Spaces:
Running
Running
File size: 15,971 Bytes
58fc959 3bb2461 58fc959 229cdc2 e136df8 229cdc2 58fc959 229cdc2 047f62b 58fc959 3bb2461 58fc959 3bb2461 58fc959 3bb2461 047f62b 3bb2461 c105bfb 3bb2461 e601754 3bb2461 9646139 3bb2461 e601754 3bb2461 c105bfb 3bb2461 c105bfb 3bb2461 9646139 58fc959 3bb2461 229cdc2 58fc959 3bb2461 c105bfb 3bb2461 c105bfb 9646139 229cdc2 3bb2461 229cdc2 3bb2461 9646139 3bb2461 9646139 3bb2461 229cdc2 58fc959 3bb2461 229cdc2 58fc959 9646139 3bb2461 c105bfb 3bb2461 58fc959 3bb2461 58fc959 3bb2461 58fc959 3bb2461 e601754 3bb2461 58fc959 3bb2461 58fc959 3bb2461 58fc959 3bb2461 58fc959 c105bfb 58fc959 3bb2461 9646139 3bb2461 58fc959 3bb2461 c105bfb 3bb2461 c105bfb 58fc959 3bb2461 58fc959 3bb2461 9646139 3bb2461 e601754 3bb2461 9646139 3bb2461 58fc959 3bb2461 229cdc2 3bb2461 e601754 3bb2461 58fc959 3bb2461 9646139 3bb2461 c105bfb 3bb2461 9646139 3bb2461 9646139 3bb2461 9646139 3bb2461 e601754 3bb2461 229cdc2 58fc959 3bb2461 08f2d92 229cdc2 58fc959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
"""
๐ Advanced Multilingual Image Describer
Using latest Vision-Language Models (VLMs) with native multilingual support
"""
import streamlit as st
import torch
from PIL import Image
import time
from datetime import datetime
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
# Set page config
st.set_page_config(
page_title="Multilingual Image Describer",
page_icon="๐",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.st-emotion-cache-16txtl3 {
padding-top: 3rem;
}
.header-title {
text-align: center;
color: #2C3E50;
margin-bottom: 1rem;
}
.model-badge {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 5px 15px;
border-radius: 20px;
font-size: 12px;
display: inline-block;
margin: 5px;
}
.language-tag {
background: #E3F2FD;
color: #1976D2;
padding: 3px 10px;
border-radius: 15px;
font-size: 12px;
margin: 2px;
display: inline-block;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'model' not in st.session_state:
st.session_state.model = None
if 'model_name' not in st.session_state:
st.session_state.model_name = None
if 'results' not in st.session_state:
st.session_state.results = None
# Model options (latest vision-language models)
MODEL_OPTIONS = {
"llava-hf/llava-1.5-7b-hf": {
"name": "LLaVA 1.5 (7B)",
"multilingual": True,
"languages": ["en", "zh", "es", "fr", "de", "it", "ru", "ja", "ko", "ar"],
"prompt_templates": {
"en": "Describe this image in detail:",
"zh": "่ฏฆ็ปๆ่ฟฐ่ฟๅผ ๅพ็๏ผ",
"es": "Describe esta imagen en detalle:",
"fr": "Dรฉcrivez cette image en dรฉtail :",
"de": "Beschreiben Sie dieses Bild im Detail:",
"am": "แญแ
แแ แแตแ แ แแญแแญ แญแแแนแก"
}
},
"Qwen/Qwen-VL-Chat": {
"name": "Qwen-VL-Chat",
"multilingual": True,
"languages": ["en", "zh", "ja", "ko", "fr", "de", "es", "ru"],
"prompt_templates": {
"en": "Describe this image in English:",
"zh": "็จไธญๆๆ่ฟฐ่ฟๅผ ๅพ็๏ผ",
"am": "แ แ แแญแ แญแ
แแ แแตแ แญแแแนแก"
}
},
"vikhyatk/moondream2": {
"name": "Moondream 2",
"multilingual": True,
"languages": ["en", "es", "fr", "de"],
"prompt_templates": {
"en": "Describe this image:",
"zh": "ๆ่ฟฐ่ฟๅผ ๅพ็๏ผ",
"am": "แญแ
แแ แแตแ แญแแแนแก"
}
}
}
# Language mapping
LANGUAGE_NAMES = {
"en": "๐บ๐ธ English",
"zh": "๐จ๐ณ ไธญๆ",
"am": "๐ช๐น แ แแญแ",
"es": "๐ช๐ธ Espaรฑol",
"fr": "๐ซ๐ท Franรงais",
"de": "๐ฉ๐ช Deutsch",
"ar": "๐ธ๐ฆ ุงูุนุฑุจูุฉ",
"hi": "๐ฎ๐ณ เคนเคฟเคจเฅเคฆเฅ",
"ru": "๐ท๐บ ะ ัััะบะธะน",
"ja": "๐ฏ๐ต ๆฅๆฌ่ช",
"ko": "๐ฐ๐ท ํ๊ตญ์ด",
"it": "๐ฎ๐น Italiano",
"pt": "๐ต๐น Portuguรชs",
"tr": "๐น๐ท Tรผrkรงe"
}
@st.cache_resource(show_spinner=True)
def load_model(model_id):
"""Load the selected vision-language model"""
try:
from transformers import AutoProcessor, AutoModelForVision2Seq
st.info(f"๐ Loading {MODEL_OPTIONS[model_id]['name']}...")
# Load processor and model
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None
)
return processor, model, model_id
except Exception as e:
st.error(f"โ Failed to load model: {str(e)[:200]}")
return None, None, None
def generate_caption(image, model_tuple, language="en", model_id=None):
"""Generate caption using the vision-language model"""
if None in model_tuple:
return "Model not loaded"
processor, model, loaded_model_id = model_tuple
try:
# Get prompt template based on model and language
model_info = MODEL_OPTIONS.get(loaded_model_id, MODEL_OPTIONS["llava-hf/llava-1.5-7b-hf"])
prompt_template = model_info["prompt_templates"].get(
language,
model_info["prompt_templates"].get("en", "Describe this image:")
)
# Prepare inputs
if "llava" in loaded_model_id:
# LLaVA format
prompt = f"USER: <image>\n{prompt_template}\nASSISTANT:"
inputs = processor(text=prompt, images=image, return_tensors="pt")
elif "qwen" in loaded_model_id.lower():
# Qwen-VL format
prompt = f"<img>Describe this image in {LANGUAGE_NAMES.get(language, 'English')}:</img>"
inputs = processor(text=prompt, images=image, return_tensors="pt")
else:
# Default format
inputs = processor(text=prompt_template, images=image, return_tensors="pt")
# Move to device
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Generate
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
do_sample=True
)
# Decode
generated_text = processor.batch_decode(
generated_ids,
skip_special_tokens=True
)[0].strip()
# Clean up response
if "llava" in loaded_model_id:
# Remove the prompt part
if "ASSISTANT:" in generated_text:
generated_text = generated_text.split("ASSISTANT:")[-1].strip()
return generated_text
except Exception as e:
return f"Error generating description: {str(e)[:100]}"
def main():
# Title
st.markdown("<h1 class='header-title'>๐ Advanced Multilingual Image Describer</h1>", unsafe_allow_html=True)
# Model info
st.markdown("""
<div style="text-align: center; margin-bottom: 2rem;">
<span class='model-badge'>Latest Vision-Language Models</span>
<span class='model-badge'>Native Multilingual Support</span>
<span class='model-badge'>No Translation APIs Needed</span>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown("### โ๏ธ Configuration")
# Model selection
st.markdown("#### ๐ค Select Model")
model_choice = st.selectbox(
"Choose a vision-language model:",
options=list(MODEL_OPTIONS.keys()),
format_func=lambda x: MODEL_OPTIONS[x]["name"],
help="LLaVA supports most languages. Qwen-VL is faster."
)
# Show model info
model_info = MODEL_OPTIONS[model_choice]
st.caption(f"โ
Languages: {len(model_info['languages'])}")
st.caption(f"๐ Parameters: 7B+")
# Language selection
st.markdown("#### ๐ Select Language")
available_langs = model_info["languages"]
selected_lang = st.selectbox(
"Output language:",
options=available_langs,
format_func=lambda x: LANGUAGE_NAMES.get(x, x),
index=0
)
# Show language tags
st.markdown("**Supported languages:**")
lang_tags = " ".join([
f'<span class="language-tag">{LANGUAGE_NAMES.get(lang, lang)}</span>'
for lang in available_langs[:8]
])
st.markdown(f'<div>{lang_tags}</div>', unsafe_allow_html=True)
# Image upload
st.markdown("---")
st.markdown("### ๐ธ Upload Image")
uploaded_file = st.file_uploader(
"Choose an image file",
type=["jpg", "jpeg", "png", "webp", "bmp"],
label_visibility="collapsed"
)
# Advanced options
with st.expander("โก Advanced Settings"):
max_tokens = st.slider("Max tokens", 50, 500, 200, 50)
temperature = st.slider("Temperature", 0.1, 1.0, 0.7, 0.1)
st.markdown("---")
# Action buttons
col1, col2 = st.columns(2)
with col1:
load_btn = st.button("๐ Load Model", use_container_width=True)
with col2:
if st.button("๐๏ธ Clear", use_container_width=True):
st.session_state.results = None
st.rerun()
# Load model if requested
if load_btn or (st.session_state.model is None and uploaded_file):
with st.spinner(f"Loading {model_info['name']}..."):
processor, model, model_id = load_model(model_choice)
if processor and model:
st.session_state.model = (processor, model, model_id)
st.session_state.model_name = model_info["name"]
st.success(f"โ
{model_info['name']} loaded!")
else:
st.error("โ Failed to load model")
# Quick stats
if st.session_state.results:
st.markdown("---")
st.markdown("### ๐ Quick Stats")
col1, col2 = st.columns(2)
with col1:
st.metric("Model", st.session_state.model_name or "N/A")
with col2:
st.metric("Language", LANGUAGE_NAMES.get(selected_lang, selected_lang))
# Main content
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("### ๐ค Input Image")
if uploaded_file:
try:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, use_column_width=True)
st.caption(f"๐ Size: {image.size[0]}ร{image.size[1]} pixels")
# Store for processing
st.session_state.current_image = image
except Exception as e:
st.error(f"Error loading image: {e}")
else:
st.info("๐ Upload an image to get started")
# Show placeholder
st.image(
"https://images.unsplash.com/photo-1579546929662-711aa81148cf?w=600&auto=format",
caption="Upload your own image for analysis",
use_column_width=True
)
with col2:
st.markdown("### ๐ Results")
# Process image if model is loaded
if (uploaded_file and st.session_state.model and
st.session_state.current_image and
'current_image' in st.session_state):
# Generate button
if st.button("๐ Generate Description", type="primary", use_container_width=True):
with st.spinner(f"Generating description in {LANGUAGE_NAMES.get(selected_lang, selected_lang)}..."):
start_time = time.time()
# Generate caption
caption = generate_caption(
st.session_state.current_image,
st.session_state.model,
selected_lang,
model_choice
)
processing_time = time.time() - start_time
# Store results
st.session_state.results = {
"caption": caption,
"language": selected_lang,
"language_name": LANGUAGE_NAMES.get(selected_lang, selected_lang),
"model": st.session_state.model_name,
"processing_time": f"{processing_time:.2f}s",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Display results
if st.session_state.results:
results = st.session_state.results
st.success(f"โ
Generated in {results['processing_time']}")
# Display caption
st.markdown("#### Generated Description")
st.markdown(f"""
<div style="background: #f8f9fa; padding: 20px; border-radius: 10px; border-left: 4px solid #667eea;">
<p style="font-size: 16px; line-height: 1.6;">{results['caption']}</p>
</div>
""", unsafe_allow_html=True)
# Metadata
st.markdown("#### ๐ Analysis Details")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Model", results['model'])
with col2:
st.metric("Language", results['language_name'])
with col3:
st.metric("Time", results['processing_time'])
# Export options
st.markdown("---")
st.markdown("#### ๐พ Export Results")
col1, col2 = st.columns(2)
with col1:
# JSON export
import json
json_data = json.dumps(results, indent=2, ensure_ascii=False)
st.download_button(
"๐ฅ Download JSON",
json_data,
f"image_description_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
"application/json",
use_container_width=True
)
with col2:
# Text export
text_data = f"""Image Description
Generated: {results['timestamp']}
Model: {results['model']}
Language: {results['language_name']}
Processing Time: {results['processing_time']}
DESCRIPTION:
{results['caption']}
---
Generated by Multilingual Image Describer
Powered by {results['model']}
"""
st.download_button(
"๐ฅ Download TXT",
text_data,
f"description_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
"text/plain",
use_container_width=True
)
# Try another language
st.markdown("---")
st.markdown("#### ๐ Try Another Language")
if st.button("๐ Generate in Different Language", use_container_width=True):
st.session_state.results = None
st.rerun()
elif uploaded_file and not st.session_state.model:
st.warning("โ ๏ธ Please load the model first!")
st.info("Click '๐ Load Model' in the sidebar")
elif not uploaded_file:
st.info("๐ Upload an image to begin")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #666; font-size: 0.9em; padding: 20px;">
<p>
<strong>Powered by Latest Vision-Language Models</strong> โข
<a href="https://huggingface.co/llava-hf/llava-1.5-7b-hf" target="_blank" style="color: #667eea;">LLaVA</a> โข
<a href="https://huggingface.co/Qwen/Qwen-VL-Chat" target="_blank" style="color: #667eea;">Qwen-VL</a>
</p>
<p style="font-size: 0.8em;">
Native multilingual support โข No translation APIs โข Direct caption generation
</p>
<p style="font-size: 0.7em; color: #999; margin-top: 15px;">
UCAS @2025 โข Built with Streamlit & Transformers
</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |