AdaFortiTran: An Adaptive Transformer Model for Robust OFDM Channel Estimation
Paper
โข
2505.09076
โข
Published
AdaFortiTran is a novel adaptive transformer-based model for OFDM channel estimation that dynamically adapts to varying channel conditions (SNR, delay spread, Doppler shift). The model combines the power of transformer architectures with channel-aware adaptation mechanisms to achieve robust performance across diverse wireless environments.
The project implements three model variants:
pip install -r requirements.txt
python src/main.py --model_name adafortitran --system_config_path config/system_config.yaml --model_config_path config/adafortitran.yaml --train_set data/train --val_set data/val --test_set data/test --exp_id my_experiment
If you use this model in your research, please cite:
@misc{guler2025adafortitranadaptivetransformermodel,
title={AdaFortiTran: An Adaptive Transformer Model for Robust OFDM Channel Estimation},
author={Berkay Guler and Hamid Jafarkhani},
year={2025},
eprint={2505.09076},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2505.09076},
}
This project is licensed under the MIT License - see the LICENSE file for details.