Spaces:
Running
Running
File size: 6,280 Bytes
5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 4cc1962 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 4cc1962 11ba50a 5063d6d 4cc1962 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 4cc1962 5063d6d 4cc1962 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d 11ba50a 5063d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import pickle
import re
import json
import asyncio
import tiktoken
from typing import List, Dict
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_chroma import Chroma
from sentence_transformers import CrossEncoder
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.documents import Document
load_dotenv()
app = FastAPI(title="Hanyang RAG Chatbot")
# --- μ€μ λ° λ‘λ ---
DB_PATH = "./db/chroma"
BM25_PATH = "./db/bm25.pkl"
MODEL_NAME = "gpt-5-mini"
# μλ² λ© & DB λ‘λ (large λͺ¨λΈλ μ‘΄μ¬ν¨)
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = Chroma(
persist_directory=DB_PATH,
embedding_function=embeddings,
collection_name="hanyang_rules"
)
# BM25 λ‘λ
with open(BM25_PATH, "rb") as f:
bm25_data = pickle.load(f)
bm25 = bm25_data["bm25"]
doc_store = bm25_data["documents"]
# ν ν¬λμ΄μ μ€μ
try:
tokenizer = tiktoken.encoding_for_model(MODEL_NAME)
except KeyError:
tokenizer = tiktoken.get_encoding("cl100k_base")
def tiktoken_tokenizer(text):
tokens = tokenizer.encode(text)
return [str(t) for t in tokens]
# Reranker λ‘λ (CPU λΆνλ₯Ό μ€μ΄κΈ° μν΄ λ‘컬/μΊμ λͺ¨λΈ μ¬μ©)
reranker = CrossEncoder("BAAI/bge-reranker-v2-m3")
# LLM μ€μ
llm = ChatOpenAI(model=MODEL_NAME)
class ChatRequest(BaseModel):
query: str
history: List[Dict[str, str]] = []
async def generate_chat_stream(query: str):
"""
λ¨κ³λ³ μ§νμν©(Log)κ³Ό μ΅μ’
λ΅λ³(Answer)μ μ€μκ°μΌλ‘ Yield ν©λλ€.
νμ: JSON String + \n
"""
# 1. κ²μ λ¨κ³
yield json.dumps({"type": "log", "content": "π [1/4] Hybrid Search(벑ν°+BM25) μν μ€..."}) + "\n"
await asyncio.sleep(0.1)
# --- κ²μ λ‘μ§ ---
# 1. Dense
dense_results = vector_store.similarity_search_with_score(query, k=10)
# 2. BM25
tokenized_query = tiktoken_tokenizer(query)
bm25_scores = bm25.get_scores(tokenized_query)
top_n_bm25_indices = sorted(range(len(bm25_scores)), key=lambda i: bm25_scores[i], reverse=True)[:10]
bm25_results = [doc_store[i] for i in top_n_bm25_indices]
# 3. Rule-based
rule_results = []
match = re.search(r"μ \s*(\d+)\s*μ‘°", query)
if match:
target_article = match.group(1)
for doc in doc_store:
if doc.metadata.get("article_id") == target_article:
rule_results.append(doc)
yield json.dumps({"type": "log", "content": f"π κ²μ μλ£: Dense({len(dense_results)}) / BM25({len(bm25_results)}) / Rule({len(rule_results)})"}) + "\n"
# --- RRF Fusion ---
yield json.dumps({"type": "log", "content": "π [2/4] RRF μκ³ λ¦¬μ¦μΌλ‘ κ²°κ³Ό ν΅ν© μ€..."}) + "\n"
rrf_k = 60
doc_scores = {}
doc_obj_map = {}
def update_rrf(docs, weight=1.0):
for rank, doc in enumerate(docs):
unique_key = doc.page_content + doc.metadata.get("source", "")
if unique_key not in doc_scores:
doc_scores[unique_key] = 0.0
doc_obj_map[unique_key] = doc
doc_scores[unique_key] += weight * (1 / (rrf_k + rank + 1))
update_rrf([d[0] for d in dense_results])
update_rrf(bm25_results)
update_rrf(rule_results, weight=3.0)
sorted_docs = sorted(doc_scores.items(), key=lambda x: x[1], reverse=True)
# Reranking ν보ꡰμ 10κ°λ‘ μ ν
candidates = [doc_obj_map[key] for key, score in sorted_docs[:10]]
# --- Reranking ---
yield json.dumps({"type": "log", "content": f"βοΈ [3/4] Cross-Encoder μ¬μμν (ν보 {len(candidates)}κ°)..."}) + "\n"
final_docs = []
if candidates:
pairs = []
for doc in candidates:
source_prefix = f"[{doc.metadata.get('source', 'λ¬Έμ')}] "
pairs.append([query, source_prefix + doc.page_content])
# CPU μ°μ° λ³λͺ© ꡬκ°
scores = reranker.predict(pairs)
scored_docs = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
final_docs = [doc for doc, score in scored_docs[:5]] # μ΅μ’
5κ°
# μμΈ λ‘κ·Έ μ μ‘
for i, (doc, score) in enumerate(scored_docs[:3]): # μμ 3κ° μ μ 곡κ°
log_msg = f" - Rank {i+1}: {doc.metadata.get('source')} (Score: {score:.4f})"
yield json.dumps({"type": "log", "content": log_msg}) + "\n"
# --- LLM Generation ---
yield json.dumps({"type": "log", "content": "π€ [4/4] GPT-5-mini κΈ°λ° λ΅λ³ μμ± μ€..."}) + "\n"
context_text = ""
for doc in final_docs:
source = doc.metadata.get("source", "Unknown")
context_text += f"π λ¬Έμ: {source}\nλ΄μ©: {doc.page_content}\n\n"
system_prompt = """λΉμ μ νμλνκ΅ νμΉ λ° κ·μ μλ΄ μ±λ΄μ
λλ€.
μ§λ¬Έμ λ΅λ³ν λλ λ°λμ κ·Όκ±° λ¬Έμμ μΆμ²(μ: νμΉ μ 5μ‘°, λΆμ 곡 μνμΈμΉ λ±)λ₯Ό μΈκΈνμΈμ.
Contextμ μλ λ΄μ©μ λ΅λ³νμ§ λ§μΈμ."""
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
("user", "Context:\n{context}\n\nQuestion: {question}")
])
# Streaming LLM Output
chain = prompt | llm | StrOutputParser()
# LLMμ΄ ν ν°μ μμ±ν λλ§λ€ ν΄λΌμ΄μΈνΈλ‘ μ μ‘
async for token in chain.astream({"context": context_text, "question": query}):
yield json.dumps({"type": "answer", "content": token}) + "\n"
yield json.dumps({"type": "log", "content": "β
λ΅λ³ μμ± μλ£."}) + "\n"
# μ°Έκ³ λ¬Έμ μ 보 μ μ‘
doc_info = [{"source": d.metadata.get("source"), "content": d.page_content[:100]+"..."} for d in final_docs]
yield json.dumps({"type": "docs", "content": doc_info}) + "\n"
@app.post("/chat")
async def chat_endpoint(req: ChatRequest):
return StreamingResponse(generate_chat_stream(req.query), media_type="application/x-ndjson")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |