File size: 51,415 Bytes
c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 0d648f5 c6ce1be 0d648f5 c6ce1be 0d648f5 c6ce1be 0d648f5 c6ce1be 3d813dc 0d648f5 c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 0d648f5 c6ce1be 0d648f5 c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c967bd1 c6ce1be 3d813dc c6ce1be 331a585 c6ce1be 331a585 c6ce1be 3d813dc c6ce1be c967bd1 3d813dc c6ce1be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 |
# Copyright 2025 Jina AI. All rights reserved.
from abc import ABCMeta, abstractmethod
from copy import deepcopy
from functools import wraps
from math import prod, sqrt
from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union
import einops
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as f
from torch.nn.attention import SDPBackend, sdpa_kernel
from transformers import PretrainedConfig
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.processing_utils import Unpack
from .configuration_jvlm import (
ImagePaddingEmbedType,
ImagePooling2DType,
ImageProjectionType,
JinaAttentionConfig,
JinaFFNConfig,
JinaLNormConfig,
JinaTransformerBlockConfig,
JinaVLConnectorConfig,
LayerNormType,
)
class Dropout(nn.Dropout):
def __init__(
self,
p: float = 0.5,
inplace: bool = False,
mask_p: float = 0.0,
broadcast_dims: Sequence[int] = (),
) -> None:
super().__init__(p, inplace)
self.mask_p = mask_p
self.broadcast_dims = broadcast_dims
def forward(
self, _input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
:param _input: A tensor of shape `(batch_size, seq_len, embed_dim)`
:param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero
or one
"""
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
return _input
else:
if self.mask_p > 0.0 and self.training:
assert drop_mask is not None
drop_mask = drop_mask.to(_input.dtype)
keep_prob = 1.0 - self.p
keep_prob2 = 1.0 - self.mask_p
keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob
keep_prob = keep_prob.unsqueeze(-1)
dropout_shape = list(_input.shape)
keep_prob = keep_prob.broadcast_to(dropout_shape)
multiplier = _input.new_empty(dropout_shape).bernoulli_(keep_prob)
multiplier.div_(keep_prob)
return _input * multiplier
elif self.p > 0.0 and len(self.broadcast_dims) > 0 and self.training:
keep_prob = 1.0 - self.p
dropout_shape = list(_input.shape)
for dim in self.broadcast_dims:
dropout_shape[dim] = 1
keep = _input.new_empty(dropout_shape).bernoulli_(keep_prob)
multiplier = keep.broadcast_to(_input.shape)
multiplier.div_(keep_prob)
return _input * multiplier
else:
return f.dropout(_input, self.p, self.training, self.inplace)
class ResidualPathDropout(nn.Module):
"""Drops paths (Stochastic Depth) per sample (when applied in main path of residual
blocks).
Taken from
https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
"""
def __init__(self, p: float = 0.5, scale_by_keep: bool = True) -> None:
super(ResidualPathDropout, self).__init__()
assert 0 <= p < 1.0
self.p = p
self.scale_by_keep = scale_by_keep
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc
networks, however, the original name is misleading as 'Drop Connect' is a
different form of dropout in a separate paper...
See discussion:
https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956
I've opted for changing the layer and argument names to 'drop path' rather
than mix DropConnect as a layer name and use 'survival rate' as the argument.
"""
if self.p == 0.0 or not self.training:
return x
keep_prob = 1 - self.p
# work with diff dim tensors, not just 2D ConvNets
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, p: float = 0.5, exclude_first_token: bool = True):
super().__init__()
assert 0 <= p < 1.0
self.p = p
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if not self.training or self.p == 0.0:
return x, None
if self.exclude_first_token:
_cls_tokens, x = x[:, :1], x[:, 1:]
else:
_cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch, ntokens = x.size()
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.p
num_patches_keep = max(1, int(ntokens * keep_prob))
rand = torch.randn(batch, ntokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((_cls_tokens, x), dim=1)
return x, patch_indices_keep
"""
Embedding layers. Adapted from AllenAI Molmo
https://github.com/allenai/molmo
"""
class ExtendedEmbedding(nn.Module):
def __init__(
self,
num_embeddings: int,
num_new_embeddings: int,
num_features: int,
):
super().__init__()
self.embedding = nn.Parameter(
torch.zeros(num_embeddings, num_features),
)
self.new_embedding = nn.Parameter(
torch.zeros(num_new_embeddings, num_features),
)
@property
def weight(self):
return self.embedding
@weight.setter
def weight(self, w):
self.embedding = w
@property
def embedding_table(self) -> torch.Tensor:
return torch.cat([self.embedding, self.new_embedding], dim=0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return f.embedding(x, self.embedding_table)
class PatchEmbedding(nn.Module):
def __init__(
self,
dim: int = 768,
patch_size: int = 16,
num_channels: int = 3,
input_size: Optional[Tuple[int, int]] = None,
bias: bool = True,
use_linear: bool = False,
):
super().__init__()
self._input_size = input_size
self._patch_size = (patch_size, patch_size)
if input_size is not None:
self._patch_shape = (
self._input_size[0] // self._patch_size[0],
self._input_size[1] // self._patch_size[1],
)
self._num_patches = prod(self._patch_shape)
else:
assert not use_linear, 'Linear patch embedding requires a fixed input size!'
self._patch_shape = None
self._num_patches = None
self._num_channels = num_channels
self._dim = dim
self._bias = bias
if use_linear:
self.proj = nn.Linear(
self._num_channels * self._patch_size[0] * self._patch_size[1],
self._dim,
bias=self._bias,
)
self._proj_impl = 'linear'
else:
self.proj = nn.Conv2d(
self._num_channels,
self._dim,
kernel_size=self._patch_size,
stride=self._patch_size,
bias=self._bias,
# padding='valid',
)
self._proj_impl = 'conv2d'
def _linear_pre_projection(self, x: torch.Tensor) -> torch.Tensor:
b, c, *_ = x.shape
p1, p2 = self._patch_size
patches = x.unfold(2, p1, p1).unfold(3, p2, p2)
patches = patches.permute(0, 2, 3, 4, 5, 1)
return patches.reshape(b, -1, c * p1 * p2)
@staticmethod
def _conv2d_pre_projection(x: torch.Tensor) -> torch.Tensor:
return x
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]:
# shape: (batch_size, n_channels, height, width)
if len(x.shape) == 4:
bs, ch, h, w = x.shape
p1, p2 = self._patch_size
assert ch == self._num_channels, (
f'Input tensor has {ch} channels, but model expects '
f'{self._num_channels} channels'
)
if self._input_size is not None:
assert (h, w) == self._input_size, (
f"Input image shape {(h, w)} doesn't match model's "
f'{self._input_size}'
)
if self._proj_impl == 'linear':
patches = x.unfold(2, p1, p1).unfold(3, p2, p2)
patches = patches.permute(0, 2, 3, 4, 5, 1)
x = patches.reshape(bs, -1, ch * p1 * p2)
else:
assert h % p1 == 0 and w % p2 == 0, (
f'Input image shape {(h, w)} is not divisible by patch size '
f'{self._patch_size}'
)
shape = (h // p1, w // p2)
# shape: (batch_size, seq_len, n_pixels)
elif len(x.shape) == 3:
bs, sl, np = x.shape
h = int(sqrt(sl))
shape = (h, h)
if self._input_size is not None:
assert self._num_patches == sl, (
f"Input sequence length ({sl}) doesn't match model's patch shape "
f'({self._patch_shape})'
)
else:
assert h * h == sl, (
f'Input sequence length {sl} is not a perfect square. Please '
f'provide a square sequence length, from which the shape can be '
f'inferred. For non-square inputs, use a 4D tensor with shape '
f'(batch_size, n_channels, height, width)'
)
p1, p2 = self._patch_size
assert np == self._num_channels * p1 * p2, (
f'The input number of pixels ({np}) does not match the expected number '
f'n_channels * patch_size_horizontal * patch_size_vertical '
f'({self._num_channels * p1 * p2})'
)
if self._proj_impl == 'conv2d':
# Reshape to 4D tensor for Conv2d projection
x = (
x.unfold(1, h, h)
.reshape(bs, h, h, p1, p2, self._num_channels)
.permute(0, 5, 1, 3, 2, 4)
.reshape(bs, self._num_channels, h * p1, h * p2)
)
else:
raise ValueError(
f'Input tensor must be 3D or 4D, got {len(x.shape)}D tensor with shape '
f'{x.shape}. Accepted shapes are (batch_size, n_channels, height, '
f'width) or (batch_size, seq_len, n_pixels)'
)
out = self.proj(x.to(dtype=self.proj.weight.dtype))
if self._proj_impl == 'conv2d':
out = out.flatten(2).permute(0, 2, 1)
return out, shape
"""
Rotary Positional Embeddings. Compatible with HuggingFace transformers
https://github.com/huggingface/transformers/blob/main/src/transformers/
modeling_rope_utils.py
"""
def inv_freq_to_device(rope_forward):
"""Sometimes the inv_freq is calculated on the wrong device, or ends up in lower
precision than float32.
This wrapper ensures that inv_freq is always on the right device and in float32
precision.
"""
@wraps(rope_forward)
def wrapper(self, x, position_ids):
if self.inv_freq.dtype != torch.float32 or self.rope_init_device != x.device:
invfreq, self.attention_scaling = self.rope_init_fn(
self.config, x.device, self.max_seq_len_cached
)
self.register_buffer('inv_freq', invfreq, persistent=False)
self.original_inv_freq = self.inv_freq
self.rope_init_device = x.device
return rope_forward(self, x, position_ids)
return wrapper
class RotaryEmbedding(nn.Module):
inv_freq: torch.Tensor
def __init__(
self,
config: PretrainedConfig,
theta: float,
head_dim: int,
hidden_size: int,
partial_rotary_factor: float,
device: Optional[torch.device] = None,
scaling: Optional[Dict[str, Any]] = None,
):
super().__init__()
assert hasattr(config, 'rope_theta')
self.config = deepcopy(config)
# NOTE: for HF RoPE interface compatibility
setattr(self.config, 'rope_theta', theta)
setattr(self.config, 'partial_rotary_factor', partial_rotary_factor)
setattr(self.config, 'head_dim', head_dim)
setattr(self.config, 'hidden_size', hidden_size)
setattr(self.config, 'rope_scaling', scaling or {})
self.rope_type = 'default'
if hasattr(config, 'rope_scaling') and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get('rope_type', 'default')
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
seqlen = config.max_position_embeddings or config.max_sequence_length
invfreq, self.attention_scaling = self.rope_init_fn(self.config, device, seqlen)
self.rope_init_device = device
self.register_buffer('inv_freq', invfreq, persistent=False)
self.original_inv_freq = self.inv_freq
self.max_seq_len_cached = seqlen
self.original_max_seq_len = self.max_seq_len_cached
@torch.no_grad()
@inv_freq_to_device
@dynamic_rope_update
def forward(self, x: torch.Tensor, position_ids: torch.Tensor):
device_type = (
x.device.type
if isinstance(x.device.type, str) and x.device.type != 'mps'
else 'cpu'
)
with torch.autocast(device_type=device_type, enabled=False):
inv_freq_expanded = self.inv_freq[None, :, None].expand(
position_ids.shape[0], -1, 1
)
position_ids_expanded = position_ids[:, None, :].float()
freqs = inv_freq_expanded * position_ids_expanded
freqs = freqs.transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos, sin
"""
Residual wrapper. Adapted from AllenAI Molmo
https://github.com/allenai/molmo
"""
class Residual(nn.Module):
def __init__(self, submodule: nn.Module):
super().__init__()
self.submodule = submodule
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.submodule(x)
"""
Layer scaling. Adapted from
https://github.com/facebookresearch/dinov2/blob/main/dinov2/layers/layer_scale.py
"""
class LayerScale(nn.Module):
"""
LayerScale appearing in DINO v2
From
https://github.com/facebookresearch/dinov2/blob/main/dinov2/layers/layer_scale.py
"""
def __init__(
self,
dim: int,
init_value: float = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.init_value = init_value
self.inplace = inplace
self.gamma = nn.Parameter(init_value * torch.ones((dim,)), requires_grad=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma
"""
Layer normalization. Adapted from AllenAI Molmo
https://github.com/allenai/molmo
"""
class _LayerNorm(nn.Module, metaclass=ABCMeta):
def __init__(
self,
config: JinaLNormConfig,
size: int,
elementwise_affine: Optional[bool] = True,
eps: float = 1e-05,
weight_initializer: Optional[Callable] = torch.ones,
bias_initializer: Optional[Callable] = torch.zeros,
):
super().__init__()
self.config = config
self.eps = self.config.eps or eps
self.normalized_shape = (size,)
if elementwise_affine or (
elementwise_affine is None and self.config.with_affine
):
self.weight = nn.Parameter(weight_initializer(self.normalized_shape))
use_bias = self.config.bias
if use_bias:
self.bias = nn.Parameter(bias_initializer(self.normalized_shape))
else:
self.register_parameter('bias', None)
else:
self.register_parameter('bias', None)
self.register_parameter('weight', None)
@abstractmethod
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@staticmethod
def _cast_if_autocast_enabled(
tensor: torch.Tensor, dtype: Optional[torch.dtype] = None
) -> torch.Tensor:
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the
# separate function `is_autocast_cpu_enabled()` for CPU autocast.
# See https://github.com/pytorch/pytorch/issues/110966.
if tensor.device.type == 'cuda' and torch.is_autocast_enabled():
return tensor.to(
dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype()
)
elif tensor.device.type == 'cpu' and torch.is_autocast_cpu_enabled():
return tensor.to(
dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype()
)
else:
return tensor
class LayerNorm(_LayerNorm):
"""The default :class:`LayerNorm` implementation which can optionally run in low
precision."""
def __init__(
self,
config: JinaLNormConfig,
size: int,
low_precision: bool = False,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
super().__init__(
config, size=size, elementwise_affine=elementwise_affine, eps=eps
)
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.low_precision:
module_device = x.device
downcast_x = self._cast_if_autocast_enabled(x)
downcast_weight = (
self._cast_if_autocast_enabled(self.weight)
if self.weight is not None
else self.weight
)
downcast_bias = (
self._cast_if_autocast_enabled(self.bias)
if self.bias is not None
else self.bias
)
with torch.autocast(enabled=False, device_type=module_device.type):
return f.layer_norm(
downcast_x,
self.normalized_shape,
weight=downcast_weight,
bias=downcast_bias,
eps=self.eps,
)
else:
return f.layer_norm(
x,
self.normalized_shape,
weight=self.weight,
bias=self.bias,
eps=self.eps,
)
@use_kernel_forward_from_hub('RMSNorm')
class RMSLayerNorm(_LayerNorm):
"""RMS layer norm, a simplified :class:`LayerNorm` implementation."""
def __init__(
self,
config: JinaLNormConfig,
size: int,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__(
config, size=size, elementwise_affine=elementwise_affine, eps=eps
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
og_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
x = x.to(og_dtype)
if self.weight is not None:
if self.bias is not None:
return self.weight * x + self.bias
else:
return self.weight * x
else:
return x
def build_layer_norm(config: JinaLNormConfig, size: int, **kwargs) -> _LayerNorm:
if config.type == LayerNormType.default:
return LayerNorm(config, size=size, low_precision=False, **kwargs)
elif config.type == LayerNormType.low_precision:
return LayerNorm(config, size=size, low_precision=True, **kwargs)
return RMSLayerNorm(config, size=size, **kwargs)
"""
Multi Head Scaled Dot Product Attention module and utilities. Adapted from AllenAI Molmo
https://github.com/allenai/molmo
"""
def _create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor:
with torch.autocast(device.type, enabled=False):
causal_mask = torch.triu(
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
diagonal=1,
)
causal_mask.masked_fill_(causal_mask == 1, torch.finfo(causal_mask.dtype).min)
causal_mask = causal_mask.view(1, 1, seq_len, seq_len) # type: ignore
return causal_mask
def _ensure_finite(
x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False
):
"""Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the
dtype when ``check_neg_inf`` is ``True`` and replace ``float("inf")`` with the
maximum value of the dtype when ``check_pos_inf`` is ``True``"""
if check_neg_inf:
x.masked_fill_(x == float('-inf'), torch.finfo(x.dtype).min)
if check_pos_inf:
x.masked_fill_(x == float('inf'), torch.finfo(x.dtype).max)
def resolve_causal_mask(
attention_mask: Optional[torch.Tensor],
causal_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache],
batch_size: int,
seq_len: int,
past_length: int,
device,
):
if attention_mask is not None:
# shape: (batch_size, 1, 1, seq_len)
if len(attention_mask.shape) == 2:
attention_mask = attention_mask[:, : past_length + seq_len]
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[
:, None, None, :
]
else:
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
# Merge attention mask with causal mask (attention bias)
# NOTE: We need to initialize the attn bias in order for attn to
# work properly with key+value cache. Otherwise
# `f.scaled_dot_product_attention()` doesn't seem to compute scores correctly
if (
causal_mask is not None
or attention_mask is not None
or past_key_values is not None
):
if causal_mask is None:
causal_mask = _create_causal_mask(past_length + seq_len, device)
elif causal_mask.dtype in (torch.int8, torch.bool):
causal_mask = causal_mask.to(dtype=torch.float)
causal_mask.masked_fill_(
causal_mask == 0.0, torch.finfo(causal_mask.dtype).min
)
mask_len = seq_len
if attention_mask is not None:
mask_len = attention_mask.shape[-1]
elif past_key_values is not None:
mask_len = past_length + seq_len
causal_mask = causal_mask[:, :, :mask_len, :mask_len].to(dtype=torch.float)
# Add in the masking bias
if attention_mask is not None:
causal_mask = causal_mask + attention_mask
# Might get -infs after adding attention mask, since
# dtype.min + dtype.min = -inf. `f.scaled_dot_product_attention()`
# doesn't handle -inf like you'd expect, instead it can produce NaNs
_ensure_finite(causal_mask, check_neg_inf=True, check_pos_inf=False)
return causal_mask
def cast_attention_mask(bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
target_dtype = input_dtype
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the
# separate function `is_autocast_cpu_enabled()` for CPU autocast.
# See https://github.com/pytorch/pytorch/issues/110966.
if bias.device.type == 'cuda' and torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif bias.device.type == 'cpu' and torch.is_autocast_cpu_enabled():
target_dtype = torch.get_autocast_cpu_dtype()
if bias.dtype != target_dtype:
bias = bias.to(target_dtype)
_ensure_finite(bias, check_neg_inf=True, check_pos_inf=False)
return bias
def repeat_kv(hidden_states: torch.Tensor, n: int) -> torch.Tensor:
batch, kvheads, slen, hdim = hidden_states.shape
if n == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, kvheads, n, slen, hdim
)
return hidden_states.reshape(batch, kvheads * n, slen, hdim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**_,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
weights = torch.matmul(query * scaling, key_states.transpose(2, 3))
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
weights = weights + causal_mask
weights = f.softmax(weights, dim=-1, dtype=torch.float32).to(query.dtype)
weights = f.dropout(weights, p=dropout, training=module.training).to(
value_states.dtype
)
out = torch.matmul(weights, value_states).to(query.dtype)
out = out.transpose(1, 2).contiguous()
return out, weights
def rotate_half(x: torch.Tensor):
b, nh, t, hs = x.size()
x = x.view(b, nh, t, 2, hs // 2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_positional_embeddings(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
return (x * cos + rotate_half(x) * sin).to(x.dtype)
def apply_rope_to_qk(q, k, cos, sin):
q_, k_ = q.float(), k.float()
with torch.autocast(q.device.type, enabled=False):
q_ = apply_rotary_positional_embeddings(q_, cos, sin)
k_ = apply_rotary_positional_embeddings(k_, cos, sin)
q = q_.type_as(q)
k = k_.type_as(k)
return q, k
class MHSDPA(nn.Module):
"""Multi Head Scaled Dot Product Attention."""
def __init__(
self,
config: JinaAttentionConfig,
hidden_size: int,
output_size: Optional[int] = None,
self_attn: bool = True,
is_causal: bool = False,
layer_idx: int = 0,
attn_implementation: Optional[str] = None,
):
super().__init__()
self.config = config
self.hidden_size = hidden_size
self.n_heads = config.n_heads
self.n_kv_heads = config.n_kv_heads or self.n_heads
self.n_kv_groups = self.n_heads // self.n_kv_heads
self.output_size = output_size or self.hidden_size
# NOTE: for HF attention interface compatibility
self.num_key_value_groups = self.n_kv_groups
self.is_causal = is_causal
self.layer_idx = layer_idx
self.sliding_window = config.sliding_window
head_dim = config.head_dim
if head_dim is None:
assert self.hidden_size % self.n_heads == 0
head_dim = self.hidden_size // self.n_heads
self.head_dim = head_dim
self.scale = config.softmax_scale or self.head_dim**-0.5
self.scaling = self.scale
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined
if config.clip_qkv is not None:
assert config.clip_qkv > 0
self.clip_qkv = config.clip_qkv
self.fp32_attn = config.fp32
self.self_attn = self_attn
self.fused_dims = (
self.n_heads * self.head_dim,
self.n_kv_heads * self.head_dim,
self.n_kv_heads * self.head_dim,
)
if self.self_attn:
self.qkv_w = nn.Linear(self.hidden_size, sum(self.fused_dims), bias=False)
else:
self.q_w = nn.Linear(
self.hidden_size,
self.n_heads * self.head_dim,
bias=False,
)
self.kv_w = nn.Linear(
self.hidden_size,
sum(self.fused_dims) - self.n_heads * self.head_dim,
bias=False,
)
self.out = nn.Linear(
self.n_heads * self.head_dim,
self.output_size,
bias=config.o_bias,
)
self.q_b = nn.Parameter(
torch.zeros(self.n_heads * self.head_dim),
requires_grad=config.q_bias,
)
self.k_b = nn.Parameter(
torch.zeros(self.n_kv_heads * self.head_dim),
requires_grad=config.k_bias,
)
self.v_b = nn.Parameter(
torch.zeros(self.n_kv_heads * self.head_dim),
requires_grad=config.v_bias,
)
self.q_lnorm = nn.Identity()
self.k_lnorm = nn.Identity()
self.v_lnorm = nn.Identity()
self.inner_lnorm = nn.Identity()
self.add_q_lnorm = config.q_lnorm
self.add_k_lnorm = config.k_lnorm
self.add_v_lnorm = config.v_lnorm
self.qkv_lnorm_on_heads = config.qkv_lnorm_on_heads
q_lnorm_size = (
self.head_dim if self.qkv_lnorm_on_heads else self.n_heads * self.head_dim
)
kv_lnorm_size = (
self.head_dim
if self.qkv_lnorm_on_heads
else self.n_kv_heads * self.head_dim
)
if self.add_q_lnorm:
self.q_lnorm = build_layer_norm(
config.lnorm_config,
size=q_lnorm_size,
elementwise_affine=config.lnorm_config.with_affine,
)
if self.add_k_lnorm:
self.k_lnorm = build_layer_norm(
config.lnorm_config,
size=kv_lnorm_size,
elementwise_affine=config.lnorm_config.with_affine,
)
if self.add_v_lnorm:
self.v_lnorm = build_layer_norm(
config.lnorm_config,
size=kv_lnorm_size,
elementwise_affine=config.lnorm_config.with_affine,
)
if config.inner_lnorm:
self.inner_lnorm = build_layer_norm(
config.lnorm_config,
size=(self.n_heads * self.head_dim),
elementwise_affine=config.lnorm_config.with_affine,
)
self.drop_p = config.dropout
self.attn_interface, *_ = self._get_attention_interface(
attn_implementation or 'eager', None, None
)
def _get_attention_interface(
self,
attn_implementation: str,
attn_mask: Optional[torch.Tensor] = None,
is_causal: Optional[bool] = None,
) -> Tuple[Callable, Optional[torch.Tensor], Optional[bool]]:
if 'flash' in attn_implementation and self.fp32_attn:
raise ValueError('Flash attention does not support fp32 attention')
if self.sliding_window != -1 and 'flash' not in attn_implementation:
raise ValueError('Sliding window attention requires flash attention')
attn_interface: Callable = eager_attention_forward
if attn_implementation != 'eager':
attn_interface = ALL_ATTENTION_FUNCTIONS[attn_implementation]
setattr(self.config, '_attn_implementation', attn_implementation)
if 'flash' in attn_implementation:
# Flash attention expects attention mask to be a 2D padding only
# mask
# Depending on the value of is_causal, the function will
# automatically apply causal masking or not
if attn_mask is not None:
# convert to 0,1 in int32
attn_mask = (attn_mask > -1).to(torch.int32)
# take maximum along sequence dimension
attn_mask = attn_mask.squeeze(1).max(dim=1)[0]
elif 'sdpa' in attn_implementation:
if attn_mask is not None and is_causal is not None:
is_causal = False
elif attn_implementation == 'eager':
if is_causal:
assert attn_mask is not None
assert attn_mask.ndim == 4
return attn_interface, attn_mask, is_causal
def forward(
self,
xq: torch.Tensor,
xk: Optional[torch.Tensor] = None,
rope_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attn_implementation: Optional[str] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.self_attn:
# qkv = self.qkv_w(xq)
qkv_b = torch.cat((self.q_b, self.k_b, self.v_b))
# qkv += qkv_b
qkv = f.linear(xq, self.qkv_w.weight, qkv_b)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.split(self.fused_dims, dim=-1)
else:
assert xk is not None
q = f.linear(xq, self.q_w.weight, self.q_b)
kv_b = torch.cat((self.k_b, self.v_b))
kv = f.linear(xk, self.kv_w.weight, kv_b)
if self.clip_qkv is not None:
q.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
kv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
k, v = kv.split(self.fused_dims[1:], dim=-1)
b, tq, _ = q.size()
_, tk, __ = k.size() # batch size, sequence length, d_model
og_dtype = k.dtype
if self.fp32_attn:
dtype = torch.float32
q = q.to(torch.float)
k = k.to(torch.float)
else:
dtype = og_dtype
# Optionally apply layer norm to keys and queries
if not self.qkv_lnorm_on_heads:
q = self.q_lnorm(q).to(dtype=dtype)
k = self.k_lnorm(k).to(dtype=dtype)
v = self.v_lnorm(v).to(dtype=dtype)
# Move head forward to be next to the batch dim
# shape: (bs, nh, t, hs)
q = q.view(b, tq, self.n_heads, -1).transpose(1, 2)
# shape: (b, n_kv_h, t, hs)
k = k.view(b, tk, self.n_kv_heads, -1).transpose(1, 2)
# shape: (b, n_kv_h, t, hs)
v = v.view(b, tk, self.n_kv_heads, -1).transpose(1, 2)
# Optionaly apply layer norm to keys and queries
if self.qkv_lnorm_on_heads:
q = self.q_lnorm(q).to(dtype=dtype)
k = self.k_lnorm(k).to(dtype=dtype)
v = self.v_lnorm(v).to(dtype=dtype)
cache_kwargs: Dict[str, torch.Tensor] = {'cache_position': cache_position}
if rope_embeddings is not None:
cos, sin = rope_embeddings
cache_kwargs['cos'] = cos
cache_kwargs['sin'] = sin
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
q, k = apply_rope_to_qk(q, k, cos, sin)
if past_key_values is not None:
k, v = past_key_values.update(k, v, self.layer_idx, cache_kwargs)
if attention_mask is not None:
# Resize and cast attention bias.
# The current dtype of the attention bias might not match the dtype that the
# SDP attn function will run in if AMP is enabled, and this can be a problem
# if some tokens are masked out due to padding as down-casting the attention
# bias to the autocast precision will result in -infs, which will cause the
# SDP attn function to produce NaNs.
qlen, klen = q.shape[-2], k.shape[-2]
attention_mask = cast_attention_mask(
attention_mask[:, :, klen - qlen : klen, :klen], dtype
)
attention_interface = self.attn_interface
is_causal = self.is_causal
if attn_implementation is not None:
attention_interface, attention_mask, is_causal = (
self._get_attention_interface(
attn_implementation,
attention_mask,
self.is_causal,
)
)
if self.sliding_window != -1:
kwargs['sliding_window'] = self.sliding_window
if is_causal is not None:
kwargs['is_causal'] = is_causal
attn, weights = attention_interface(
self,
q,
k,
v,
attention_mask,
dropout=0.0 if not self.training else self.drop_p,
scaling=self.scaling,
**kwargs,
)
attn = attn.to(og_dtype)
attn = attn.view(b, tq, -1)
out = self.inner_lnorm(attn)
out = self.out(out)
return out, weights
"""
FFN module. Adapted from AllenAI Molmo https://github.com/allenai/molmo
"""
class FFN(nn.Module):
"""Feed-Forward Network."""
def __init__(
self,
config: JinaFFNConfig,
hidden_size: int,
output_size: Optional[int] = None,
layer_idx: int = 0,
):
super().__init__()
self.config = config
self.hidden_size = hidden_size
self.output_size = output_size or hidden_size
self.intermediate_size = config.size or config.ratio * hidden_size
self.layer_idx = layer_idx
self.gated_activation = config.gated_activation
self.use_bias = config.bias
activation_type = config.activation_type.lower()
self.act = ACT2FN[activation_type]
intermediate_size = self.intermediate_size
if self.gated_activation:
intermediate_size = 2 * self.intermediate_size
self.up = nn.Linear(self.hidden_size, intermediate_size, bias=self.use_bias)
self.down = nn.Linear(
self.intermediate_size, self.output_size, bias=self.use_bias
)
self.inner_lnorm = (
build_layer_norm(self.config.lnorm_config, self.intermediate_size)
if config.inner_lnorm
else nn.Identity()
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.gated_activation:
x = self.up(x)
x, gate = x.chunk(2, dim=-1)
return self.down(self.inner_lnorm(self.act(gate) * x))
return self.down(self.inner_lnorm(self.act(self.up(x))))
"""
Transformer block. Adapted from AllenAI Molmo https://github.com/allenai/molmo
"""
class TransformerBlock(GradientCheckpointingLayer):
def __init__(
self,
config: JinaTransformerBlockConfig,
hidden_size: int,
is_causal: bool = True,
layer_idx: int = 0,
attn_implementation: Optional[str] = None,
):
super().__init__()
self.config = config
self.hidden_size = hidden_size
self.is_causal = is_causal
self.layer_idx = layer_idx
self.drop_path = config.residual_path_dropout
self.attn_lscale_init = config.attn_lscale_init
self.ffn_lscale_init = config.ffn_lscale_init
self.postnorm = config.postnorm
self.attn = MHSDPA(
config.attn_config,
hidden_size=self.hidden_size,
is_causal=is_causal,
self_attn=True,
layer_idx=layer_idx,
attn_implementation=attn_implementation,
)
self.ffn = FFN(
config.ffn_config, hidden_size=self.hidden_size, layer_idx=layer_idx
)
self.attn_drop = Dropout(
config.residual_dropout, mask_p=config.residual_response_dropout
)
self.ffn_drop = Dropout(
config.residual_dropout, mask_p=config.residual_response_dropout
)
self.path_drop = (
ResidualPathDropout(self.drop_path)
if self.drop_path > 0.0
else nn.Identity()
)
self.attn_lnorm = build_layer_norm(config.lnorm_config, size=hidden_size)
self.ffn_lnorm = build_layer_norm(config.lnorm_config, size=hidden_size)
self.attn_lscale = nn.Identity()
self.ffn_lscale = nn.Identity()
if self.attn_lscale_init is not None:
self.attn_lscale = LayerScale(self.hidden_size, self.attn_lscale_init)
if self.ffn_lscale_init is not None:
self.ffn_lscale = LayerScale(self.hidden_size, self.ffn_lscale_init)
def forward(
self,
x: torch.Tensor,
rope_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
drop_mask: Optional[torch.Tensor] = None,
attn_implementation: Optional[str] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if not self.postnorm:
x_norm = self.attn_lnorm(x)
else:
x_norm = x
x_attn, x_attn_weights = self.attn(
x_norm,
rope_embeddings=rope_embeddings,
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
attn_implementation=attn_implementation,
**kwargs,
)
if self.postnorm:
x_attn = self.attn_lnorm(x_attn)
x_attn = self.path_drop(self.attn_lscale(x_attn))
x = x + self.attn_drop(x_attn, drop_mask=drop_mask)
if not self.postnorm:
x_norm = self.ffn_lnorm(x)
else:
x_norm = x
x_ffn = self.ffn(x_norm)
if self.postnorm:
x_ffn = self.ffn_lnorm(x)
x_ffn = self.path_drop(self.ffn_lscale(x_ffn))
x = x + self.ffn_drop(x_ffn, drop_mask=drop_mask)
return x, x_attn_weights
"""
Vision Language Connector. Adapted from AllenAI Molmo https://github.com/allenai/molmo
"""
class VisionLanguageConnector(GradientCheckpointingLayer):
"""Vision-Language Connector."""
def __init__(
self,
config: JinaVLConnectorConfig,
input_size: int,
intermediate_size: int,
output_size: int,
n_patches: Tuple[int, int],
attn_implementation: Optional[str] = None,
):
super().__init__()
self.config = config
self.input_size = input_size
self.intermediate_size = intermediate_size
self.output_size = output_size
self.n_patches = n_patches
self.padding_embed_type = config.padding_embed_type
self.pooling_type = config.pooling_type
self.projector_type = config.projector_type
self.spatial_merge_size = config.spatial_merge_size
self.pooling_h = config.pooling_h
self.pooling_w = config.pooling_w
self.pad_embed = None
self.pooling = None
self.projector: Union[nn.Linear, nn.ModuleList, FFN]
if config.padding_embed_type is not None:
if config.padding_embed_type in {
ImagePaddingEmbedType.regress,
ImagePaddingEmbedType.pad_embed,
}:
self.pad_embed = nn.Parameter(torch.zeros((self.input_size,)))
else:
self.pad_embed = nn.Parameter(torch.zeros((2, self.input_size)))
pooling_input_size = self.input_size
projector_input_size = self.intermediate_size
if config.pooling_type in {
ImagePooling2DType.attention,
ImagePooling2DType.attention_meanq,
ImagePooling2DType.attention_2wide,
}:
assert config.attn_pooling_config is not None
if config.pooling_type == ImagePooling2DType.attention_2wide:
pooling_input_size *= 2
# Flash Attention can cause Inf grads in the attention pooling layer
# because of very large batch sizes. Setting this to sdpa does not cost us
# much since sequence lengths in the case of attention pooling are very
# small
attn_implementation = attn_implementation or 'eager'
if attn_implementation.startswith('flash'):
attn_implementation = 'sdpa'
self.pooling = MHSDPA(
config.attn_pooling_config,
hidden_size=pooling_input_size,
is_causal=False,
self_attn=False,
output_size=projector_input_size,
attn_implementation=attn_implementation,
)
elif config.pooling_type in [
ImagePooling2DType.stack,
ImagePooling2DType.token_merger,
]:
projector_input_size *= config.pooling_h * config.pooling_w
if config.projector_type in {
ImageProjectionType.mlpx2,
ImageProjectionType.mlp,
}:
assert config.mlp_projector_config is not None
mlp_projector_kwargs = dict(
config=config.mlp_projector_config,
hidden_size=projector_input_size,
output_size=output_size,
)
if config.projector_type == ImageProjectionType.mlpx2:
# TODO: Before there were two dropouts applied
self.projector = nn.ModuleList(
[FFN(**mlp_projector_kwargs), Residual(FFN(**mlp_projector_kwargs))]
)
else:
self.projector = FFN(**mlp_projector_kwargs)
else:
self.projector = nn.Linear(
projector_input_size,
output_size,
bias=False,
)
self.projector_dropout = Dropout(config.projector_dropout)
self.feature_dropout = Dropout(config.feature_dropout)
def forward(
self,
image_features: torch.Tensor,
image_masks: Optional[torch.Tensor] = None,
attn_implementation: Optional[str] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# image_features:
# (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
bs, ncrops = image_features.shape[:2]
ogtype = image_features.dtype
if self.padding_embed_type is not None:
assert image_masks is not None
if self.padding_embed_type == ImagePaddingEmbedType.pad_embed:
all_pad = (image_masks == 0).to(dtype=torch.float32)
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(
all_pad, -1
)
elif self.padding_embed_type == ImagePaddingEmbedType.regress:
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(
torch.maximum(image_masks, torch.zeros_like(image_masks)), -1
)
else:
pad_embed = self.pad_embed[:, None, None, None, :]
all_pad = image_masks == 0
partial_pad = torch.logical_and(
image_masks < 1, torch.logical_not(all_pad)
).to(dtype=torch.float32)
all_pad = all_pad.to(dtype=torch.float32)
image_features = image_features + pad_embed[0] * torch.unsqueeze(
all_pad, -1
)
image_features = image_features + pad_embed[1] * torch.unsqueeze(
partial_pad, -1
)
image_features = image_features.to(dtype=ogtype)
image_features = self.feature_dropout(image_features)
image_features = image_features.reshape((bs, ncrops) + self.n_patches + (-1,))
pad_h = self.n_patches[0] % self.pooling_h
pad_w = self.n_patches[1] % self.pooling_w
if pad_h != 0 or pad_w != 0:
# Pad so we can still pool mxn patches
image_features = f.pad(
image_features,
(0, 0, 0, pad_w, 0, pad_h, 0, 0, 0, 0),
)
if self.pooling_type == ImagePooling2DType.token_merger:
context_dim = image_features.shape[-1]
hidden_size = context_dim * (self.spatial_merge_size**2)
image_features = image_features.view([-1, hidden_size])
else:
image_features = einops.rearrange(
image_features,
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
dh=self.pooling_h,
dw=self.pooling_w,
)
image_features = image_features.contiguous()
if self.pooling_type == ImagePooling2DType.attention_meanq:
query = image_features.mean(-2, keepdim=True)
# Flash Attention can cause Inf grads in the attention pooling layer
# because of very large batch sizes. Setting this to sdpa does not cost
# us much since sequence lengths in the case of attention pooling are
# very small
attn_implementation = attn_implementation or 'eager'
if attn_implementation.startswith('flash'):
attn_implementation = 'sdpa'
if attn_implementation == 'sdpa':
with sdpa_kernel(backends=[SDPBackend.MATH]):
image_features, _ = self.pooling(
xq=query,
xk=image_features,
attn_implementation='sdpa',
**kwargs,
)
else:
image_features, _ = self.pooling(
xq=query,
xk=image_features,
attn_implementation=attn_implementation,
**kwargs,
)
elif self.pooling_type not in {
ImagePooling2DType.none,
ImagePooling2DType.stack,
}:
image_features = self.pooling(image_features[:, :1, :], image_features)
h = self.n_patches[0] // self.pooling_h + pad_h
w = self.n_patches[1] // self.pooling_w + pad_w
image_features = image_features.reshape(bs, ncrops, h * w, -1)
return self.projector(image_features)
|