DiMa_DeMo / app.py
MariaOls's picture
Update app.py
da0f119 verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
DiMa_new — Tiny Gradio demo
- Input: English sentence
- Translate -> Russian
- Detect candidates from gazetteer
- Classify with MariaOls/DiMa_new
- Output: ONLY candidates considered DM (or 'no DMs found')
"""
import json
import re
from typing import List, Tuple, Dict, Optional
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from transformers import (
AutoTokenizer, AutoModelForSequenceClassification, pipeline
)
import re
from gradio.themes.utils import colors, sizes
import random
THEME = gr.themes.Soft(
primary_hue=colors.red,
secondary_hue=colors.orange,
neutral_hue=colors.gray,
radius_size=sizes.radius_xxl, # todo redondito
)
THEME.set(
body_background_fill="#FFF7F2", # fondo crema
block_background_fill="#FFFFFF",
block_border_color="#FFD6C2",
block_border_width="1px",
block_shadow="0 10px 30px rgba(255, 107, 53, 0.10)",
input_background_fill="#FFFDFC",
input_border_color="#FFC7B3",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="#FFFFFF",
)
CYRILLIC_RE = re.compile(r"[А-Яа-яЁё]")
def is_russian(text: str) -> bool:
return bool(CYRILLIC_RE.search(text or ""))
MODEL_ID = "MariaOls/DiMa_new"
THRESHOLD = 0.5 # probability threshold for 'dm'
# -------------------- Translation pipeline (en -> ru) --------------------
# Simple & fast enough for a poster demo
# You can switch to a stronger model later if needed.
translator = pipeline(
task="translation_en_to_ru",
model="Helsinki-NLP/opus-mt-en-ru",
device=0 if torch.cuda.is_available() else -1
)
translator_ru_en = pipeline(
task="translation_ru_to_en",
model="Helsinki-NLP/opus-mt-ru-en",
device=0 if torch.cuda.is_available() else -1
)
# -------------------- Load classifier --------------------
clf_tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
clf_mdl = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
clf_mdl.eval()
# -------------------- Load gazetteer --------------------
def load_gazetteer(repo_id: str) -> List[str]:
p = hf_hub_download(repo_id=repo_id, filename="assets/gazetteer.json")
obj = json.load(open(p, "r", encoding="utf-8"))
items = obj.get("items", [])
# unique + longest-first
return sorted({s for s in items if isinstance(s, str) and s.strip()}, key=lambda s: (-len(s), s))
GAZ = load_gazetteer(MODEL_ID)
# -------------------- Sentence splitting --------------------
def split_sentences(text: str) -> List[str]:
try:
from razdel import sentenize
return [s.text.strip() for s in sentenize(text) if s.text.strip()]
except Exception:
# naive fallback
parts = re.split(r'(?<=[\.!\?…])\s+', text.strip())
return [p.strip() for p in parts if p.strip()]
# -------------------- Candidate detection (case-insensitive) --------------------
_RUS_PUNCT = set(list(" \t\r\n.,;:!?…()[]{}«»\"'“”„—-"))
def _is_boundary(ch: Optional[str]) -> bool:
return ch is None or ch in _RUS_PUNCT
def detect_candidates_ci(text: str, gazetteer: List[str]) -> List[Tuple[int,int,str]]:
"""
Longest-first, no overlap, case-insensitive.
Returns [(start, end, original_span), ...] in original text indices.
"""
low = text.lower()
used = [False] * len(text)
spans: List[Tuple[int,int,str]] = []
for cand in gazetteer:
clow = cand.lower()
start = 0
while True:
i = low.find(clow, start)
if i == -1:
break
j = i + len(clow)
left_ch = low[i-1] if i-1 >= 0 else None
right_ch = low[j] if j < len(low) else None
if _is_boundary(left_ch) and _is_boundary(right_ch) and not any(used[i:j]):
spans.append((i, j, text[i:j]))
for k in range(i, j):
used[k] = True
start = j
else:
start = i + 1
spans.sort(key=lambda x: x[0])
return spans
# -------------------- Mark + classify --------------------
def mark_span(sentence: str, start: int, end: int) -> str:
return sentence[:start] + "<cand> " + sentence[start:end] + " </cand>" + sentence[end:]
@torch.no_grad()
def classify_marked_batch(marked_texts: List[str]) -> List[float]:
"""
Returns prob_dm list aligned with marked_texts.
"""
if not marked_texts:
return []
enc = clf_tok(marked_texts, return_tensors="pt", truncation=True, padding=True)
out = clf_mdl(**enc)
probs = out.logits.softmax(-1)[:, 1].tolist()
return [float(p) for p in probs]
# -------------------- Core pipeline --------------------
def run_pipeline(user_text: str) -> tuple[str, str, str, str]:
"""
Acepta inglés o ruso.
- Si detecta cirílico, toma el texto tal cual (ruso) y además lo traduce a EN para mostrar.
- Si no detecta cirílico, asume EN, traduce a RU y clasifica en RU.
Returns:
pretty (solo candidatos DM o 'no DMs found'),
ru_text (texto ruso para clasificación / display),
en_text (traducción o texto original en inglés),
info (debug).
"""
if not user_text or not user_text.strip():
return "no input", "", "", ""
if is_russian(user_text):
# Input RUSO → clasificar en RU y mostrar EN traducido
ru_text = user_text.strip()
en_text = translator_ru_en(ru_text)[0]["translation_text"].strip()
else:
# Input INGLÉS → traducir a RU (clasificar en RU) y mostrar EN original
en_text = user_text.strip()
ru_text = translator(en_text)[0]["translation_text"].strip()
# Segmentar a oraciones (en RU) y detectar candidatos
sents = split_sentences(ru_text)
marked, mapping = [], []
for si, sent in enumerate(sents):
spans = detect_candidates_ci(sent, GAZ)
for (st, en, span) in spans:
marked.append(mark_span(sent, st, en))
mapping.append((si, span))
probs = classify_marked_batch(marked)
dm_candidates: List[str] = []
for (si, span), p in zip(mapping, probs):
if p >= THRESHOLD:
dm_candidates.append(span)
# Únicos preservando orden
seen = set()
dm_candidates = [x for x in dm_candidates if not (x in seen or seen.add(x))]
pretty = "🧡 " + " · ".join(dm_candidates) if dm_candidates else "no DMs found"
info = f"RU: {ru_text}\nEN: {en_text}\nDMs: {len(dm_candidates)}"
return pretty, ru_text, en_text, info
# -------------------- Gradio UI --------------------
with gr.Blocks(theme=THEME, css="""
/* fondo suave con degradado */
.gradio-container {
background: radial-gradient(1200px 600px at 80% -10%, #FFE7DE 0%, rgba(255,231,222,0) 60%) ,
linear-gradient(180deg, #FFF7F2 0%, #FFFFFF 60%);
}
/* títulos */
#title { text-align:center; }
#title h1 {
font-weight: 800;
letter-spacing: .2px;
color: #E53935; /* rojo principal */
}
#subtitle {
text-align:center;
color: #FF7043; /* naranja suave */
margin-top: -8px;
}
/* componentes redonditos + sombras suaves */
.gr-box, .gr-panel, .gr-group { border-radius: 20px !important; }
button, .gr-button { border-radius: 999px !important; }
textarea, input, .gr-textbox { border-radius: 16px !important; }
/* botones primarios con leve glow */
button.primary, .gr-button-primary {
box-shadow: 0 8px 20px rgba(229,57,53,0.18);
}
button.primary:hover, .gr-button-primary:hover {
box-shadow: 0 10px 28px rgba(229,57,53,0.25);
}
/* cajitas informativas */
.accordion { border-radius: 16px !important; overflow: hidden; }
/* pill para el resultado */
#result-pill {
border-radius: 999px;
padding: 12px 18px;
background: #FFE6DE;
color: #D84315;
font-weight: 700;
display: inline-block;
}
""") as demo:
gr.Markdown("<h1 id='title'>DiMa — Automatic Russian Discourse Marker Detector</h1>")
gr.Markdown("<div id='subtitle'>English <i>or</i> Russian → detect candidates → show only DMs</div>")
with gr.Row():
inp = gr.Textbox(label="English or Russian input", placeholder="e.g., In fact, we should probably leave now.", lines=3)
with gr.Row():
btn = gr.Button("Check 🧡", variant="primary")
with gr.Row():
out = gr.Textbox(label="Result (only DM candidates)", lines=1)
with gr.Accordion("Show Russian translation", open=True):
ru = gr.Textbox(label="Russian", interactive=False)
with gr.Accordion("Show English translation", open=True):
en = gr.Textbox(label="English", interactive=False)
with gr.Accordion("Details", open=False):
dbg = gr.Textbox(label="Debug", interactive=False)
FUNNY_EXAMPLES = [
"By the way, isn't ChatGPT supposed to solve this better?",
"Honestly, I can't read Russian.",
"For example, a free donut would drastically improve my focus.",
"Honestly, my code only runs on Tuesdays.",
"Actually, no one cares about Russian language.",
"In fact, this has nothing to do with AI.",
"Кстати, где тут бесплатная пицца?",
"Честно, я не умею читать по-русски.",
"По-моему, «кальсотс» переоценены.",
"Вообще-то, я пришла только за стикерами.",
"Кажется, Wi-Fi работает только когда не нужен.",
"Итак, мы согласны, что это лучший стенд?"
]
example_radio = gr.Radio(label="Try an example", choices=[], interactive=True)
shuffle_btn = gr.Button("Shuffle examples 🔥")
def _pick_examples():
return random.sample(FUNNY_EXAMPLES, k=4)
def shuffle_examples():
return gr.update(choices=_pick_examples(), value=None)
# Al cargar la app, rellenamos el radio
demo.load(fn=shuffle_examples, inputs=None, outputs=example_radio)
# Botón para remezclar
shuffle_btn.click(fn=shuffle_examples, inputs=None, outputs=example_radio)
# Al clicar un ejemplo, lo volcamos al textbox de entrada
example_radio.change(lambda s: s, inputs=example_radio, outputs=inp)
btn.click(run_pipeline, inputs=[inp], outputs=[out, ru, en, dbg])
example_radio.change(run_pipeline, inputs=example_radio, outputs=[out, ru, en, dbg])
if __name__ == "__main__":
demo.launch()