f06174b8b83d892cad19bfd9c4064d83
This model is a fine-tuned version of albert/albert-base-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2798
- Data Size: 1.0
- Epoch Runtime: 372.7546
- Accuracy: 0.8976
- F1 Macro: 0.8905
- Rouge1: 0.8976
- Rouge2: 0.0
- Rougel: 0.8976
- Rougelsum: 0.8976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7234 | 0 | 14.0293 | 0.3860 | 0.3075 | 0.3862 | 0.0 | 0.3860 | 0.3862 |
| 0.578 | 1 | 11370 | 0.4660 | 0.0078 | 18.0289 | 0.7744 | 0.7598 | 0.7744 | 0.0 | 0.7744 | 0.7743 |
| 0.4441 | 2 | 22740 | 0.4300 | 0.0156 | 19.3506 | 0.7981 | 0.7787 | 0.7980 | 0.0 | 0.7980 | 0.7981 |
| 0.4302 | 3 | 34110 | 0.4161 | 0.0312 | 24.6922 | 0.8020 | 0.7746 | 0.8020 | 0.0 | 0.8020 | 0.8020 |
| 0.372 | 4 | 45480 | 0.3825 | 0.0625 | 36.2419 | 0.8296 | 0.8149 | 0.8295 | 0.0 | 0.8295 | 0.8297 |
| 0.3646 | 5 | 56850 | 0.3344 | 0.125 | 58.1879 | 0.8482 | 0.8374 | 0.8483 | 0.0 | 0.8481 | 0.8483 |
| 0.3284 | 6 | 68220 | 0.3172 | 0.25 | 103.0408 | 0.8592 | 0.8508 | 0.8591 | 0.0 | 0.8592 | 0.8592 |
| 0.2833 | 7 | 79590 | 0.2920 | 0.5 | 193.8019 | 0.8702 | 0.8635 | 0.8702 | 0.0 | 0.8702 | 0.8701 |
| 0.2889 | 8.0 | 90960 | 0.2779 | 1.0 | 372.6897 | 0.8778 | 0.8673 | 0.8778 | 0.0 | 0.8778 | 0.8778 |
| 0.242 | 9.0 | 102330 | 0.2661 | 1.0 | 369.8296 | 0.8847 | 0.8782 | 0.8846 | 0.0 | 0.8847 | 0.8848 |
| 0.2001 | 10.0 | 113700 | 0.2843 | 1.0 | 369.6368 | 0.8890 | 0.8808 | 0.8889 | 0.0 | 0.8891 | 0.8891 |
| 0.1826 | 11.0 | 125070 | 0.2967 | 1.0 | 377.0188 | 0.8941 | 0.8872 | 0.8942 | 0.0 | 0.8941 | 0.8941 |
| 0.1554 | 12.0 | 136440 | 0.2850 | 1.0 | 372.0233 | 0.8962 | 0.8889 | 0.8962 | 0.0 | 0.8963 | 0.8962 |
| 0.1705 | 13.0 | 147810 | 0.2798 | 1.0 | 372.7546 | 0.8976 | 0.8905 | 0.8976 | 0.0 | 0.8976 | 0.8976 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for contemmcm/f06174b8b83d892cad19bfd9c4064d83
Base model
albert/albert-base-v1