File size: 6,280 Bytes
5063d6d
 
 
11ba50a
 
5063d6d
11ba50a
5063d6d
11ba50a
5063d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc1962
5063d6d
 
 
 
 
 
 
11ba50a
5063d6d
 
 
 
 
11ba50a
5063d6d
 
 
 
 
 
 
 
 
11ba50a
5063d6d
11ba50a
5063d6d
 
11ba50a
 
 
5063d6d
11ba50a
 
 
 
 
 
 
 
4cc1962
11ba50a
 
5063d6d
4cc1962
5063d6d
 
 
 
11ba50a
5063d6d
 
 
 
 
 
 
 
 
 
 
11ba50a
 
 
 
 
5063d6d
 
 
11ba50a
5063d6d
 
 
 
 
 
 
 
 
 
4cc1962
5063d6d
 
4cc1962
11ba50a
5063d6d
11ba50a
 
5063d6d
11ba50a
 
 
 
 
 
5063d6d
11ba50a
 
 
 
 
 
 
 
 
5063d6d
11ba50a
 
 
5063d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
11ba50a
5063d6d
11ba50a
 
 
 
5063d6d
11ba50a
5063d6d
11ba50a
 
 
 
 
 
 
 
5063d6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import pickle
import re
import json
import asyncio
import tiktoken
from typing import List, Dict
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv

from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_chroma import Chroma
from sentence_transformers import CrossEncoder
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.documents import Document

load_dotenv()

app = FastAPI(title="Hanyang RAG Chatbot")

# --- μ„€μ • 및 λ‘œλ“œ ---
DB_PATH = "./db/chroma"
BM25_PATH = "./db/bm25.pkl"
MODEL_NAME = "gpt-5-mini"

# μž„λ² λ”© & DB λ‘œλ“œ (large λͺ¨λΈλ„ μ‘΄μž¬ν•¨)
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = Chroma(
    persist_directory=DB_PATH, 
    embedding_function=embeddings,
    collection_name="hanyang_rules"
)

# BM25 λ‘œλ“œ
with open(BM25_PATH, "rb") as f:
    bm25_data = pickle.load(f)
    bm25 = bm25_data["bm25"]
    doc_store = bm25_data["documents"]

# ν† ν¬λ‚˜μ΄μ € μ„€μ •
try:
    tokenizer = tiktoken.encoding_for_model(MODEL_NAME)
except KeyError:
    tokenizer = tiktoken.get_encoding("cl100k_base")

def tiktoken_tokenizer(text):
    tokens = tokenizer.encode(text)
    return [str(t) for t in tokens]

# Reranker λ‘œλ“œ (CPU λΆ€ν•˜λ₯Ό 쀄이기 μœ„ν•΄ 둜컬/μΊμ‹œ λͺ¨λΈ μ‚¬μš©)
reranker = CrossEncoder("BAAI/bge-reranker-v2-m3")
# LLM μ„€μ •
llm = ChatOpenAI(model=MODEL_NAME)

class ChatRequest(BaseModel):
    query: str
    history: List[Dict[str, str]] = []

async def generate_chat_stream(query: str):
    """
    단계별 진행상황(Log)κ³Ό μ΅œμ’… λ‹΅λ³€(Answer)을 μ‹€μ‹œκ°„μœΌλ‘œ Yield ν•©λ‹ˆλ‹€.
    ν˜•μ‹: JSON String + \n
    """
    
    # 1. 검색 단계
    yield json.dumps({"type": "log", "content": "πŸ” [1/4] Hybrid Search(벑터+BM25) μˆ˜ν–‰ 쀑..."}) + "\n"
    await asyncio.sleep(0.1)

    # --- 검색 둜직 ---
    # 1. Dense
    dense_results = vector_store.similarity_search_with_score(query, k=10)
    
    # 2. BM25
    tokenized_query = tiktoken_tokenizer(query)
    bm25_scores = bm25.get_scores(tokenized_query)
    top_n_bm25_indices = sorted(range(len(bm25_scores)), key=lambda i: bm25_scores[i], reverse=True)[:10]
    bm25_results = [doc_store[i] for i in top_n_bm25_indices]

    # 3. Rule-based
    rule_results = []
    match = re.search(r"제\s*(\d+)\s*쑰", query)
    if match:
        target_article = match.group(1)
        for doc in doc_store:
            if doc.metadata.get("article_id") == target_article:
                rule_results.append(doc)
    
    yield json.dumps({"type": "log", "content": f"πŸ“Š 검색 μ™„λ£Œ: Dense({len(dense_results)}) / BM25({len(bm25_results)}) / Rule({len(rule_results)})"}) + "\n"

    # --- RRF Fusion ---
    yield json.dumps({"type": "log", "content": "πŸ”„ [2/4] RRF μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ κ²°κ³Ό 톡합 쀑..."}) + "\n"
    
    rrf_k = 60
    doc_scores = {}
    doc_obj_map = {}
    
    def update_rrf(docs, weight=1.0):
        for rank, doc in enumerate(docs):
            unique_key = doc.page_content + doc.metadata.get("source", "")
            if unique_key not in doc_scores:
                doc_scores[unique_key] = 0.0
                doc_obj_map[unique_key] = doc
            doc_scores[unique_key] += weight * (1 / (rrf_k + rank + 1))

    update_rrf([d[0] for d in dense_results])
    update_rrf(bm25_results)
    update_rrf(rule_results, weight=3.0)

    sorted_docs = sorted(doc_scores.items(), key=lambda x: x[1], reverse=True)
    # Reranking 후보ꡰ을 10개둜 μ œν•œ
    candidates = [doc_obj_map[key] for key, score in sorted_docs[:10]]

    # --- Reranking ---
    yield json.dumps({"type": "log", "content": f"βš–οΈ [3/4] Cross-Encoder μž¬μˆœμœ„ν™” (후보 {len(candidates)}개)..."}) + "\n"
    
    final_docs = []
    if candidates:
        pairs = []
        for doc in candidates:
            source_prefix = f"[{doc.metadata.get('source', 'λ¬Έμ„œ')}] "
            pairs.append([query, source_prefix + doc.page_content])
        
        # CPU μ—°μ‚° 병λͺ© ꡬ간
        scores = reranker.predict(pairs)
        scored_docs = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
        final_docs = [doc for doc, score in scored_docs[:5]] # μ΅œμ’… 5개

        # 상세 둜그 전솑
        for i, (doc, score) in enumerate(scored_docs[:3]): # μƒμœ„ 3개 점수 곡개
            log_msg = f"   - Rank {i+1}: {doc.metadata.get('source')} (Score: {score:.4f})"
            yield json.dumps({"type": "log", "content": log_msg}) + "\n"
    
    # --- LLM Generation ---
    yield json.dumps({"type": "log", "content": "πŸ€– [4/4] GPT-5-mini 기반 λ‹΅λ³€ 생성 쀑..."}) + "\n"

    context_text = ""
    for doc in final_docs:
        source = doc.metadata.get("source", "Unknown")
        context_text += f"πŸ“„ λ¬Έμ„œ: {source}\nλ‚΄μš©: {doc.page_content}\n\n"

    system_prompt = """당신은 ν•œμ–‘λŒ€ν•™κ΅ ν•™μΉ™ 및 κ·œμ • μ•ˆλ‚΄ μ±—λ΄‡μž…λ‹ˆλ‹€. 
    μ§ˆλ¬Έμ— λ‹΅λ³€ν•  λ•ŒλŠ” λ°˜λ“œμ‹œ κ·Όκ±° λ¬Έμ„œμ˜ 좜처(예: ν•™μΉ™ 제5μ‘°, 뢀전곡 μ‹œν–‰μ„ΈμΉ™ λ“±)λ₯Ό μ–ΈκΈ‰ν•˜μ„Έμš”.
    Context에 μ—†λŠ” λ‚΄μš©μ€ λ‹΅λ³€ν•˜μ§€ λ§ˆμ„Έμš”."""
    
    prompt = ChatPromptTemplate.from_messages([
        ("system", system_prompt),
        ("user", "Context:\n{context}\n\nQuestion: {question}")
    ])
    
    # Streaming LLM Output
    chain = prompt | llm | StrOutputParser()
    
    # LLM이 토큰을 생성할 λ•Œλ§ˆλ‹€ ν΄λΌμ΄μ–ΈνŠΈλ‘œ 전솑
    async for token in chain.astream({"context": context_text, "question": query}):
        yield json.dumps({"type": "answer", "content": token}) + "\n"

    yield json.dumps({"type": "log", "content": "βœ… λ‹΅λ³€ 생성 μ™„λ£Œ."}) + "\n"
    
    # μ°Έκ³  λ¬Έμ„œ 정보 전솑
    doc_info = [{"source": d.metadata.get("source"), "content": d.page_content[:100]+"..."} for d in final_docs]
    yield json.dumps({"type": "docs", "content": doc_info}) + "\n"


@app.post("/chat")
async def chat_endpoint(req: ChatRequest):
    return StreamingResponse(generate_chat_stream(req.query), media_type="application/x-ndjson")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)