Instruction Residuals

This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between Qwen/Qwen3-4B-Instruct-2507 and Qwen/Qwen3-4B-Base.

Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from residuals import Residuals

base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-4B-Base")
tok = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Base")

res = Residuals.from_pretrained("residuals/qwen3-4b-2507")
res.apply(base, base_tokenizer=tok)

Provenance

  • Created at: 2025-10-25T18:02:42.822104+00:00
  • DType: float32
  • Parameters: 399
  • Shapes hash: ee08c1f325c6879a7004812a813072c94df72efa6328aa829064c775ce398e40
  • Names hash: c7ea601f93da30767936050c6d439b2eb034eafb07ad70f7d1dd29a41dfc0ba0
  • Base model: Qwen/Qwen3-4B-Base
  • Instruction model: Qwen/Qwen3-4B-Instruct-2507

Files

  • model.safetensors: Serialized residual tensors (safetensors format).
  • (optional) model.safetensors.index.json + shard files model-00001-of-000N.safetensors, ... for multi-part weights.
  • config.json: Residuals metadata and provenance.
  • tokenizer files: Saved tokenizer for compatibility.

About this format

These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model.

Tools

Generated with the residuals Python package. Install via: pip install residuals.

Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for residuals/qwen3-4b-2507

Base model

Qwen/Qwen3-4B-Base
Adapter
(24)
this model