-
except EnvironmentError:
|
| 147 |
-
try: # Tatoeba models
|
| 148 |
-
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
| 149 |
-
pipe = pipeline("translation", model=model_name, device=-1)
|
| 150 |
-
translation = pipe(input_text)
|
| 151 |
-
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 152 |
-
except EnvironmentError as error:
|
| 153 |
-
try: # Last resort: multi to multi
|
| 154 |
-
model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul"
|
| 155 |
-
pipe = pipeline("translation", model=model_name)
|
| 156 |
-
tl = 'deu' # Hard coded for now for testing
|
| 157 |
-
translation = pipe(f'>>{tl}<< {input_text}')
|
| 158 |
-
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 159 |
-
except Exception as error:
|
| 160 |
-
return f"Error translating with model: {model_name}! Try other available language combination.", error
|
| 161 |
-
except KeyError as error:
|
| 162 |
-
return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
|
| 163 |
|
| 164 |
def teuken(model_name, sl, tl, input_text):
|
| 165 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -189,24 +250,6 @@ def teuken(model_name, sl, tl, input_text):
|
|
| 189 |
translation = tokenizer.decode(prediction[0].tolist())
|
| 190 |
return translation
|
| 191 |
|
| 192 |
-
def bigscience(model_name, sl, tl, input_text):
|
| 193 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 194 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 195 |
-
inputs = tokenizer.encode(f"Translate to {tl}: {input_text}.", return_tensors="pt")
|
| 196 |
-
outputs = model.generate(inputs)
|
| 197 |
-
translation = tokenizer.decode(outputs[0])
|
| 198 |
-
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 199 |
-
return translation
|
| 200 |
-
|
| 201 |
-
def bloomz(model_name, sl, tl, input_text):
|
| 202 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 203 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 204 |
-
inputs = tokenizer.encode(f"Translate from {sl} to {tl}: {input_text}. Translation:", return_tensors="pt")
|
| 205 |
-
outputs = model.generate(inputs)
|
| 206 |
-
translation = tokenizer.decode(outputs[0])
|
| 207 |
-
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 208 |
-
return translation
|
| 209 |
-
|
| 210 |
def eurollm(model_name, sl, tl, input_text):
|
| 211 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 212 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
@@ -228,13 +271,6 @@ def eurollm_instruct(model_name, sl, tl, input_text):
|
|
| 228 |
output = output.rsplit(f'{tl}:')[-1].strip().replace('assistant\n', '')
|
| 229 |
return output
|
| 230 |
|
| 231 |
-
def nllb(model_name, sl, tl, input_text):
|
| 232 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
|
| 233 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
| 234 |
-
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
|
| 235 |
-
translated_text = translator(input_text, max_length=512)
|
| 236 |
-
return translated_text[0]['translation_text']
|
| 237 |
-
|
| 238 |
def unbabel(model_name, sl, tl, input_text):
|
| 239 |
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 240 |
messages = [{"role": "user",
|
|
@@ -256,43 +292,6 @@ def unbabel(model_name, sl, tl, input_text):
|
|
| 256 |
split_translated_text = translated_text.split('\n', translated_text.count('\n'))
|
| 257 |
translated_text = '\n'.join(split_translated_text[:input_text.count('\n')+1])
|
| 258 |
return translated_text
|
| 259 |
-
|
| 260 |
-
def mbart_many_to_many(model_name, sl, tl, input_text):
|
| 261 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 262 |
-
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
| 263 |
-
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
|
| 264 |
-
# translate source to target
|
| 265 |
-
tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
|
| 266 |
-
encoded = tokenizer(input_text, return_tensors="pt")
|
| 267 |
-
generated_tokens = model.generate(
|
| 268 |
-
**encoded,
|
| 269 |
-
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tl]]
|
| 270 |
-
)
|
| 271 |
-
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 272 |
-
|
| 273 |
-
def mbart_one_to_many(model_name, sl, tl, input_text):
|
| 274 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 275 |
-
article_en = input_text
|
| 276 |
-
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
|
| 277 |
-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
|
| 278 |
-
model_inputs = tokenizer(article_en, return_tensors="pt")
|
| 279 |
-
# translate from English
|
| 280 |
-
langid = languagecodes.mbart_large_languages[tl]
|
| 281 |
-
generated_tokens = model.generate(
|
| 282 |
-
**model_inputs,
|
| 283 |
-
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
|
| 284 |
-
)
|
| 285 |
-
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 286 |
-
|
| 287 |
-
def mbart_many_to_one(model_name, sl, tl, input_text):
|
| 288 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 289 |
-
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
|
| 290 |
-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
|
| 291 |
-
# translate to English
|
| 292 |
-
tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
|
| 293 |
-
encoded = tokenizer(input_text, return_tensors="pt")
|
| 294 |
-
generated_tokens = model.generate(**encoded)
|
| 295 |
-
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 296 |
|
| 297 |
@spaces.GPU
|
| 298 |
def translate_text(input_text: str, sselected_language: str, tselected_language: str, model_name: str) -> tuple[str, str]:
|
|
@@ -330,42 +329,42 @@ def translate_text(input_text: str, sselected_language: str, tselected_language:
|
|
| 330 |
translated_text = Translators(model_name, sl, tl, input_text).google()
|
| 331 |
|
| 332 |
elif "m2m" in model_name.lower():
|
| 333 |
-
translated_text =
|
| 334 |
-
|
| 335 |
-
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 336 |
-
translated_text = eurollm_instruct(model_name, sselected_language, tselected_language, input_text)
|
| 337 |
|
| 338 |
-
elif model_name == "utter-project/EuroLLM-1.7B":
|
| 339 |
-
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 340 |
-
|
| 341 |
elif model_name.startswith('t5'):
|
| 342 |
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).tfive()
|
| 343 |
|
| 344 |
elif 'flan' in model_name.lower():
|
| 345 |
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).flan()
|
| 346 |
|
| 347 |
-
elif 'teuken' in model_name.lower():
|
| 348 |
-
translated_text = teuken(model_name, sselected_language, tselected_language, input_text)
|
| 349 |
-
|
| 350 |
elif 'mt0' in model_name.lower():
|
| 351 |
-
translated_text =
|
| 352 |
|
| 353 |
elif 'bloomz' in model_name.lower():
|
| 354 |
-
translated_text =
|
| 355 |
|
| 356 |
elif 'nllb' in model_name.lower():
|
| 357 |
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|
| 358 |
-
translated_text =
|
| 359 |
|
| 360 |
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
|
| 361 |
-
translated_text =
|
| 362 |
|
| 363 |
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
|
| 364 |
-
translated_text =
|
| 365 |
|
| 366 |
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
|
| 367 |
-
translated_text =
|
| 368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
elif 'Unbabel' in model_name:
|
| 370 |
translated_text = unbabel(model_name, sselected_language, tselected_language, input_text)
|
| 371 |
|
|
|
|
| 64 |
print(error)
|
| 65 |
return translated_text
|
| 66 |
|
| 67 |
+
def HelsinkiNLPAutoTokenizer(sl, tl, input_text):
|
| 68 |
+
if model_name == "Helsinki-NLP":
|
| 69 |
+
message_text = f'Translated from {sl} to {tl} with {model_name}.'
|
| 70 |
+
try:
|
| 71 |
+
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 73 |
+
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
|
| 74 |
+
except EnvironmentError:
|
| 75 |
+
try:
|
| 76 |
+
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 78 |
+
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
|
| 79 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 80 |
+
output_ids = model.generate(input_ids, max_length=512)
|
| 81 |
+
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 82 |
+
return translated_text, message_text
|
| 83 |
+
except EnvironmentError as error:
|
| 84 |
+
return f"Error finding model: {model_name}! Try other available language combination.", error
|
| 85 |
+
|
| 86 |
+
def HelsinkiNLP(sl, tl, input_text):
|
| 87 |
+
try: # Standard bilingual model
|
| 88 |
+
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 89 |
+
pipe = pipeline("translation", model=model_name, device=-1)
|
| 90 |
+
translation = pipe(input_text)
|
| 91 |
+
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 92 |
+
except EnvironmentError:
|
| 93 |
+
try: # Tatoeba models
|
| 94 |
+
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
| 95 |
+
pipe = pipeline("translation", model=model_name, device=-1)
|
| 96 |
+
translation = pipe(input_text)
|
| 97 |
+
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 98 |
+
except EnvironmentError as error:
|
| 99 |
+
try: # Last resort: multi to multi
|
| 100 |
+
model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul"
|
| 101 |
+
pipe = pipeline("translation", model=model_name)
|
| 102 |
+
tl = 'deu' # Hard coded for now for testing
|
| 103 |
+
translation = pipe(f'>>{tl}<< {input_text}')
|
| 104 |
+
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
|
| 105 |
+
except Exception as error:
|
| 106 |
+
return f"Error translating with model: {model_name}! Try other available language combination.", error
|
| 107 |
+
except KeyError as error:
|
| 108 |
+
return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
|
| 109 |
+
|
| 110 |
class Translators:
|
| 111 |
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
|
| 112 |
self.model_name = model_name
|
|
|
|
| 152 |
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
| 153 |
return translated_text
|
| 154 |
|
| 155 |
+
def mbart_many_to_many(self):
|
| 156 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 157 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 158 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
|
| 159 |
+
# translate source to target
|
| 160 |
+
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
|
| 161 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 162 |
+
generated_tokens = model.generate(
|
| 163 |
+
**encoded,
|
| 164 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
|
| 165 |
+
)
|
| 166 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 167 |
+
|
| 168 |
+
def mbart_one_to_many(self):
|
| 169 |
+
# translate from English
|
| 170 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 171 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 172 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
|
| 173 |
+
model_inputs = tokenizer(self.input_text, return_tensors="pt")
|
| 174 |
+
langid = languagecodes.mbart_large_languages[self.tl]
|
| 175 |
+
generated_tokens = model.generate(
|
| 176 |
+
**model_inputs,
|
| 177 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
|
| 178 |
+
)
|
| 179 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 180 |
+
|
| 181 |
+
def mbart_many_to_one(self):
|
| 182 |
+
# translate to English
|
| 183 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 184 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 185 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
|
| 186 |
+
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
|
| 187 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 188 |
+
generated_tokens = model.generate(**encoded)
|
| 189 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 190 |
+
|
| 191 |
+
def mtom(self):
|
| 192 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 193 |
+
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
|
| 194 |
+
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
|
| 195 |
+
tokenizer.src_lang = self.sl
|
| 196 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 197 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
|
| 198 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 199 |
|
| 200 |
+
def bigscience(self):
|
| 201 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 202 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 203 |
+
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}.", return_tensors="pt")
|
| 204 |
+
outputs = model.generate(inputs)
|
| 205 |
+
translation = tokenizer.decode(outputs[0])
|
| 206 |
+
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 207 |
+
return translation
|
| 208 |
+
|
| 209 |
+
def bloomz(self):
|
| 210 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 211 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 212 |
+
inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text}. Translation:", return_tensors="pt")
|
| 213 |
+
outputs = model.generate(inputs)
|
| 214 |
+
translation = tokenizer.decode(outputs[0])
|
| 215 |
+
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 216 |
+
return translation
|
| 217 |
+
|
| 218 |
+
def nllb(self):
|
| 219 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
|
| 220 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto")
|
| 221 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
|
| 222 |
+
translated_text = translator(self.input_text, max_length=512)
|
| 223 |
+
return translated_text[0]['translation_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
def teuken(model_name, sl, tl, input_text):
|
| 226 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 250 |
translation = tokenizer.decode(prediction[0].tolist())
|
| 251 |
return translation
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
def eurollm(model_name, sl, tl, input_text):
|
| 254 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 255 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
| 271 |
output = output.rsplit(f'{tl}:')[-1].strip().replace('assistant\n', '')
|
| 272 |
return output
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
def unbabel(model_name, sl, tl, input_text):
|
| 275 |
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 276 |
messages = [{"role": "user",
|
|
|
|
| 292 |
split_translated_text = translated_text.split('\n', translated_text.count('\n'))
|
| 293 |
translated_text = '\n'.join(split_translated_text[:input_text.count('\n')+1])
|
| 294 |
return translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
@spaces.GPU
|
| 297 |
def translate_text(input_text: str, sselected_language: str, tselected_language: str, model_name: str) -> tuple[str, str]:
|
|
|
|
| 329 |
translated_text = Translators(model_name, sl, tl, input_text).google()
|
| 330 |
|
| 331 |
elif "m2m" in model_name.lower():
|
| 332 |
+
translated_text = Translators(model_name, sl, tl, input_text).mtom()
|
|
|
|
|
|
|
|
|
|
| 333 |
|
|
|
|
|
|
|
|
|
|
| 334 |
elif model_name.startswith('t5'):
|
| 335 |
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).tfive()
|
| 336 |
|
| 337 |
elif 'flan' in model_name.lower():
|
| 338 |
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).flan()
|
| 339 |
|
|
|
|
|
|
|
|
|
|
| 340 |
elif 'mt0' in model_name.lower():
|
| 341 |
+
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).bigscience()
|
| 342 |
|
| 343 |
elif 'bloomz' in model_name.lower():
|
| 344 |
+
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).bloomz()
|
| 345 |
|
| 346 |
elif 'nllb' in model_name.lower():
|
| 347 |
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|
| 348 |
+
translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
|
| 349 |
|
| 350 |
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
|
| 351 |
+
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).mbart_many_to_many()
|
| 352 |
|
| 353 |
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
|
| 354 |
+
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).mbart_one_to_many()
|
| 355 |
|
| 356 |
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
|
| 357 |
+
translated_text = Translators(model_name, sselected_language, tselected_language, input_text).mbart_many_to_one()
|
| 358 |
|
| 359 |
+
elif 'teuken' in model_name.lower():
|
| 360 |
+
translated_text = teuken(model_name, sselected_language, tselected_language, input_text)
|
| 361 |
+
|
| 362 |
+
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 363 |
+
translated_text = eurollm_instruct(model_name, sselected_language, tselected_language, input_text)
|
| 364 |
+
|
| 365 |
+
elif model_name == "utter-project/EuroLLM-1.7B":
|
| 366 |
+
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 367 |
+
|
| 368 |
elif 'Unbabel' in model_name:
|
| 369 |
translated_text = unbabel(model_name, sselected_language, tselected_language, input_text)
|
| 370 |
|