File size: 10,502 Bytes
e954f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115ec55
c2889b7
2d125e2
c2889b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115ec55
 
 
 
 
e954f40
 
 
 
 
 
 
 
 
 
 
 
2d125e2
 
 
 
 
e954f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d125e2
e954f40
115ec55
2d125e2
 
 
 
 
 
 
e954f40
115ec55
2d125e2
e954f40
115ec55
2d125e2
115ec55
2d125e2
115ec55
2d125e2
 
 
e954f40
2d125e2
e954f40
115ec55
e954f40
 
 
 
 
 
 
 
 
 
 
 
2d125e2
e954f40
 
 
552b5cc
2d125e2
 
e954f40
 
c2889b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e954f40
da0f119
c2889b7
e954f40
 
115ec55
e954f40
552b5cc
e954f40
 
2d125e2
e954f40
2d125e2
82e229e
e954f40
 
 
2d125e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e954f40
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
DiMa_new — Tiny Gradio demo
- Input: English sentence
- Translate -> Russian
- Detect candidates from gazetteer
- Classify with MariaOls/DiMa_new
- Output: ONLY candidates considered DM (or 'no DMs found')
"""

import json
import re
from typing import List, Tuple, Dict, Optional

import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from transformers import (
    AutoTokenizer, AutoModelForSequenceClassification, pipeline
)
import re
from gradio.themes.utils import colors, sizes
import random

THEME = gr.themes.Soft(
    primary_hue=colors.red,
    secondary_hue=colors.orange,
    neutral_hue=colors.gray,
    radius_size=sizes.radius_xxl,   # todo redondito
)
THEME.set(
    body_background_fill="#FFF7F2",          # fondo crema
    block_background_fill="#FFFFFF",
    block_border_color="#FFD6C2",
    block_border_width="1px",
    block_shadow="0 10px 30px rgba(255, 107, 53, 0.10)",
    input_background_fill="#FFFDFC",
    input_border_color="#FFC7B3",
    button_primary_background_fill="*primary_500",
    button_primary_background_fill_hover="*primary_600",
    button_primary_text_color="#FFFFFF",
)

CYRILLIC_RE = re.compile(r"[А-Яа-яЁё]")

def is_russian(text: str) -> bool:
    return bool(CYRILLIC_RE.search(text or ""))

MODEL_ID = "MariaOls/DiMa_new"
THRESHOLD = 0.5  # probability threshold for 'dm'

# -------------------- Translation pipeline (en -> ru) --------------------
# Simple & fast enough for a poster demo
# You can switch to a stronger model later if needed.
translator = pipeline(
    task="translation_en_to_ru",
    model="Helsinki-NLP/opus-mt-en-ru",
    device=0 if torch.cuda.is_available() else -1
)
translator_ru_en = pipeline(
    task="translation_ru_to_en",
    model="Helsinki-NLP/opus-mt-ru-en",
    device=0 if torch.cuda.is_available() else -1
)

# -------------------- Load classifier --------------------
clf_tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
clf_mdl = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
clf_mdl.eval()

# -------------------- Load gazetteer --------------------
def load_gazetteer(repo_id: str) -> List[str]:
    p = hf_hub_download(repo_id=repo_id, filename="assets/gazetteer.json")
    obj = json.load(open(p, "r", encoding="utf-8"))
    items = obj.get("items", [])
    # unique + longest-first
    return sorted({s for s in items if isinstance(s, str) and s.strip()}, key=lambda s: (-len(s), s))

GAZ = load_gazetteer(MODEL_ID)

# -------------------- Sentence splitting --------------------
def split_sentences(text: str) -> List[str]:
    try:
        from razdel import sentenize
        return [s.text.strip() for s in sentenize(text) if s.text.strip()]
    except Exception:
        # naive fallback
        parts = re.split(r'(?<=[\.!\?…])\s+', text.strip())
        return [p.strip() for p in parts if p.strip()]

# -------------------- Candidate detection (case-insensitive) --------------------
_RUS_PUNCT = set(list(" \t\r\n.,;:!?…()[]{}«»\"'“”„—-"))

def _is_boundary(ch: Optional[str]) -> bool:
    return ch is None or ch in _RUS_PUNCT

def detect_candidates_ci(text: str, gazetteer: List[str]) -> List[Tuple[int,int,str]]:
    """
    Longest-first, no overlap, case-insensitive.
    Returns [(start, end, original_span), ...] in original text indices.
    """
    low = text.lower()
    used = [False] * len(text)
    spans: List[Tuple[int,int,str]] = []

    for cand in gazetteer:
        clow = cand.lower()
        start = 0
        while True:
            i = low.find(clow, start)
            if i == -1:
                break
            j = i + len(clow)
            left_ch  = low[i-1] if i-1 >= 0 else None
            right_ch = low[j]   if j < len(low) else None
            if _is_boundary(left_ch) and _is_boundary(right_ch) and not any(used[i:j]):
                spans.append((i, j, text[i:j]))
                for k in range(i, j):
                    used[k] = True
                start = j
            else:
                start = i + 1
    spans.sort(key=lambda x: x[0])
    return spans

# -------------------- Mark + classify --------------------
def mark_span(sentence: str, start: int, end: int) -> str:
    return sentence[:start] + "<cand> " + sentence[start:end] + " </cand>" + sentence[end:]

@torch.no_grad()
def classify_marked_batch(marked_texts: List[str]) -> List[float]:
    """
    Returns prob_dm list aligned with marked_texts.
    """
    if not marked_texts:
        return []
    enc = clf_tok(marked_texts, return_tensors="pt", truncation=True, padding=True)
    out = clf_mdl(**enc)
    probs = out.logits.softmax(-1)[:, 1].tolist()
    return [float(p) for p in probs]

# -------------------- Core pipeline --------------------
def run_pipeline(user_text: str) -> tuple[str, str, str, str]:
    """
    Acepta inglés o ruso.
    - Si detecta cirílico, toma el texto tal cual (ruso) y además lo traduce a EN para mostrar.
    - Si no detecta cirílico, asume EN, traduce a RU y clasifica en RU.
    Returns:
      pretty (solo candidatos DM o 'no DMs found'),
      ru_text (texto ruso para clasificación / display),
      en_text (traducción o texto original en inglés),
      info (debug).
    """
    if not user_text or not user_text.strip():
        return "no input", "", "", ""

    if is_russian(user_text):
        # Input RUSO → clasificar en RU y mostrar EN traducido
        ru_text = user_text.strip()
        en_text = translator_ru_en(ru_text)[0]["translation_text"].strip()
    else:
        # Input INGLÉS → traducir a RU (clasificar en RU) y mostrar EN original
        en_text = user_text.strip()
        ru_text = translator(en_text)[0]["translation_text"].strip()

    # Segmentar a oraciones (en RU) y detectar candidatos
    sents = split_sentences(ru_text)
    marked, mapping = [], []
    for si, sent in enumerate(sents):
        spans = detect_candidates_ci(sent, GAZ)
        for (st, en, span) in spans:
            marked.append(mark_span(sent, st, en))
            mapping.append((si, span))

    probs = classify_marked_batch(marked)
    dm_candidates: List[str] = []
    for (si, span), p in zip(mapping, probs):
        if p >= THRESHOLD:
            dm_candidates.append(span)

    # Únicos preservando orden
    seen = set()
    dm_candidates = [x for x in dm_candidates if not (x in seen or seen.add(x))]

    pretty = "🧡 " + " · ".join(dm_candidates) if dm_candidates else "no DMs found"
    info = f"RU: {ru_text}\nEN: {en_text}\nDMs: {len(dm_candidates)}"
    return pretty, ru_text, en_text, info

# -------------------- Gradio UI --------------------
with gr.Blocks(theme=THEME, css="""
/* fondo suave con degradado */
.gradio-container {
  background: radial-gradient(1200px 600px at 80% -10%, #FFE7DE 0%, rgba(255,231,222,0) 60%) ,
              linear-gradient(180deg, #FFF7F2 0%, #FFFFFF 60%);
}

/* títulos */
#title { text-align:center; }
#title h1 {
  font-weight: 800;
  letter-spacing: .2px;
  color: #E53935; /* rojo principal */
}
#subtitle {
  text-align:center;
  color: #FF7043; /* naranja suave */
  margin-top: -8px;
}

/* componentes redonditos + sombras suaves */
.gr-box, .gr-panel, .gr-group { border-radius: 20px !important; }
button, .gr-button  { border-radius: 999px !important; }
textarea, input, .gr-textbox { border-radius: 16px !important; }

/* botones primarios con leve glow */
button.primary, .gr-button-primary {
  box-shadow: 0 8px 20px rgba(229,57,53,0.18);
}
button.primary:hover, .gr-button-primary:hover {
  box-shadow: 0 10px 28px rgba(229,57,53,0.25);
}

/* cajitas informativas */
.accordion { border-radius: 16px !important; overflow: hidden; }

/* pill para el resultado */
#result-pill {
  border-radius: 999px;
  padding: 12px 18px;
  background: #FFE6DE;
  color: #D84315;
  font-weight: 700;
  display: inline-block;
}
""") as demo:
    gr.Markdown("<h1 id='title'>DiMa — Automatic Russian Discourse Marker Detector</h1>")
    gr.Markdown("<div id='subtitle'>English <i>or</i> Russian → detect candidates → show only DMs</div>")

    with gr.Row():
        inp = gr.Textbox(label="English or Russian input", placeholder="e.g., In fact, we should probably leave now.", lines=3)
    with gr.Row():
        btn = gr.Button("Check 🧡", variant="primary")
    with gr.Row():
        out = gr.Textbox(label="Result (only DM candidates)", lines=1)
    with gr.Accordion("Show Russian translation", open=True):
        ru = gr.Textbox(label="Russian", interactive=False)
    with gr.Accordion("Show English translation", open=True):
        en = gr.Textbox(label="English", interactive=False)
    with gr.Accordion("Details", open=False):
        dbg = gr.Textbox(label="Debug", interactive=False)

    FUNNY_EXAMPLES = [
    "By the way, isn't ChatGPT supposed to solve this better?",         
    "Honestly, I can't read Russian.",                               
    "For example, a free donut would drastically improve my focus.",
    "Honestly, my code only runs on Tuesdays.",
    "Actually, no one cares about Russian language.",
    "In fact, this has nothing to do with AI.",
    "Кстати, где тут бесплатная пицца?",
    "Честно, я не умею читать по-русски.",
    "По-моему, «кальсотс» переоценены.",
    "Вообще-то, я пришла только за стикерами.",
    "Кажется, Wi-Fi работает только когда не нужен.",
    "Итак, мы согласны, что это лучший стенд?"
]
    example_radio = gr.Radio(label="Try an example", choices=[], interactive=True)
    shuffle_btn = gr.Button("Shuffle examples 🔥")
    
    def _pick_examples():
        return random.sample(FUNNY_EXAMPLES, k=4)
    
    def shuffle_examples():
        return gr.update(choices=_pick_examples(), value=None)
    
    # Al cargar la app, rellenamos el radio
    demo.load(fn=shuffle_examples, inputs=None, outputs=example_radio)
    
    # Botón para remezclar
    shuffle_btn.click(fn=shuffle_examples, inputs=None, outputs=example_radio)
    
    # Al clicar un ejemplo, lo volcamos al textbox de entrada
    example_radio.change(lambda s: s, inputs=example_radio, outputs=inp)

    btn.click(run_pipeline, inputs=[inp], outputs=[out, ru, en, dbg])
    example_radio.change(run_pipeline, inputs=example_radio, outputs=[out, ru, en, dbg])

if __name__ == "__main__":
    demo.launch()