Model update
Browse files- README.md +12 -16
- blocks_jvlm.py +2 -0
- modeling_jvlm.py +1 -0
- test.py +70 -0
README.md
CHANGED
|
@@ -209,7 +209,7 @@ python test_jvlm.py -i assets/the_persistence_of_memory.jpg -p "What's in this i
|
|
| 209 |
python test_jvlm.py -i https://picsum.photos/id/1025/800/600.jpg -p "Describe this image"
|
| 210 |
|
| 211 |
# Multiple images (local and remote)
|
| 212 |
-
python test_jvlm.py -i https://picsum.photos/id/1015/800/600.jpg -i https://picsum.photos/id/1016/800/600.jpg -i https://picsum.photos/id/1021/800/600.jpg -p "
|
| 213 |
|
| 214 |
# Text only input
|
| 215 |
python test_jvlm.py -p "How many planets are in our solar system?"
|
|
@@ -302,7 +302,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 302 |
#
|
| 303 |
# model = AutoModelForCausalLM.from_pretrained(
|
| 304 |
# 'jinaai/jina-vlm-v1',
|
| 305 |
-
#
|
| 306 |
# attn_implementation='flash_attention_2',
|
| 307 |
# device_map='auto',
|
| 308 |
# trust_remote_code=True
|
|
@@ -317,7 +317,7 @@ conversation = [
|
|
| 317 |
'type': 'image',
|
| 318 |
'image': image,
|
| 319 |
},
|
| 320 |
-
{'type': 'text', 'text': 'Describe this image
|
| 321 |
],
|
| 322 |
}
|
| 323 |
]
|
|
@@ -347,14 +347,10 @@ inputs = processor(
|
|
| 347 |
|
| 348 |
# Move the inputs to the appropriate device and/or dtype
|
| 349 |
device = torch.device('cuda')
|
| 350 |
-
dtype = torch.float16
|
| 351 |
model_inputs = {}
|
| 352 |
for k, v in inputs.items():
|
| 353 |
if isinstance(v, torch.Tensor):
|
| 354 |
-
|
| 355 |
-
model_inputs[k] = v.to(device, dtype=dtype, non_blocking=True)
|
| 356 |
-
else:
|
| 357 |
-
model_inputs[k] = v.to(device, non_blocking=True)
|
| 358 |
else:
|
| 359 |
model_inputs[k] = v
|
| 360 |
|
|
@@ -362,7 +358,7 @@ for k, v in inputs.items():
|
|
| 362 |
output = model.generate(
|
| 363 |
**model_inputs,
|
| 364 |
generation_config=GenerationConfig(
|
| 365 |
-
max_new_tokens=
|
| 366 |
),
|
| 367 |
return_dict_in_generate=True,
|
| 368 |
use_model_defaults=True,
|
|
@@ -390,7 +386,7 @@ processor = AutoProcessor.from_pretrained(
|
|
| 390 |
model = AutoModelForCausalLM.from_pretrained(
|
| 391 |
'jinaai/jina-vlm-v1',
|
| 392 |
device_map='auto',
|
| 393 |
-
|
| 394 |
attn_implementation='flash_attention_2',
|
| 395 |
trust_remote_code=True
|
| 396 |
)
|
|
@@ -441,7 +437,7 @@ for k, v in inputs.items():
|
|
| 441 |
output = model.generate(
|
| 442 |
**model_inputs,
|
| 443 |
generation_config=GenerationConfig(
|
| 444 |
-
max_new_tokens=
|
| 445 |
),
|
| 446 |
return_dict_in_generate=True,
|
| 447 |
use_model_defaults=True,
|
|
@@ -468,7 +464,7 @@ processor = AutoProcessor.from_pretrained(
|
|
| 468 |
model = AutoModelForCausalLM.from_pretrained(
|
| 469 |
'jinaai/jina-vlm-v1',
|
| 470 |
device_map='auto',
|
| 471 |
-
|
| 472 |
attn_implementation='flash_attention_2',
|
| 473 |
trust_remote_code=True
|
| 474 |
)
|
|
@@ -508,7 +504,7 @@ for k, v in inputs.items():
|
|
| 508 |
output = model.generate(
|
| 509 |
**model_inputs,
|
| 510 |
generation_config=GenerationConfig(
|
| 511 |
-
max_new_tokens=
|
| 512 |
),
|
| 513 |
return_dict_in_generate=True,
|
| 514 |
use_model_defaults=True,
|
|
@@ -535,7 +531,7 @@ processor = AutoProcessor.from_pretrained(
|
|
| 535 |
model = AutoModelForCausalLM.from_pretrained(
|
| 536 |
'jinaai/jina-vlm-v1',
|
| 537 |
device_map='auto',
|
| 538 |
-
|
| 539 |
attn_implementation='flash_attention_2',
|
| 540 |
trust_remote_code=True
|
| 541 |
)
|
|
@@ -599,7 +595,7 @@ processor = AutoProcessor.from_pretrained(
|
|
| 599 |
model = AutoModelForCausalLM.from_pretrained(
|
| 600 |
'jinaai/jina-vlm-v1',
|
| 601 |
device_map='auto',
|
| 602 |
-
|
| 603 |
attn_implementation='flash_attention_2',
|
| 604 |
trust_remote_code=True
|
| 605 |
)
|
|
@@ -701,7 +697,7 @@ processor = AutoProcessor.from_pretrained(
|
|
| 701 |
model = AutoModel.from_pretrained(
|
| 702 |
'jinaai/jina-vlm-v1',
|
| 703 |
device_map='auto',
|
| 704 |
-
|
| 705 |
attn_implementation='flash_attention_2',
|
| 706 |
trust_remote_code=True
|
| 707 |
)
|
|
|
|
| 209 |
python test_jvlm.py -i https://picsum.photos/id/1025/800/600.jpg -p "Describe this image"
|
| 210 |
|
| 211 |
# Multiple images (local and remote)
|
| 212 |
+
python test_jvlm.py -i https://picsum.photos/id/1015/800/600.jpg -i https://picsum.photos/id/1016/800/600.jpg -i https://picsum.photos/id/1021/800/600.jpg -p "Describe these images"
|
| 213 |
|
| 214 |
# Text only input
|
| 215 |
python test_jvlm.py -p "How many planets are in our solar system?"
|
|
|
|
| 302 |
#
|
| 303 |
# model = AutoModelForCausalLM.from_pretrained(
|
| 304 |
# 'jinaai/jina-vlm-v1',
|
| 305 |
+
# dtype=torch.bfloat16,
|
| 306 |
# attn_implementation='flash_attention_2',
|
| 307 |
# device_map='auto',
|
| 308 |
# trust_remote_code=True
|
|
|
|
| 317 |
'type': 'image',
|
| 318 |
'image': image,
|
| 319 |
},
|
| 320 |
+
{'type': 'text', 'text': 'Describe this image'},
|
| 321 |
],
|
| 322 |
}
|
| 323 |
]
|
|
|
|
| 347 |
|
| 348 |
# Move the inputs to the appropriate device and/or dtype
|
| 349 |
device = torch.device('cuda')
|
|
|
|
| 350 |
model_inputs = {}
|
| 351 |
for k, v in inputs.items():
|
| 352 |
if isinstance(v, torch.Tensor):
|
| 353 |
+
model_inputs[k] = v.to(device, non_blocking=True)
|
|
|
|
|
|
|
|
|
|
| 354 |
else:
|
| 355 |
model_inputs[k] = v
|
| 356 |
|
|
|
|
| 358 |
output = model.generate(
|
| 359 |
**model_inputs,
|
| 360 |
generation_config=GenerationConfig(
|
| 361 |
+
max_new_tokens=1024, do_sample=False,
|
| 362 |
),
|
| 363 |
return_dict_in_generate=True,
|
| 364 |
use_model_defaults=True,
|
|
|
|
| 386 |
model = AutoModelForCausalLM.from_pretrained(
|
| 387 |
'jinaai/jina-vlm-v1',
|
| 388 |
device_map='auto',
|
| 389 |
+
dtype=torch.bfloat16,
|
| 390 |
attn_implementation='flash_attention_2',
|
| 391 |
trust_remote_code=True
|
| 392 |
)
|
|
|
|
| 437 |
output = model.generate(
|
| 438 |
**model_inputs,
|
| 439 |
generation_config=GenerationConfig(
|
| 440 |
+
max_new_tokens=1024, do_sample=False,
|
| 441 |
),
|
| 442 |
return_dict_in_generate=True,
|
| 443 |
use_model_defaults=True,
|
|
|
|
| 464 |
model = AutoModelForCausalLM.from_pretrained(
|
| 465 |
'jinaai/jina-vlm-v1',
|
| 466 |
device_map='auto',
|
| 467 |
+
dtype=torch.bfloat16,
|
| 468 |
attn_implementation='flash_attention_2',
|
| 469 |
trust_remote_code=True
|
| 470 |
)
|
|
|
|
| 504 |
output = model.generate(
|
| 505 |
**model_inputs,
|
| 506 |
generation_config=GenerationConfig(
|
| 507 |
+
max_new_tokens=1024, do_sample=False,
|
| 508 |
),
|
| 509 |
return_dict_in_generate=True,
|
| 510 |
use_model_defaults=True,
|
|
|
|
| 531 |
model = AutoModelForCausalLM.from_pretrained(
|
| 532 |
'jinaai/jina-vlm-v1',
|
| 533 |
device_map='auto',
|
| 534 |
+
dtype=torch.bfloat16,
|
| 535 |
attn_implementation='flash_attention_2',
|
| 536 |
trust_remote_code=True
|
| 537 |
)
|
|
|
|
| 595 |
model = AutoModelForCausalLM.from_pretrained(
|
| 596 |
'jinaai/jina-vlm-v1',
|
| 597 |
device_map='auto',
|
| 598 |
+
dtype=torch.bfloat16,
|
| 599 |
attn_implementation='flash_attention_2',
|
| 600 |
trust_remote_code=True
|
| 601 |
)
|
|
|
|
| 697 |
model = AutoModel.from_pretrained(
|
| 698 |
'jinaai/jina-vlm-v1',
|
| 699 |
device_map='auto',
|
| 700 |
+
dtype=torch.bfloat16,
|
| 701 |
attn_implementation='flash_attention_2',
|
| 702 |
trust_remote_code=True
|
| 703 |
)
|
blocks_jvlm.py
CHANGED
|
@@ -1294,6 +1294,7 @@ class VisionLanguageConnector(GradientCheckpointingLayer):
|
|
| 1294 |
# image_features:
|
| 1295 |
# (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
| 1296 |
bs, ncrops = image_features.shape[:2]
|
|
|
|
| 1297 |
|
| 1298 |
if self.padding_embed_type is not None:
|
| 1299 |
assert image_masks is not None
|
|
@@ -1322,6 +1323,7 @@ class VisionLanguageConnector(GradientCheckpointingLayer):
|
|
| 1322 |
partial_pad, -1
|
| 1323 |
)
|
| 1324 |
|
|
|
|
| 1325 |
image_features = self.feature_dropout(image_features)
|
| 1326 |
image_features = image_features.reshape((bs, ncrops) + self.n_patches + (-1,))
|
| 1327 |
pad_h = self.n_patches[0] % self.pooling_h
|
|
|
|
| 1294 |
# image_features:
|
| 1295 |
# (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
| 1296 |
bs, ncrops = image_features.shape[:2]
|
| 1297 |
+
ogtype = image_features.dtype
|
| 1298 |
|
| 1299 |
if self.padding_embed_type is not None:
|
| 1300 |
assert image_masks is not None
|
|
|
|
| 1323 |
partial_pad, -1
|
| 1324 |
)
|
| 1325 |
|
| 1326 |
+
image_features = image_features.to(dtype=ogtype)
|
| 1327 |
image_features = self.feature_dropout(image_features)
|
| 1328 |
image_features = image_features.reshape((bs, ncrops) + self.n_patches + (-1,))
|
| 1329 |
pad_h = self.n_patches[0] % self.pooling_h
|
modeling_jvlm.py
CHANGED
|
@@ -388,6 +388,7 @@ class JinaVLMTextModel(JinaPreTrainedModel):
|
|
| 388 |
batch_idx = torch.arange(bs, device=x.device)
|
| 389 |
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
| 390 |
image_features = image_features.to(x.device)
|
|
|
|
| 391 |
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
|
| 392 |
|
| 393 |
if not self.rope:
|
|
|
|
| 388 |
batch_idx = torch.arange(bs, device=x.device)
|
| 389 |
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
|
| 390 |
image_features = image_features.to(x.device)
|
| 391 |
+
x = x.clone() # Clone x to avoid in-place operation on leaf tensor
|
| 392 |
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
|
| 393 |
|
| 394 |
if not self.rope:
|
test.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 3 |
+
|
| 4 |
+
processor = AutoProcessor.from_pretrained(
|
| 5 |
+
'jinaai/jina-vlm-v1', use_fast=False, trust_remote_code=True
|
| 6 |
+
)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
+
'jinaai/jina-vlm-v1',
|
| 9 |
+
device_map='auto',
|
| 10 |
+
torch_dtype=torch.bfloat16,
|
| 11 |
+
attn_implementation='flash_attention_2',
|
| 12 |
+
trust_remote_code=True
|
| 13 |
+
)
|
| 14 |
+
images = [
|
| 15 |
+
'https://picsum.photos/id/22/4434/3729',
|
| 16 |
+
'https://picsum.photos/id/49/1280/792'
|
| 17 |
+
]
|
| 18 |
+
conversations = [
|
| 19 |
+
[
|
| 20 |
+
{
|
| 21 |
+
'role': 'user',
|
| 22 |
+
'content': [
|
| 23 |
+
{'type': 'image', 'image': images[0]},
|
| 24 |
+
{'type': 'text', 'text': 'What is the man doing in this image?'},
|
| 25 |
+
],
|
| 26 |
+
}
|
| 27 |
+
],
|
| 28 |
+
[
|
| 29 |
+
{
|
| 30 |
+
'role': 'user',
|
| 31 |
+
'content': [
|
| 32 |
+
{'type': 'image', 'image': images[1]},
|
| 33 |
+
{'type': 'text', 'text': 'What country\'s flag is in this image?'},
|
| 34 |
+
],
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
|
| 38 |
+
]
|
| 39 |
+
texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
|
| 40 |
+
inputs = processor(
|
| 41 |
+
text=texts,
|
| 42 |
+
images=images,
|
| 43 |
+
padding='longest',
|
| 44 |
+
return_tensors='pt',
|
| 45 |
+
)
|
| 46 |
+
device = torch.device('cuda')
|
| 47 |
+
dtype = torch.bfloat16
|
| 48 |
+
model_inputs = {}
|
| 49 |
+
for k, v in inputs.items():
|
| 50 |
+
if isinstance(v, torch.Tensor):
|
| 51 |
+
if v.is_floating_point():
|
| 52 |
+
model_inputs[k] = v.to(device, dtype=dtype, non_blocking=True)
|
| 53 |
+
else:
|
| 54 |
+
model_inputs[k] = v.to(device, non_blocking=True)
|
| 55 |
+
else:
|
| 56 |
+
model_inputs[k] = v
|
| 57 |
+
|
| 58 |
+
output = model.generate(
|
| 59 |
+
**model_inputs,
|
| 60 |
+
generation_config=GenerationConfig(
|
| 61 |
+
max_new_tokens=1024, do_sample=False,
|
| 62 |
+
),
|
| 63 |
+
return_dict_in_generate=True,
|
| 64 |
+
use_model_defaults=True,
|
| 65 |
+
)
|
| 66 |
+
input_sequence_length = inputs.input_ids.shape[-1]
|
| 67 |
+
for idx in range(len(output.sequences)):
|
| 68 |
+
gen_ids = output.sequences[idx][input_sequence_length:]
|
| 69 |
+
response = processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
|
| 70 |
+
print(response)
|