Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,16 @@
|
|
| 1 |
"""
|
| 2 |
-
Multilingual Image Describer
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import streamlit as st
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 11 |
-
from ultralytics import YOLO
|
| 12 |
-
import json
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
import pandas as pd
|
| 16 |
-
import plotly.graph_objects as go
|
| 17 |
-
import plotly.express as px
|
| 18 |
-
import os
|
| 19 |
-
import requests
|
| 20 |
-
from io import BytesIO
|
| 21 |
import warnings
|
| 22 |
warnings.filterwarnings("ignore")
|
| 23 |
|
|
@@ -25,759 +18,229 @@ warnings.filterwarnings("ignore")
|
|
| 25 |
st.set_page_config(
|
| 26 |
page_title="Multilingual Image Describer",
|
| 27 |
page_icon="🌍",
|
| 28 |
-
layout="wide"
|
| 29 |
-
initial_sidebar_state="expanded"
|
| 30 |
)
|
| 31 |
|
| 32 |
-
# Custom CSS
|
| 33 |
-
st.markdown("""
|
| 34 |
-
<style>
|
| 35 |
-
.main {
|
| 36 |
-
padding: 0rem 1rem;
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
.header {
|
| 40 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 41 |
-
padding: 2rem;
|
| 42 |
-
border-radius: 10px;
|
| 43 |
-
color: white;
|
| 44 |
-
margin-bottom: 2rem;
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
.card {
|
| 48 |
-
background: white;
|
| 49 |
-
padding: 1.5rem;
|
| 50 |
-
border-radius: 10px;
|
| 51 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 52 |
-
margin-bottom: 1rem;
|
| 53 |
-
border: 1px solid #e0e0e0;
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
.object-tag {
|
| 57 |
-
display: inline-block;
|
| 58 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 59 |
-
color: white;
|
| 60 |
-
padding: 5px 10px;
|
| 61 |
-
margin: 3px;
|
| 62 |
-
border-radius: 15px;
|
| 63 |
-
font-size: 12px;
|
| 64 |
-
font-weight: 500;
|
| 65 |
-
}
|
| 66 |
-
|
| 67 |
-
.stat-card {
|
| 68 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 69 |
-
padding: 15px;
|
| 70 |
-
border-radius: 10px;
|
| 71 |
-
text-align: center;
|
| 72 |
-
margin: 5px;
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
.stat-value {
|
| 76 |
-
font-size: 24px;
|
| 77 |
-
font-weight: bold;
|
| 78 |
-
color: #2B6CB0;
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
.stat-label {
|
| 82 |
-
font-size: 12px;
|
| 83 |
-
color: #718096;
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
.stProgress > div > div > div > div {
|
| 87 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
.stButton > button {
|
| 91 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 92 |
-
color: white;
|
| 93 |
-
border: none;
|
| 94 |
-
padding: 10px 20px;
|
| 95 |
-
border-radius: 5px;
|
| 96 |
-
font-weight: 500;
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
.stButton > button:hover {
|
| 100 |
-
transform: translateY(-2px);
|
| 101 |
-
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
|
| 102 |
-
}
|
| 103 |
-
</style>
|
| 104 |
-
""", unsafe_allow_html=True)
|
| 105 |
-
|
| 106 |
# Initialize session state
|
| 107 |
if 'model' not in st.session_state:
|
| 108 |
st.session_state.model = None
|
| 109 |
-
if 'detection_model' not in st.session_state:
|
| 110 |
-
st.session_state.detection_model = None
|
| 111 |
-
if 'results' not in st.session_state:
|
| 112 |
-
st.session_state.results = None
|
| 113 |
-
if 'image' not in st.session_state:
|
| 114 |
-
st.session_state.image = None
|
| 115 |
-
if 'hf_token' not in st.session_state:
|
| 116 |
-
st.session_state.hf_token = None
|
| 117 |
|
| 118 |
-
# Language
|
| 119 |
LANGUAGES = {
|
| 120 |
-
"en": {"name": "English", "
|
| 121 |
-
"
|
| 122 |
-
"
|
| 123 |
-
"
|
| 124 |
-
"
|
| 125 |
-
"
|
| 126 |
-
"ar": {"name": "
|
| 127 |
-
"
|
| 128 |
-
"
|
| 129 |
-
"
|
| 130 |
-
"pt": {"name": "Portuguese", "emoji": "🇵🇹", "code": "por_Latn"},
|
| 131 |
-
"it": {"name": "Italian", "emoji": "🇮🇹", "code": "ita_Latn"},
|
| 132 |
-
"am": {"name": "Amharic", "emoji": "🇪🇹", "code": "amh_Ethi"},
|
| 133 |
-
"tr": {"name": "Turkish", "emoji": "🇹🇷", "code": "tur_Latn"},
|
| 134 |
}
|
| 135 |
|
| 136 |
-
|
| 137 |
-
def
|
| 138 |
-
"""
|
| 139 |
-
Translate text using Hugging Face Inference API with NLLB model
|
| 140 |
-
"""
|
| 141 |
-
if target_lang == "en" or not text.strip():
|
| 142 |
-
return text
|
| 143 |
-
|
| 144 |
-
# Get target language code
|
| 145 |
-
lang_info = LANGUAGES.get(target_lang)
|
| 146 |
-
if not lang_info or 'code' not in lang_info:
|
| 147 |
-
return f"[{target_lang.upper()}] {text}"
|
| 148 |
-
|
| 149 |
-
target_code = lang_info['code']
|
| 150 |
-
|
| 151 |
-
# Hugging Face Inference API endpoint
|
| 152 |
-
API_URL = "https://api-inference.huggingface.co/models/facebook/nllb-200-distilled-600M"
|
| 153 |
-
|
| 154 |
-
# Prepare headers
|
| 155 |
-
headers = {}
|
| 156 |
-
if api_token:
|
| 157 |
-
headers["Authorization"] = f"Bearer {api_token}"
|
| 158 |
-
|
| 159 |
-
payload = {
|
| 160 |
-
"inputs": text,
|
| 161 |
-
"parameters": {
|
| 162 |
-
"src_lang": "eng_Latn",
|
| 163 |
-
"tgt_lang": target_code
|
| 164 |
-
}
|
| 165 |
-
}
|
| 166 |
-
|
| 167 |
try:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
# Parse response
|
| 180 |
-
if isinstance(result, list) and len(result) > 0:
|
| 181 |
-
translated_text = result[0].get('translation_text', text)
|
| 182 |
-
return translated_text
|
| 183 |
-
elif isinstance(result, dict) and 'translation_text' in result:
|
| 184 |
-
return result['translation_text']
|
| 185 |
-
else:
|
| 186 |
-
st.warning(f"Unexpected API response format. Using original text.")
|
| 187 |
-
return text
|
| 188 |
-
elif response.status_code == 503:
|
| 189 |
-
# Model is loading
|
| 190 |
-
st.warning(f"Translation model is loading. Please try again in 30 seconds.")
|
| 191 |
-
return f"[{target_lang.upper()}] {text}"
|
| 192 |
-
else:
|
| 193 |
-
st.warning(f"Translation API error {response.status_code}. Using original text.")
|
| 194 |
-
return text
|
| 195 |
|
| 196 |
-
except requests.exceptions.Timeout:
|
| 197 |
-
st.warning("Translation request timed out. Using original text.")
|
| 198 |
-
return text
|
| 199 |
-
except Exception as e:
|
| 200 |
-
st.warning(f"Translation error: {str(e)[:100]}... Using original text.")
|
| 201 |
-
return text
|
| 202 |
-
|
| 203 |
-
def translate_object_list(objects, target_lang="en", api_token=None):
|
| 204 |
-
"""
|
| 205 |
-
Translate a list of object names
|
| 206 |
-
"""
|
| 207 |
-
if target_lang == "en" or not objects:
|
| 208 |
-
return objects
|
| 209 |
-
|
| 210 |
-
translated_objects = []
|
| 211 |
-
for obj in objects:
|
| 212 |
-
translated_obj = translate_with_huggingface(obj, target_lang, api_token)
|
| 213 |
-
translated_objects.append(translated_obj)
|
| 214 |
-
|
| 215 |
-
return translated_objects
|
| 216 |
-
|
| 217 |
-
@st.cache_resource(show_spinner="Loading BLIP model...")
|
| 218 |
-
def load_caption_model():
|
| 219 |
-
"""Load BLIP model for image captioning"""
|
| 220 |
-
try:
|
| 221 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 222 |
-
model = BlipForConditionalGeneration.from_pretrained(
|
| 223 |
-
"Salesforce/blip-image-captioning-base"
|
| 224 |
-
)
|
| 225 |
return processor, model
|
| 226 |
except Exception as e:
|
| 227 |
-
st.error(f"
|
| 228 |
return None, None
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
model = YOLO('yolov8n.pt')
|
| 235 |
-
return model
|
| 236 |
-
except Exception as e:
|
| 237 |
-
st.error(f"Error loading YOLO model: {e}")
|
| 238 |
-
return None
|
| 239 |
-
|
| 240 |
-
def detect_objects(image, model, confidence_threshold=0.25):
|
| 241 |
-
"""Detect objects in image using YOLO"""
|
| 242 |
-
if model is None:
|
| 243 |
-
return [], []
|
| 244 |
|
| 245 |
-
|
| 246 |
-
# Run detection
|
| 247 |
-
results = model(image, conf=confidence_threshold, verbose=False)
|
| 248 |
-
|
| 249 |
-
detected_objects = []
|
| 250 |
-
detection_details = []
|
| 251 |
-
|
| 252 |
-
for result in results:
|
| 253 |
-
if result.boxes is not None:
|
| 254 |
-
boxes = result.boxes.cpu().numpy()
|
| 255 |
-
for box in boxes:
|
| 256 |
-
x1, y1, x2, y2 = box.xyxy[0]
|
| 257 |
-
conf = box.conf[0]
|
| 258 |
-
cls = int(box.cls[0])
|
| 259 |
-
|
| 260 |
-
obj_name = result.names[cls]
|
| 261 |
-
|
| 262 |
-
detected_objects.append({
|
| 263 |
-
"object": obj_name,
|
| 264 |
-
"confidence": float(conf),
|
| 265 |
-
"bbox": {
|
| 266 |
-
"x1": float(x1),
|
| 267 |
-
"y1": float(y1),
|
| 268 |
-
"x2": float(x2),
|
| 269 |
-
"y2": float(y2)
|
| 270 |
-
}
|
| 271 |
-
})
|
| 272 |
-
|
| 273 |
-
# Get unique object names for summary
|
| 274 |
-
unique_objects = list(set([obj["object"] for obj in detected_objects]))
|
| 275 |
-
|
| 276 |
-
return unique_objects, detected_objects
|
| 277 |
-
except Exception as e:
|
| 278 |
-
st.error(f"Detection error: {e}")
|
| 279 |
-
return [], []
|
| 280 |
-
|
| 281 |
-
def generate_caption(image, model_tuple):
|
| 282 |
-
"""Generate caption for image using BLIP"""
|
| 283 |
-
if model_tuple is None:
|
| 284 |
-
return "Models not loaded"
|
| 285 |
|
| 286 |
try:
|
| 287 |
-
|
|
|
|
| 288 |
|
| 289 |
-
#
|
| 290 |
-
|
| 291 |
-
model = model.to(device)
|
| 292 |
|
| 293 |
-
|
|
|
|
|
|
|
| 294 |
|
|
|
|
| 295 |
with torch.no_grad():
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
-
caption
|
| 299 |
-
return caption
|
| 300 |
except Exception as e:
|
| 301 |
-
return "An image
|
| 302 |
-
|
| 303 |
-
def load_sample_image():
|
| 304 |
-
"""Load a default sample image"""
|
| 305 |
-
try:
|
| 306 |
-
# Use a simple local sample or a reliable URL
|
| 307 |
-
sample_url = "https://images.unsplash.com/photo-1546182990-dffeafbe841d?w=800&auto=format&fit=crop"
|
| 308 |
-
response = requests.get(sample_url, timeout=10)
|
| 309 |
-
if response.status_code == 200:
|
| 310 |
-
return BytesIO(response.content)
|
| 311 |
-
except:
|
| 312 |
-
pass
|
| 313 |
-
return None
|
| 314 |
|
| 315 |
def main():
|
| 316 |
-
#
|
| 317 |
-
st.
|
| 318 |
-
|
| 319 |
-
<h1 style="margin: 0; font-size: 2.5em;">🌍 Multilingual Image Describer</h1>
|
| 320 |
-
<p style="margin: 0; opacity: 0.9; font-size: 1.1em;">
|
| 321 |
-
Upload or capture an image to get object detection and descriptions
|
| 322 |
-
</p>
|
| 323 |
-
<p style="margin: 10px 0 0 0; font-size: 0.9em; opacity: 0.7;">
|
| 324 |
-
Powered by BLIP + YOLOv8 • UCAS @2025 • Real Translation Enabled
|
| 325 |
-
</p>
|
| 326 |
-
</div>
|
| 327 |
-
""", unsafe_allow_html=True)
|
| 328 |
|
| 329 |
-
#
|
| 330 |
-
with st.spinner("
|
| 331 |
if st.session_state.model is None:
|
| 332 |
-
st.session_state.model =
|
| 333 |
-
if st.session_state.detection_model is None:
|
| 334 |
-
st.session_state.detection_model = load_detection_model()
|
| 335 |
|
| 336 |
-
if st.session_state.model is None
|
| 337 |
-
st.error("Failed to load
|
| 338 |
return
|
| 339 |
|
| 340 |
# Sidebar
|
| 341 |
with st.sidebar:
|
| 342 |
-
st.
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
"
|
| 347 |
-
["Upload", "Camera", "Sample"],
|
| 348 |
-
horizontal=True,
|
| 349 |
-
label_visibility="collapsed"
|
| 350 |
)
|
| 351 |
|
| 352 |
-
uploaded_image = None
|
| 353 |
-
|
| 354 |
-
if input_method == "Upload":
|
| 355 |
-
uploaded_image = st.file_uploader(
|
| 356 |
-
"Choose an image file",
|
| 357 |
-
type=["jpg", "jpeg", "png", "webp", "bmp"],
|
| 358 |
-
label_visibility="collapsed"
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
elif input_method == "Camera":
|
| 362 |
-
camera_image = st.camera_input("Take a picture", label_visibility="collapsed")
|
| 363 |
-
if camera_image:
|
| 364 |
-
uploaded_image = camera_image
|
| 365 |
-
|
| 366 |
-
else: # Sample
|
| 367 |
-
if st.button("Load Sample Image", use_container_width=True):
|
| 368 |
-
sample_bytes = load_sample_image()
|
| 369 |
-
if sample_bytes:
|
| 370 |
-
uploaded_image = sample_bytes
|
| 371 |
-
st.success("Sample image loaded!")
|
| 372 |
-
|
| 373 |
st.markdown("---")
|
|
|
|
| 374 |
|
| 375 |
-
# Language selection
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
# API Token input (optional but recommended)
|
| 379 |
-
st.markdown("#### 🔑 Translation API")
|
| 380 |
-
api_token = st.text_input(
|
| 381 |
-
"Hugging Face Token (optional)",
|
| 382 |
-
type="password",
|
| 383 |
-
help="Get free token from huggingface.co/settings/tokens",
|
| 384 |
-
placeholder="hf_xxxxxxxxxxxxxxxxxxx"
|
| 385 |
-
)
|
| 386 |
-
|
| 387 |
-
if api_token:
|
| 388 |
-
st.session_state.hf_token = api_token
|
| 389 |
-
st.success("✅ API token saved for translation")
|
| 390 |
-
else:
|
| 391 |
-
st.info("ℹ️ Without token, translation may be limited")
|
| 392 |
-
|
| 393 |
-
st.markdown("#### 🗣️ Select Language")
|
| 394 |
-
language_options = [(code, f"{info['emoji']} {info['name']}")
|
| 395 |
-
for code, info in LANGUAGES.items()]
|
| 396 |
-
selected_lang = st.selectbox(
|
| 397 |
-
"Choose language for description:",
|
| 398 |
-
options=[code for code, _ in language_options],
|
| 399 |
-
format_func=lambda x: f"{LANGUAGES[x]['emoji']} {LANGUAGES[x]['name']}",
|
| 400 |
-
index=0,
|
| 401 |
-
label_visibility="collapsed"
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
# Show language info
|
| 405 |
-
if selected_lang in LANGUAGES:
|
| 406 |
-
lang_info = LANGUAGES[selected_lang]
|
| 407 |
-
st.caption(f"Selected: {lang_info['name']} ({lang_info['code']})")
|
| 408 |
|
| 409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
"Detection Confidence",
|
| 415 |
-
min_value=0.1,
|
| 416 |
-
max_value=0.9,
|
| 417 |
-
value=0.25,
|
| 418 |
-
step=0.05,
|
| 419 |
-
help="Higher values = more confident detections"
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
enable_translation = st.checkbox(
|
| 423 |
-
"Enable real-time translation",
|
| 424 |
-
value=True,
|
| 425 |
-
help="Uses Hugging Face NLLB model for translation"
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
translation_mode = st.radio(
|
| 429 |
-
"Translation Mode",
|
| 430 |
-
["Full translation", "Keywords only", "Disabled"],
|
| 431 |
-
index=0,
|
| 432 |
-
help="Full: Translate everything, Keywords: Only translate object names"
|
| 433 |
-
)
|
| 434 |
|
| 435 |
st.markdown("---")
|
| 436 |
|
| 437 |
-
#
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
disabled=uploaded_image is None,
|
| 445 |
-
help="Process image and generate description"
|
| 446 |
-
)
|
| 447 |
-
with col2:
|
| 448 |
-
if st.button("🗑️ Clear All", use_container_width=True):
|
| 449 |
-
st.session_state.results = None
|
| 450 |
-
st.session_state.image = None
|
| 451 |
-
st.rerun()
|
| 452 |
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
st.markdown("---")
|
| 456 |
-
st.markdown("### 📊 Quick Stats")
|
| 457 |
-
col1, col2, col3 = st.columns(3)
|
| 458 |
-
with col1:
|
| 459 |
-
st.metric("Objects", st.session_state.results["detection_count"])
|
| 460 |
-
with col2:
|
| 461 |
-
st.metric("Unique", st.session_state.results["unique_count"])
|
| 462 |
-
with col3:
|
| 463 |
-
st.metric("Time", st.session_state.results["processing_time"])
|
| 464 |
|
| 465 |
# Main content
|
| 466 |
col1, col2 = st.columns([1, 1])
|
| 467 |
|
| 468 |
with col1:
|
| 469 |
-
st.
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
st.session_state.image = image
|
| 475 |
-
|
| 476 |
-
# Display image
|
| 477 |
-
st.image(
|
| 478 |
-
image,
|
| 479 |
-
caption=f"Image • {image.size[0]}×{image.size[1]} pixels",
|
| 480 |
-
use_column_width=True
|
| 481 |
-
)
|
| 482 |
-
|
| 483 |
-
# Show image info
|
| 484 |
-
with st.expander("📋 Image Details"):
|
| 485 |
-
st.write(f"**Format:** {image.format if hasattr(image, 'format') else 'Unknown'}")
|
| 486 |
-
st.write(f"**Mode:** {image.mode}")
|
| 487 |
-
st.write(f"**Size:** {image.size[0]} × {image.size[1]} pixels")
|
| 488 |
-
|
| 489 |
-
except Exception as e:
|
| 490 |
-
st.error(f"Error loading image: {e}")
|
| 491 |
else:
|
| 492 |
-
|
| 493 |
-
st.info("👈 Please upload an image, use camera, or load sample")
|
| 494 |
-
|
| 495 |
-
# Show sample preview
|
| 496 |
st.image(
|
| 497 |
-
"https://images.unsplash.com/photo-1579546929662-711aa81148cf?w=
|
| 498 |
-
caption="Sample
|
| 499 |
use_column_width=True
|
| 500 |
)
|
| 501 |
-
|
| 502 |
-
st.caption("Try uploading your own image for best results!")
|
| 503 |
|
| 504 |
with col2:
|
| 505 |
-
st.
|
| 506 |
|
| 507 |
-
if
|
| 508 |
-
|
| 509 |
-
|
|
|
|
|
|
|
| 510 |
progress_bar = st.progress(0)
|
| 511 |
-
status_text = st.empty()
|
| 512 |
-
|
| 513 |
-
# Step 1: Generate caption
|
| 514 |
-
status_text.text("📝 Generating image description...")
|
| 515 |
-
progress_bar.progress(25)
|
| 516 |
-
caption = generate_caption(st.session_state.image, st.session_state.model)
|
| 517 |
-
|
| 518 |
-
# Step 2: Detect objects
|
| 519 |
-
status_text.text("🔍 Detecting objects...")
|
| 520 |
-
progress_bar.progress(50)
|
| 521 |
-
unique_objects, detection_details = detect_objects(
|
| 522 |
-
st.session_state.image,
|
| 523 |
-
st.session_state.detection_model,
|
| 524 |
-
confidence
|
| 525 |
-
)
|
| 526 |
-
|
| 527 |
-
# Step 3: Apply translation if enabled
|
| 528 |
-
status_text.text("🌍 Translating content...")
|
| 529 |
-
progress_bar.progress(75)
|
| 530 |
-
|
| 531 |
-
translated_caption = caption
|
| 532 |
-
translated_objects = unique_objects
|
| 533 |
|
| 534 |
-
|
| 535 |
-
#
|
| 536 |
-
|
|
|
|
| 537 |
|
| 538 |
-
#
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
translated_objects = translate_object_list(
|
| 544 |
-
unique_objects, selected_lang, api_token
|
| 545 |
-
)
|
| 546 |
-
elif translation_mode == "Keywords only":
|
| 547 |
-
translated_objects = translate_object_list(
|
| 548 |
-
unique_objects, selected_lang, api_token
|
| 549 |
-
)
|
| 550 |
-
translated_caption = caption
|
| 551 |
-
# else: "Disabled" - keep original
|
| 552 |
-
else:
|
| 553 |
-
# Add language prefix if translation is disabled
|
| 554 |
-
if selected_lang != "en":
|
| 555 |
-
translated_caption = f"[{selected_lang.upper()}] {caption}"
|
| 556 |
-
|
| 557 |
-
# Step 4: Complete
|
| 558 |
-
status_text.text("✅ Processing complete!")
|
| 559 |
-
progress_bar.progress(100)
|
| 560 |
-
time.sleep(0.5)
|
| 561 |
-
|
| 562 |
-
processing_time = time.time() - st.session_state.get('process_start_time', time.time())
|
| 563 |
-
|
| 564 |
-
# Prepare results
|
| 565 |
-
results = {
|
| 566 |
-
"original_caption": caption,
|
| 567 |
-
"caption": translated_caption,
|
| 568 |
-
"original_objects": unique_objects,
|
| 569 |
-
"detected_objects": translated_objects,
|
| 570 |
-
"detection_details": detection_details,
|
| 571 |
-
"detection_count": len(detection_details),
|
| 572 |
-
"unique_count": len(unique_objects),
|
| 573 |
-
"language": selected_lang,
|
| 574 |
-
"language_name": LANGUAGES[selected_lang]["name"],
|
| 575 |
-
"translation_enabled": enable_translation,
|
| 576 |
-
"translation_mode": translation_mode,
|
| 577 |
-
"processing_time": f"{processing_time:.2f}s",
|
| 578 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 579 |
-
}
|
| 580 |
|
| 581 |
-
|
| 582 |
-
st.session_state.process_start_time = None
|
| 583 |
|
| 584 |
-
#
|
| 585 |
-
|
| 586 |
-
status_text.empty()
|
| 587 |
-
|
| 588 |
-
# Display results in tabs
|
| 589 |
-
tab1, tab2, tab3 = st.tabs(["📝 Description", "🔍 Objects", "💾 Export"])
|
| 590 |
-
|
| 591 |
-
with tab1:
|
| 592 |
-
st.markdown("#### Image Description")
|
| 593 |
-
|
| 594 |
-
# Display caption
|
| 595 |
-
st.markdown(f'<div class="card">{results["caption"]}</div>', unsafe_allow_html=True)
|
| 596 |
-
|
| 597 |
-
# Show translation note if applicable
|
| 598 |
-
if results["translation_enabled"] and selected_lang != "en":
|
| 599 |
-
st.success(f"✅ Translated to {results['language_name']}")
|
| 600 |
-
|
| 601 |
-
st.markdown("#### Analysis Summary")
|
| 602 |
-
|
| 603 |
-
# Stats in columns
|
| 604 |
-
cols = st.columns(4)
|
| 605 |
-
with cols[0]:
|
| 606 |
-
st.metric("Objects", results["detection_count"])
|
| 607 |
-
with cols[1]:
|
| 608 |
-
st.metric("Unique", results["unique_count"])
|
| 609 |
-
with cols[2]:
|
| 610 |
-
st.metric("Time", results["processing_time"])
|
| 611 |
-
with cols[3]:
|
| 612 |
-
st.metric("Language", results["language_name"])
|
| 613 |
-
|
| 614 |
-
# Show original if translated
|
| 615 |
-
if results["translation_enabled"] and selected_lang != "en" and results["original_caption"] != results["caption"]:
|
| 616 |
-
with st.expander("🔤 View Original English"):
|
| 617 |
-
st.write(results["original_caption"])
|
| 618 |
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
tags_html = " ".join(
|
| 625 |
-
[f'<span class="object-tag">{obj}</span>'
|
| 626 |
-
for obj in results["detected_objects"][:20]] # Limit to 20 for display
|
| 627 |
-
)
|
| 628 |
-
st.markdown(f'<div style="margin: 10px 0;">{tags_html}</div>', unsafe_allow_html=True)
|
| 629 |
-
|
| 630 |
-
if len(results["detected_objects"]) > 20:
|
| 631 |
-
st.caption(f"Showing 20 of {len(results['detected_objects'])} objects")
|
| 632 |
-
|
| 633 |
-
# Detailed table
|
| 634 |
-
if results["detection_details"]:
|
| 635 |
-
st.markdown("#### Detailed Results")
|
| 636 |
-
|
| 637 |
-
df = pd.DataFrame(results["detection_details"])
|
| 638 |
-
st.dataframe(
|
| 639 |
-
df[['object', 'confidence']].sort_values('confidence', ascending=False),
|
| 640 |
-
use_container_width=True,
|
| 641 |
-
height=300
|
| 642 |
-
)
|
| 643 |
-
|
| 644 |
-
# Confidence chart
|
| 645 |
-
if len(df) > 0:
|
| 646 |
-
fig = px.histogram(
|
| 647 |
-
df,
|
| 648 |
-
x='confidence',
|
| 649 |
-
nbins=10,
|
| 650 |
-
title='Confidence Distribution',
|
| 651 |
-
labels={'confidence': 'Confidence Score'},
|
| 652 |
-
color_discrete_sequence=['#667eea']
|
| 653 |
-
)
|
| 654 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 655 |
-
else:
|
| 656 |
-
st.info("🔍 No objects detected in this image")
|
| 657 |
-
st.markdown("Try adjusting the confidence threshold in settings")
|
| 658 |
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
col1, col2, col3 = st.columns(3)
|
| 666 |
-
|
| 667 |
-
with col1:
|
| 668 |
-
st.download_button(
|
| 669 |
-
"📥 Download JSON",
|
| 670 |
-
json_data,
|
| 671 |
-
f"image_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 672 |
-
"application/json",
|
| 673 |
-
use_container_width=True,
|
| 674 |
-
help="Download complete analysis as JSON"
|
| 675 |
-
)
|
| 676 |
-
|
| 677 |
-
with col2:
|
| 678 |
-
# Text export
|
| 679 |
-
text_data = f"""IMAGE ANALYSIS REPORT
|
| 680 |
-
================================
|
| 681 |
-
Generated: {results['timestamp']}
|
| 682 |
-
Language: {results['language_name']}
|
| 683 |
-
Translation: {'Enabled' if results['translation_enabled'] else 'Disabled'}
|
| 684 |
-
|
| 685 |
-
DESCRIPTION:
|
| 686 |
-
{results['caption']}
|
| 687 |
-
|
| 688 |
-
DETECTED OBJECTS:
|
| 689 |
-
Total Objects: {results['detection_count']}
|
| 690 |
-
Unique Objects: {results['unique_count']}
|
| 691 |
-
Object List: {', '.join(results['detected_objects']) if results['detected_objects'] else 'None'}
|
| 692 |
-
|
| 693 |
-
PROCESSING INFO:
|
| 694 |
-
Processing Time: {results['processing_time']}
|
| 695 |
-
Detection Confidence: {confidence}
|
| 696 |
-
|
| 697 |
-
---
|
| 698 |
-
Multilingual Image Describer • UCAS @2025
|
| 699 |
-
Powered by BLIP + YOLOv8
|
| 700 |
-
"""
|
| 701 |
-
|
| 702 |
-
st.download_button(
|
| 703 |
-
"📥 Download TXT",
|
| 704 |
-
text_data,
|
| 705 |
-
f"description_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
|
| 706 |
-
"text/plain",
|
| 707 |
-
use_container_width=True,
|
| 708 |
-
help="Download summary as text file"
|
| 709 |
-
)
|
| 710 |
-
|
| 711 |
-
with col3:
|
| 712 |
-
if st.button("🔄 Analyze Another", use_container_width=True):
|
| 713 |
-
st.session_state.results = None
|
| 714 |
-
st.rerun()
|
| 715 |
-
|
| 716 |
-
# View JSON
|
| 717 |
-
with st.expander("📄 View Complete JSON Data"):
|
| 718 |
-
st.code(json_data, language="json")
|
| 719 |
-
|
| 720 |
-
elif st.session_state.results:
|
| 721 |
-
# Show cached results
|
| 722 |
-
results = st.session_state.results
|
| 723 |
|
| 724 |
-
|
|
|
|
| 725 |
|
| 726 |
-
|
| 727 |
-
|
|
|
|
| 728 |
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
# Show first few objects
|
| 733 |
-
preview_objects = results["detected_objects"][:5]
|
| 734 |
-
preview_text = ", ".join(preview_objects)
|
| 735 |
-
if len(results["detected_objects"]) > 5:
|
| 736 |
-
preview_text += f" (+{len(results['detected_objects']) - 5} more)"
|
| 737 |
-
|
| 738 |
-
st.markdown(f"**Sample:** {preview_text}")
|
| 739 |
|
| 740 |
-
#
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
|
| 752 |
-
elif
|
| 753 |
-
st.
|
| 754 |
|
| 755 |
# Footer
|
| 756 |
st.markdown("---")
|
| 757 |
-
st.
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
<a href="https://huggingface.co/docs/hub/spaces" target="_blank" style="color: #667eea; text-decoration: none;">
|
| 762 |
-
Hugging Face Spaces
|
| 763 |
-
</a> •
|
| 764 |
-
<a href="https://huggingface.co/facebook/nllb-200-distilled-600M" target="_blank" style="color: #667eea; text-decoration: none;">
|
| 765 |
-
NLLB Translation Model
|
| 766 |
-
</a>
|
| 767 |
-
</p>
|
| 768 |
-
<p style="font-size: 0.8em; margin-top: 10px;">
|
| 769 |
-
AI Models: BLIP (Image Captioning) • YOLOv8 (Object Detection) • NLLB (Translation)<br>
|
| 770 |
-
Supports: English, Spanish, French, German, Chinese, Hindi, Arabic, Russian, Japanese, Korean, Portuguese, Italian, Amharic, Turkish
|
| 771 |
-
</p>
|
| 772 |
-
<p style="font-size: 0.7em; margin-top: 15px; color: #999;">
|
| 773 |
-
Built with ❤️ by UCAS @2025 • For educational and research purposes
|
| 774 |
-
</p>
|
| 775 |
-
</div>
|
| 776 |
-
""", unsafe_allow_html=True)
|
| 777 |
|
| 778 |
if __name__ == "__main__":
|
| 779 |
-
# Set process start time
|
| 780 |
-
if 'process_start_time' not in st.session_state:
|
| 781 |
-
st.session_state.process_start_time = time.time()
|
| 782 |
-
|
| 783 |
main()
|
|
|
|
| 1 |
"""
|
| 2 |
+
🌍 Multilingual Image Describer - SIMPLE
|
| 3 |
+
Using pre-trained multilingual model for direct captioning
|
| 4 |
"""
|
| 5 |
|
| 6 |
import streamlit as st
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
| 11 |
import time
|
| 12 |
from datetime import datetime
|
| 13 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import warnings
|
| 15 |
warnings.filterwarnings("ignore")
|
| 16 |
|
|
|
|
| 18 |
st.set_page_config(
|
| 19 |
page_title="Multilingual Image Describer",
|
| 20 |
page_icon="🌍",
|
| 21 |
+
layout="wide"
|
|
|
|
| 22 |
)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Initialize session state
|
| 25 |
if 'model' not in st.session_state:
|
| 26 |
st.session_state.model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Language settings
|
| 29 |
LANGUAGES = {
|
| 30 |
+
"en": {"name": "English", "prompt": "a photo of"},
|
| 31 |
+
"zh": {"name": "中文", "prompt": "一张照片"},
|
| 32 |
+
"am": {"name": "አማርኛ", "prompt": "የሚያሳይ ፎቶ"},
|
| 33 |
+
"es": {"name": "Español", "prompt": "una foto de"},
|
| 34 |
+
"fr": {"name": "Français", "prompt": "une photo de"},
|
| 35 |
+
"de": {"name": "Deutsch", "prompt": "ein Foto von"},
|
| 36 |
+
"ar": {"name": "العربية", "prompt": "صورة"},
|
| 37 |
+
"hi": {"name": "हिन्दी", "prompt": "की एक तस्वीर"},
|
| 38 |
+
"ru": {"name": "Русский", "prompt": "фотография"},
|
| 39 |
+
"ja": {"name": "日本語", "prompt": "の写真"}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
+
@st.cache_resource(show_spinner="Loading multilingual model...")
|
| 43 |
+
def load_model():
|
| 44 |
+
"""Load multilingual image captioning model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 47 |
+
|
| 48 |
+
# Using BLIP-2 with multilingual capabilities
|
| 49 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 50 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
| 51 |
+
"Salesforce/blip2-opt-2.7b",
|
| 52 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 53 |
)
|
| 54 |
|
| 55 |
+
# Move to GPU if available
|
| 56 |
+
if torch.cuda.is_available():
|
| 57 |
+
model = model.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return processor, model
|
| 60 |
except Exception as e:
|
| 61 |
+
st.error(f"Model loading error: {str(e)[:100]}")
|
| 62 |
return None, None
|
| 63 |
|
| 64 |
+
def generate_multilingual_caption(image, language="en"):
|
| 65 |
+
"""Generate caption directly in the target language"""
|
| 66 |
+
if st.session_state.model is None:
|
| 67 |
+
return "Model not loaded"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
processor, model = st.session_state.model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
try:
|
| 72 |
+
# Prepare prompt based on language
|
| 73 |
+
prompt_text = LANGUAGES.get(language, LANGUAGES["en"])["prompt"]
|
| 74 |
|
| 75 |
+
# Process image
|
| 76 |
+
inputs = processor(image, text=prompt_text, return_tensors="pt")
|
|
|
|
| 77 |
|
| 78 |
+
# Move to device
|
| 79 |
+
if torch.cuda.is_available():
|
| 80 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 81 |
|
| 82 |
+
# Generate caption
|
| 83 |
with torch.no_grad():
|
| 84 |
+
outputs = model.generate(**inputs, max_length=50)
|
| 85 |
+
|
| 86 |
+
# Decode the output
|
| 87 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
| 88 |
+
|
| 89 |
+
# Remove the prompt from the beginning if present
|
| 90 |
+
if caption.lower().startswith(prompt_text.lower()):
|
| 91 |
+
caption = caption[len(prompt_text):].strip()
|
| 92 |
|
| 93 |
+
return caption.strip()
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
+
return f"An image with various objects. (Error: {str(e)[:50]})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
def main():
|
| 98 |
+
# Title
|
| 99 |
+
st.title("🌍 Multilingual Image Describer")
|
| 100 |
+
st.markdown("Upload an image to get descriptions in multiple languages")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
# Load model
|
| 103 |
+
with st.spinner("Loading AI model..."):
|
| 104 |
if st.session_state.model is None:
|
| 105 |
+
st.session_state.model = load_model()
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
if st.session_state.model is None:
|
| 108 |
+
st.error("Failed to load model. Please refresh the page.")
|
| 109 |
return
|
| 110 |
|
| 111 |
# Sidebar
|
| 112 |
with st.sidebar:
|
| 113 |
+
st.header("📸 Upload Image")
|
| 114 |
+
uploaded_file = st.file_uploader(
|
| 115 |
+
"Choose an image",
|
| 116 |
+
type=["jpg", "jpeg", "png", "webp"],
|
| 117 |
+
help="Upload any image file"
|
|
|
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
st.markdown("---")
|
| 121 |
+
st.header("🌐 Select Languages")
|
| 122 |
|
| 123 |
+
# Language selection with checkboxes
|
| 124 |
+
selected_languages = []
|
| 125 |
+
cols = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
lang_list = list(LANGUAGES.items())
|
| 128 |
+
for i, (code, info) in enumerate(lang_list):
|
| 129 |
+
col_idx = i % 2
|
| 130 |
+
with cols[col_idx]:
|
| 131 |
+
if st.checkbox(f"{info['name']}", key=f"lang_{code}", value=(code == "en")):
|
| 132 |
+
selected_languages.append(code)
|
| 133 |
|
| 134 |
+
if not selected_languages:
|
| 135 |
+
selected_languages = ["en"]
|
| 136 |
+
st.info("English selected by default")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
st.markdown("---")
|
| 139 |
|
| 140 |
+
# Generate button
|
| 141 |
+
generate_btn = st.button(
|
| 142 |
+
"🚀 Generate Descriptions",
|
| 143 |
+
type="primary",
|
| 144 |
+
use_container_width=True,
|
| 145 |
+
disabled=uploaded_file is None
|
| 146 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
if st.button("🔄 Clear", use_container_width=True):
|
| 149 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
# Main content
|
| 152 |
col1, col2 = st.columns([1, 1])
|
| 153 |
|
| 154 |
with col1:
|
| 155 |
+
st.subheader("Input Image")
|
| 156 |
+
if uploaded_file:
|
| 157 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 158 |
+
st.image(image, use_column_width=True)
|
| 159 |
+
st.caption(f"Size: {image.size[0]}×{image.size[1]} pixels")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
else:
|
| 161 |
+
st.info("👈 Upload an image from the sidebar")
|
|
|
|
|
|
|
|
|
|
| 162 |
st.image(
|
| 163 |
+
"https://images.unsplash.com/photo-1579546929662-711aa81148cf?w=400&auto=format",
|
| 164 |
+
caption="Sample background",
|
| 165 |
use_column_width=True
|
| 166 |
)
|
|
|
|
|
|
|
| 167 |
|
| 168 |
with col2:
|
| 169 |
+
st.subheader("Results")
|
| 170 |
|
| 171 |
+
if generate_btn and uploaded_file:
|
| 172 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 173 |
+
|
| 174 |
+
with st.spinner("Generating descriptions..."):
|
| 175 |
+
results = {}
|
| 176 |
progress_bar = st.progress(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
for i, lang_code in enumerate(selected_languages):
|
| 179 |
+
# Update progress
|
| 180 |
+
progress = (i + 1) / len(selected_languages)
|
| 181 |
+
progress_bar.progress(progress)
|
| 182 |
|
| 183 |
+
# Generate caption for this language
|
| 184 |
+
caption = generate_multilingual_caption(image, lang_code)
|
| 185 |
+
lang_name = LANGUAGES[lang_code]["name"]
|
| 186 |
+
|
| 187 |
+
results[lang_name] = caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
progress_bar.empty()
|
|
|
|
| 190 |
|
| 191 |
+
# Display results
|
| 192 |
+
st.success(f"✅ Generated {len(results)} descriptions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
# Create results DataFrame
|
| 195 |
+
df_results = pd.DataFrame({
|
| 196 |
+
"Language": list(results.keys()),
|
| 197 |
+
"Description": list(results.values())
|
| 198 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
# Display table
|
| 201 |
+
st.dataframe(
|
| 202 |
+
df_results,
|
| 203 |
+
use_container_width=True,
|
| 204 |
+
hide_index=True
|
| 205 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
+
# Show individual descriptions
|
| 208 |
+
st.markdown("### Descriptions by Language")
|
| 209 |
|
| 210 |
+
for lang_name, description in results.items():
|
| 211 |
+
with st.expander(f"{lang_name}", expanded=(lang_name == "English")):
|
| 212 |
+
st.markdown(f"**{description}**")
|
| 213 |
|
| 214 |
+
# Export option
|
| 215 |
+
st.markdown("---")
|
| 216 |
+
st.markdown("### 💾 Export Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
# Create export text
|
| 219 |
+
export_text = f"""Multilingual Image Descriptions
|
| 220 |
+
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
| 221 |
+
Image: {uploaded_file.name if uploaded_file else 'Unknown'}
|
| 222 |
+
|
| 223 |
+
"""
|
| 224 |
+
for lang_name, description in results.items():
|
| 225 |
+
export_text += f"\n{lang_name}:\n{description}\n"
|
| 226 |
+
|
| 227 |
+
# Download button
|
| 228 |
+
st.download_button(
|
| 229 |
+
"📥 Download as TXT",
|
| 230 |
+
export_text,
|
| 231 |
+
f"descriptions_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
|
| 232 |
+
"text/plain"
|
| 233 |
+
)
|
| 234 |
|
| 235 |
+
elif uploaded_file:
|
| 236 |
+
st.info("👈 Click 'Generate Descriptions' to analyze the image")
|
| 237 |
|
| 238 |
# Footer
|
| 239 |
st.markdown("---")
|
| 240 |
+
st.caption("""
|
| 241 |
+
**Powered by:** BLIP-2 Multilingual Model • **UCAS @2025** •
|
| 242 |
+
Model: Salesforce/blip2-opt-2.7b
|
| 243 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
main()
|