hanyang-chatbot / server.py
restvatikan's picture
Update server.py
4cc1962 verified
import os
import pickle
import re
import json
import asyncio
import tiktoken
from typing import List, Dict
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_chroma import Chroma
from sentence_transformers import CrossEncoder
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.documents import Document
load_dotenv()
app = FastAPI(title="Hanyang RAG Chatbot")
# --- μ„€μ • 및 λ‘œλ“œ ---
DB_PATH = "./db/chroma"
BM25_PATH = "./db/bm25.pkl"
MODEL_NAME = "gpt-5-mini"
# μž„λ² λ”© & DB λ‘œλ“œ (large λͺ¨λΈλ„ μ‘΄μž¬ν•¨)
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = Chroma(
persist_directory=DB_PATH,
embedding_function=embeddings,
collection_name="hanyang_rules"
)
# BM25 λ‘œλ“œ
with open(BM25_PATH, "rb") as f:
bm25_data = pickle.load(f)
bm25 = bm25_data["bm25"]
doc_store = bm25_data["documents"]
# ν† ν¬λ‚˜μ΄μ € μ„€μ •
try:
tokenizer = tiktoken.encoding_for_model(MODEL_NAME)
except KeyError:
tokenizer = tiktoken.get_encoding("cl100k_base")
def tiktoken_tokenizer(text):
tokens = tokenizer.encode(text)
return [str(t) for t in tokens]
# Reranker λ‘œλ“œ (CPU λΆ€ν•˜λ₯Ό 쀄이기 μœ„ν•΄ 둜컬/μΊμ‹œ λͺ¨λΈ μ‚¬μš©)
reranker = CrossEncoder("BAAI/bge-reranker-v2-m3")
# LLM μ„€μ •
llm = ChatOpenAI(model=MODEL_NAME)
class ChatRequest(BaseModel):
query: str
history: List[Dict[str, str]] = []
async def generate_chat_stream(query: str):
"""
단계별 진행상황(Log)κ³Ό μ΅œμ’… λ‹΅λ³€(Answer)을 μ‹€μ‹œκ°„μœΌλ‘œ Yield ν•©λ‹ˆλ‹€.
ν˜•μ‹: JSON String + \n
"""
# 1. 검색 단계
yield json.dumps({"type": "log", "content": "πŸ” [1/4] Hybrid Search(벑터+BM25) μˆ˜ν–‰ 쀑..."}) + "\n"
await asyncio.sleep(0.1)
# --- 검색 둜직 ---
# 1. Dense
dense_results = vector_store.similarity_search_with_score(query, k=10)
# 2. BM25
tokenized_query = tiktoken_tokenizer(query)
bm25_scores = bm25.get_scores(tokenized_query)
top_n_bm25_indices = sorted(range(len(bm25_scores)), key=lambda i: bm25_scores[i], reverse=True)[:10]
bm25_results = [doc_store[i] for i in top_n_bm25_indices]
# 3. Rule-based
rule_results = []
match = re.search(r"제\s*(\d+)\s*쑰", query)
if match:
target_article = match.group(1)
for doc in doc_store:
if doc.metadata.get("article_id") == target_article:
rule_results.append(doc)
yield json.dumps({"type": "log", "content": f"πŸ“Š 검색 μ™„λ£Œ: Dense({len(dense_results)}) / BM25({len(bm25_results)}) / Rule({len(rule_results)})"}) + "\n"
# --- RRF Fusion ---
yield json.dumps({"type": "log", "content": "πŸ”„ [2/4] RRF μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ κ²°κ³Ό 톡합 쀑..."}) + "\n"
rrf_k = 60
doc_scores = {}
doc_obj_map = {}
def update_rrf(docs, weight=1.0):
for rank, doc in enumerate(docs):
unique_key = doc.page_content + doc.metadata.get("source", "")
if unique_key not in doc_scores:
doc_scores[unique_key] = 0.0
doc_obj_map[unique_key] = doc
doc_scores[unique_key] += weight * (1 / (rrf_k + rank + 1))
update_rrf([d[0] for d in dense_results])
update_rrf(bm25_results)
update_rrf(rule_results, weight=3.0)
sorted_docs = sorted(doc_scores.items(), key=lambda x: x[1], reverse=True)
# Reranking 후보ꡰ을 10개둜 μ œν•œ
candidates = [doc_obj_map[key] for key, score in sorted_docs[:10]]
# --- Reranking ---
yield json.dumps({"type": "log", "content": f"βš–οΈ [3/4] Cross-Encoder μž¬μˆœμœ„ν™” (후보 {len(candidates)}개)..."}) + "\n"
final_docs = []
if candidates:
pairs = []
for doc in candidates:
source_prefix = f"[{doc.metadata.get('source', 'λ¬Έμ„œ')}] "
pairs.append([query, source_prefix + doc.page_content])
# CPU μ—°μ‚° 병λͺ© ꡬ간
scores = reranker.predict(pairs)
scored_docs = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
final_docs = [doc for doc, score in scored_docs[:5]] # μ΅œμ’… 5개
# 상세 둜그 전솑
for i, (doc, score) in enumerate(scored_docs[:3]): # μƒμœ„ 3개 점수 곡개
log_msg = f" - Rank {i+1}: {doc.metadata.get('source')} (Score: {score:.4f})"
yield json.dumps({"type": "log", "content": log_msg}) + "\n"
# --- LLM Generation ---
yield json.dumps({"type": "log", "content": "πŸ€– [4/4] GPT-5-mini 기반 λ‹΅λ³€ 생성 쀑..."}) + "\n"
context_text = ""
for doc in final_docs:
source = doc.metadata.get("source", "Unknown")
context_text += f"πŸ“„ λ¬Έμ„œ: {source}\nλ‚΄μš©: {doc.page_content}\n\n"
system_prompt = """당신은 ν•œμ–‘λŒ€ν•™κ΅ ν•™μΉ™ 및 κ·œμ • μ•ˆλ‚΄ μ±—λ΄‡μž…λ‹ˆλ‹€.
μ§ˆλ¬Έμ— λ‹΅λ³€ν•  λ•ŒλŠ” λ°˜λ“œμ‹œ κ·Όκ±° λ¬Έμ„œμ˜ 좜처(예: ν•™μΉ™ 제5μ‘°, 뢀전곡 μ‹œν–‰μ„ΈμΉ™ λ“±)λ₯Ό μ–ΈκΈ‰ν•˜μ„Έμš”.
Context에 μ—†λŠ” λ‚΄μš©μ€ λ‹΅λ³€ν•˜μ§€ λ§ˆμ„Έμš”."""
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
("user", "Context:\n{context}\n\nQuestion: {question}")
])
# Streaming LLM Output
chain = prompt | llm | StrOutputParser()
# LLM이 토큰을 생성할 λ•Œλ§ˆλ‹€ ν΄λΌμ΄μ–ΈνŠΈλ‘œ 전솑
async for token in chain.astream({"context": context_text, "question": query}):
yield json.dumps({"type": "answer", "content": token}) + "\n"
yield json.dumps({"type": "log", "content": "βœ… λ‹΅λ³€ 생성 μ™„λ£Œ."}) + "\n"
# μ°Έκ³  λ¬Έμ„œ 정보 전솑
doc_info = [{"source": d.metadata.get("source"), "content": d.page_content[:100]+"..."} for d in final_docs]
yield json.dumps({"type": "docs", "content": doc_info}) + "\n"
@app.post("/chat")
async def chat_endpoint(req: ChatRequest):
return StreamingResponse(generate_chat_stream(req.query), media_type="application/x-ndjson")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)