Datasets:
The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.
MuJoCo SOTA Benchmark
Standard MuJoCo continuous control benchmarks from Gymnasium used to evaluate reinforcement learning algorithms.
Benchmark Environments
| Environment | Obs Dim | Act Dim | CleanRL SOTA | ParamTatva Best |
|---|---|---|---|---|
| Hopper-v5 | 11 | 3 | 2,382 +/- 271 | 3,183.2 (134%) |
| Walker2d-v5 | 17 | 6 | ~4,000 | 4,918.5 (123%) |
| HalfCheetah-v5 | 17 | 6 | ~6,000 | 5,803.9 (97%) |
| Reacher-v5 | 8 | 2 | ~-4 | -4.2 (~100%) |
| Ant-v5 | 27 | 8 | ~5,000 | 886.6 (training) |
| Humanoid-v5 | 348 | 17 | ~5,000 | 573.8 (training) |
How to Evaluate
pip install torch gymnasium[mujoco]
import torch
import gymnasium as gym
# Load checkpoint
checkpoint = torch.load("hopper_v5_sota.pt")
agent = Agent(obs_dim=11, act_dim=3)
agent.load_state_dict(checkpoint["model_state_dict"])
# Evaluate
env = gym.make("Hopper-v5")
returns = []
for ep in range(100):
obs, _ = env.reset()
total = 0
done = False
while not done:
action = agent.get_action(torch.FloatTensor(obs))
obs, reward, term, trunc, _ = env.step(action.detach().numpy())
total += reward
done = term or trunc
returns.append(total)
print(f"Mean: {sum(returns)/len(returns):.1f}")
Reference
- Model: ParamTatva/sanskrit-ppo-hopper-v5
- Blog: The 371 Wall
- CleanRL Baselines: vwxyzjn/cleanrl
License
Apache 2.0
ParamTatva.org 2026
- Downloads last month
- -