The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.

MuJoCo SOTA Benchmark

Standard MuJoCo continuous control benchmarks from Gymnasium used to evaluate reinforcement learning algorithms.

Benchmark Environments

Environment Obs Dim Act Dim CleanRL SOTA ParamTatva Best
Hopper-v5 11 3 2,382 +/- 271 3,183.2 (134%)
Walker2d-v5 17 6 ~4,000 4,918.5 (123%)
HalfCheetah-v5 17 6 ~6,000 5,803.9 (97%)
Reacher-v5 8 2 ~-4 -4.2 (~100%)
Ant-v5 27 8 ~5,000 886.6 (training)
Humanoid-v5 348 17 ~5,000 573.8 (training)

How to Evaluate

pip install torch gymnasium[mujoco]
import torch
import gymnasium as gym

# Load checkpoint
checkpoint = torch.load("hopper_v5_sota.pt")
agent = Agent(obs_dim=11, act_dim=3)
agent.load_state_dict(checkpoint["model_state_dict"])

# Evaluate
env = gym.make("Hopper-v5")
returns = []
for ep in range(100):
    obs, _ = env.reset()
    total = 0
    done = False
    while not done:
        action = agent.get_action(torch.FloatTensor(obs))
        obs, reward, term, trunc, _ = env.step(action.detach().numpy())
        total += reward
        done = term or trunc
    returns.append(total)

print(f"Mean: {sum(returns)/len(returns):.1f}")

Reference

License

Apache 2.0

ParamTatva.org 2026

Downloads last month
-