QA-DeBERTa-v3-large-qa_bi_cross_attn_max-binary
This model is a fine-tuned version of microsoft/deberta-v3-large on the saiteki-kai/Beavertails-it dataset. It achieves the following results on the evaluation set:
- Loss: 0.3213
- Accuracy: 0.8627
- Unsafe Precision: 0.8796
- Unsafe Recall: 0.8727
- Unsafe F1: 0.8761
- Unsafe Fpr: 0.1499
- Unsafe Aucpr: 0.9549
- Safe Precision: 0.8418
- Safe Recall: 0.8501
- Safe F1: 0.8459
- Safe Fpr: 0.1273
- Safe Aucpr: 0.9195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Unsafe Precision | Unsafe Recall | Unsafe F1 | Unsafe Fpr | Unsafe Aucpr | Safe Precision | Safe Recall | Safe F1 | Safe Fpr | Safe Aucpr |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3008 | 0.2501 | 2114 | 0.3495 | 0.8485 | 0.8877 | 0.8330 | 0.8595 | 0.1322 | 0.9446 | 0.8056 | 0.8678 | 0.8355 | 0.1670 | 0.9002 |
| 0.3383 | 0.5001 | 4228 | 0.3317 | 0.8552 | 0.8694 | 0.8705 | 0.8699 | 0.1640 | 0.9488 | 0.8372 | 0.8360 | 0.8366 | 0.1295 | 0.9071 |
| 0.3044 | 0.7502 | 6342 | 0.3223 | 0.8598 | 0.8969 | 0.8453 | 0.8703 | 0.1219 | 0.9522 | 0.8190 | 0.8781 | 0.8475 | 0.1547 | 0.9127 |
| 0.3396 | 1.0002 | 8456 | 0.3208 | 0.8612 | 0.8756 | 0.8748 | 0.8752 | 0.1559 | 0.9528 | 0.8431 | 0.8441 | 0.8436 | 0.1252 | 0.9158 |
| 0.3055 | 1.2503 | 10570 | 0.3210 | 0.8608 | 0.8797 | 0.8686 | 0.8741 | 0.1490 | 0.9533 | 0.8377 | 0.8510 | 0.8443 | 0.1314 | 0.9163 |
| 0.2743 | 1.5004 | 12684 | 0.3300 | 0.8607 | 0.8769 | 0.8720 | 0.8745 | 0.1535 | 0.9538 | 0.8405 | 0.8465 | 0.8435 | 0.1280 | 0.9172 |
| 0.2832 | 1.7504 | 14798 | 0.3213 | 0.8627 | 0.8796 | 0.8727 | 0.8761 | 0.1499 | 0.9549 | 0.8418 | 0.8501 | 0.8459 | 0.1273 | 0.9195 |
| 0.3192 | 2.0005 | 16912 | 0.3222 | 0.8625 | 0.8959 | 0.8518 | 0.8733 | 0.1241 | 0.9552 | 0.8249 | 0.8759 | 0.8496 | 0.1482 | 0.9181 |
| 0.3123 | 2.2505 | 19026 | 0.3187 | 0.8601 | 0.8771 | 0.8707 | 0.8739 | 0.1531 | 0.9541 | 0.8392 | 0.8469 | 0.8430 | 0.1293 | 0.9199 |
| 0.2733 | 2.5006 | 21140 | 0.3228 | 0.8596 | 0.8664 | 0.8841 | 0.8751 | 0.1711 | 0.9548 | 0.8507 | 0.8289 | 0.8397 | 0.1159 | 0.9206 |
| 0.2626 | 2.7507 | 23254 | 0.3203 | 0.8610 | 0.8726 | 0.8786 | 0.8756 | 0.1609 | 0.9553 | 0.8463 | 0.8391 | 0.8427 | 0.1214 | 0.9218 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.7.1+cu118
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 63
Model tree for saiteki-kai/QA-DeBERTa-v3-large-qa_bi_cross_attn_max-binary
Base model
microsoft/deberta-v3-largeEvaluation results
- Accuracy on saiteki-kai/Beavertails-itself-reported0.863