AI & ML interests

None defined yet.

Recent Activity

mrfakename 
posted an update 9 days ago
view post
Post
1791
Excited to share that I've joined the Hugging Face Fellows program! 🤗

Looking forward to contributing to & working more closely with the open-source ecosystem - huge thanks to everyone who's supported me on this journey! 🚀
Nymbo 
posted an update 18 days ago
view post
Post
4786
🚀 I've just shipped a major update to the Nymbo/Tools MCP server: the Agent_Terminal, a single "master tool" that cuts token usage by over 90%!

Anthropic found 98.7% context savings using code execution with MCP, Cloudflare published similar findings. This is my open-source implementation of the same idea.

# The Problem

Traditional MCP exposes every tool definition directly to the model. With 12 tools, that's thousands of tokens consumed *before the conversation even starts*. Each tool call also passes intermediate results through the context window — a 10,000-row spreadsheet? That's all going into context just to sum a column.

# The Solution: One Tool to Rule Them All

Agent_Terminal wraps all 12 tools (Web_Search, Web_Fetch, File_System, Generate_Image, Generate_Speech, Generate_Video, Deep_Research, Memory_Manager, Obsidian_Vault, Shell_Command, Code_Interpreter) into a single Python code execution gateway.

Instead of the model making individual tool calls, it writes Python code that orchestrates the tools directly:

# Search for Bitcoin price
result = Web_Search("current price of bitcoin", max_results=3)
print(result)


Don't know what tools are available? The agent can discover them at runtime:

print(search_tools('image'))  # Find tools by keyword
print(usage('Generate_Image'))  # Get full docs for a specific tool


The individual direct tool calls are all still there, but they can be disabled if using the Agent_Terminal. Try it now - https://www.nymbo.net/nymbot
  • 1 reply
·
lunarflu 
posted an update about 1 month ago
lunarflu 
posted an update about 1 month ago
lunarflu 
posted an update about 1 month ago
view post
Post
2690
💸🤑You don’t need 100 GPUs to train something amazing!

Our Smol Training Playbook teaches you a better path to world-class LLMs, for free!

Check out the #1 trending space on 🤗 :
HuggingFaceTB/smol-training-playbook
Nymbo 
posted an update about 1 month ago
view post
Post
996
I've added an 11th tool to the Nymbo/Tools MCP server, it's for your Obsidian_Vault. I'd argue it's far more context-efficient than any other Obsidian MCP I've seen, and doesn't require any plugins. Also some big improvements to the Web_Search and Web_Fetch tools.

# Obsidian_Vault Tool

It's basically a read-only version of the File_System tool, but it works so well for navigating Obsidian without unnecessary context. It supports recursive (full-text) search across the entire vault, and supports offset so the agent can "scroll" through a document without re-consuming tokens.

Run the server locally and set the OBSIDIAN_VAULT_ROOT environment variable to your vault's root path. If you don't use Obsidian, this is perfectly usable as simply a read-only filesystem.

# Web_Search Improvements

The Web_Search tool previously just used DuckDuckGo as a backend search engine, but now it also supports Bing, Brave, Yahoo, and Wikipedia. Default engine is auto which provides results from all backends in recommended order. Still doesn't require any kind of API or auth for Web_Search.

There's also a new date filter to limit results to those created in the past day, week, month, or year. Oh, and uhh, SafeSearch is now off by default :)

# Web_Fetch Improvements

As context-efficient as the Markdown mode is for web browsing, sometimes it does lose important context in the conversion from HTML to Markdown. So I've added a new HTML mode to the Web_Fetch tool that basically executes a cURL request on the URL, returning the full HTML page if necessary.

# A Note on Claude Skills

I've been having fun with the new File_System and Shell_Command tools. Using Claude Skills doesn't currently work in the public HF space because of environment restrictions, but using Skills works perfectly well running locally.

Happy building ~
mrfakename 
posted an update about 2 months ago
view post
Post
6023
Trained a model for emotion-controllable TTS based on MiMo audio on LAION's dataset.

Still very early and does have an issue with hallucinating but results seem pretty good so far, given that it is very early into the training run.

Will probably kick off a new run later with some settings tweaked.

Put up a demo here: https://huggingface.co/spaces/mrfakename/EmoAct-MiMo

(Turn 🔊 on to hear audio samples)
·
merve 
posted an update about 2 months ago
view post
Post
6757
deepseek-ai/DeepSeek-OCR is out! 🔥 my take ⤵️
> pretty insane it can parse and re-render charts in HTML
> it uses CLIP and SAM features concatenated, so better grounding
> very efficient per vision tokens/performance ratio
> covers 100 languages
·
Nymbo 
posted an update about 2 months ago
view post
Post
1980
Two new tools added to the Nymbo/Tools MCP server, File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills.

GPT-5-Codex proves that for many cases, shell commands really are all you need, and Claude Skills seem to lean into this. The thing is, nothing about the design of Claude Skills actually restricts them to proprietary models!

# File_System

There's a new directory inside the repo called Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.

Files created in the public HF space live in the space's running container, and gets cleared when the space is restarted. When running the server locally, files are actually stored on disk.

# Shell_Exec

What good is a filesystem if you can't execute commands in that filesystem? This tool automatically detects if the server is running on Windows or Linux, and suggests using the appropriate shell (PowerShell/Bash). Both of these new tools require that the agent uses relative paths, rather than absolute paths. I could be convinced to back pedal on this.

# Closing Thoughts

The File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
  • 1 reply
·
m-ric 
posted an update 2 months ago
view post
Post
787
Tokenization is one of the most important processes in AI - yet many would like to kill it 💀

What's tokenization? The neural networks inside LLMs actually only process numbers, not text: tokenization is the process that makes text readable for them, by converting sentences into lists of numbers.

➡️ For instance, "This is tokenization" would be split into "This | is | token | ization", then each of the parts (tokens) are converted to IDs according to a predefined mapping: for instance "ization" could map to id 2438.
Thus "This is tokenization" can become 1335 | 135 | 2980 | 2438 => now the model can process the sentence!

Most tokenizers today use pre-specified mappings called "vocabularies", generally built about the compression algorithme Byte-Pair Encoding (BPE) that learns from a big corpuses of texts an optimized split to efficiently encode any text from the same distribution into a list token IDs.

🤨 Now, these current tokenizers have flaws.
For instance, the rigidity of their mapping creates losses ; the prime example being that a tokenizer designed for English (thus optimized for tokens like "has", "been", "clock", etc) will not have the right tokens to approach Burmese, thus being terribly inefficient at it.

Many alternative approaches have emerged as a result: for instance "tokenizer-free tokenizers". One that I really liked was "entropy-based": it monitors the stream of text, and trigger a split whenever the entropy increases too much, i.e. when something "surprising" happens.

But this great article argues that tokenizers are a lesser evil. Read and decide for yourself!
https://huggingface.co/blog/catherinearnett/in-defense-of-tokenizers
Nymbo 
posted an update 2 months ago
view post
Post
1846
I've made some improvements to my custom Deep_Research tool in the Nymbo/Tools MCP server. I've added a second LLM process and it still takes less than 1 minute to complete!

The original version of my Deep_Research tool would basically dump up to 50 fetched webpages onto the Researcher model (Qwen3-235B), with only a little bit of context shown from each page.

# New "Filterer" Process

The new process includes another LLM call before the researcher process. The Filterer (also Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.

# Researcher Context

The Researcher now gets only the relevant webpages, then begins writing the report. When testing with 50 initial results, the researcher would often end up with 10-20 results of relevant context.

It still takes less than a minute to accomplish everything, thanks entirely to Cerebras inference. It now takes about 35-45 seconds to complete once the tool is run.

It's also worth noting that both the Filterer and Researcher now are provided the current time/date before they see the content, reducing hallucinations caused by knowledge cutoffs.
Severian 
posted an update 2 months ago
view post
Post
360
New Technique to Deeply Poison AI on Images and Prove Creative Provenance

I've developed a new method to protect creative work from unauthorized AI training. My Poisonous Shield for Images algorithm embeds a deep, removal-resistant poison into the mathematical structure of your images. It's designed to be toxic to machine learning models, achieving up to 20-348% disruption in AI training convergence in benchmark tests.

Unlike traditional watermarks, this protection survives compression and resizing and is not removed by standard tools. The technique also embeds cryptographic proof of provenance directly into the image, verifying ownership and detecting tampering.

You can see examples and learn more about how and WHY it works better than current methods:

https://severian-poisonous-shield-for-images.static.hf.space

If you are interested in using this technology to protect your work from AI training and unauthorized use, please reach out to me. It is currently in the prototype phase but fully functioning and effective. Still working on expanding it to a production-grade usable app.

This is not intended as a pure self-promotion post. I am genuinely wanting to help creators and want to gauge interest from different communities. I've spent the past year and a half building this from scratch with new math and code to try and solve this massive problem. 
m-ric 
posted an update 2 months ago
view post
Post
4887
STOP EVERYTHING NOW - we might finally have a radical architecture improvement over Transformers!!! 🚨

A lone scientist just proposed Tiny Recursive Model (TRM), and it is literally the most impressive model that I've seen this year.

➡️ Tiny Recursive Model is 7M parameters
➡️ On ARC-AGI, it beats flagship models like Gemini-2.5-pro

Consider how wild this is: Gemini-2.5-pro must be over 10,000x bigger
and had 1,000 as many authors 😂 (Alexia is alone on the paper)

What's this sorcery?
In short: it's a very tiny Transformers, but it loops over itself at two different frequencies, updating two latent variables: one for the proposed answer and one for the reasoning.

@AlexiaJM started from the paper Hierarchical Reasoning Model, published a few months ago, that already showed breakthrough improvement on AGI for its small size (27M)

Hierarchical Reasoning Model had introduced one main feature:
🔎 Deep supervision
In their model, one part (here one layer) would run at high frequency, and another would be lower frequency, running only every n steps.

They had used a recurrent architecture, where these layers would repeat many times ; but to make it work they had to do many approximations, including not fully backpropagating the loss through all layers.

Alexia studied what was useful and what wasn't, and cleaned the architecture as follows :
Why use a recurrent architecture, when you can just make it a loop?
➡️ She made the network recursive, looping over itself

Why use 2 latent variables ?
➡️ She provides a crystal clear explanation : the one that changes frequently is the reasoning, the one that changes at low frequency is the proposed answer.
➡️ She runs ablation studies to validate that 2 is indeed optimal.

This new setup is a much more elegant way to process reasoning than generating huge chains of tokens as all flagship models currently do.

This might be the breakthrough we've been awaiting for so long!
·