Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
No rows found.

Signal Dataset Loader

This repository provides a small collection of synthetic and real signals—both 2D and 3D—used for compression, reconstruction.


Quick Start

All classes share the call signature

(dimension, length, bandlimit, seed, generate=True, super_resolution=False, sparse=False)
  • dimension – 2 or 3 (ignored when not applicable)
  • length – 1000
  • bandlimit – fractional control variable (0.1 – 0.9 in 0.1 increments for BandlimitedSignal, SparseSphereSignal, and Sierpinski; interpretation varies per class)
  • seed – ensures deterministic generation and consistent file paths (for BandlimitedSignal and SparseSphereSignal the repository ships five predefined seeds: 1234, 2024, 5678, 7890, 7618)
  • generateTrue = create new signal, False = load cached .npy
  • super_resolution / sparse – optional toggles (see catalog below)

Signal Catalog

Synthetic Signals (~1 M values each)

Class Dim Description
BandlimitedSignal 2D / 3D Uniform noise passed through a circular low‑pass filter; nine preset cut‑offs yield progressively higher spatial frequencies
SparseSphereSignal 2D / 3D Random circles/spheres occupying a fixed volume fraction; sphere radius inversely proportional to bandlimit
Sierpinski 2D Classic Sierpinski triangle rendered at depths 0 – 9, depth = int(bandlimit*10)−1
StarTarget 2D Star‑shaped resolution target with alternating wedges; default 40 solid wedges (80 spokes total)

Real‑World Signals

Class Notes
RealImage Ten DIV2K images (DIV2K/00xx{,x4}.png). super_resolution=False loads the bicubic ×4 LR image; True loads the HR counterpart
Voxel_Fitting Stanford Dragon voxel grid. sparse=True keeps only surface voxels; False loads full occupancy. super_resolution picks a higher‑res scan
CTImage Single axial chest CT slice (chest.png), loaded as grayscale float32

Adding Your Own Signal

  1. Subclass the same pattern and expose a self.signal NumPy array.
  2. Save deterministic outputs to <ClassName>/<seed>/ so they can be re‑loaded with generate=False.
  3. Keep the in‑memory footprint under ~1 M elements for apples‑to‑apples comparisons.

Citation & Licensing

If you use this loader in academic or industrial work, please cite:

@article{kim2025grids,
  title   = {Grids Often Outperform Implicit Neural Representations},
  author  = {Kim, Namhoon and Fridovich-Keil, Sara},
  journal = {arXiv preprint arXiv:2506.11139},
  year    = {2025}
}

Code and synthetic assets are released under the Creative Commons CC‑BY‑4.0 license. Real images remain subject to the terms of their original datasets (e.g., DIV2K).

Downloads last month
350

Paper for etoilekim/INR-benchmark