QuantumLimitGraph-v2 / multilingual_quantum_processor.py
Nurcholish's picture
Upload 13 files
b793755 verified
# -*- coding: utf-8 -*-
"""
Multilingual Quantum Processor for Enhanced Language Support
Specialized quantum processing for Indonesian, Arabic, Spanish, English, and Chinese
with language-specific semantic and cultural encoding.
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import logging
from qiskit import QuantumCircuit, QuantumRegister
from qiskit_aer import AerSimulator
import re
logger = logging.getLogger(__name__)
class MultilingualQuantumProcessor:
"""
Enhanced multilingual quantum processor with specialized handling
for Indonesian, Arabic, Spanish, English, and Chinese languages.
"""
def __init__(self, max_qubits: int = 24):
"""Initialize multilingual quantum processor."""
self.max_qubits = max_qubits
self.simulator = AerSimulator()
# Language-specific configurations
self.language_configs = {
'indonesian': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'agglutinative': True,
'cultural_weight': 0.8,
'quantum_phase': np.pi/6,
'entanglement_pattern': 'community_based'
},
'arabic': {
'script': 'arabic',
'direction': 'rtl',
'tonal': False,
'semitic': True,
'cultural_weight': 0.9,
'quantum_phase': np.pi/4,
'entanglement_pattern': 'hierarchical_honor'
},
'spanish': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'romance': True,
'cultural_weight': 0.7,
'quantum_phase': np.pi/3,
'entanglement_pattern': 'family_centered'
},
'english': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'germanic': True,
'cultural_weight': 0.6,
'quantum_phase': np.pi/2,
'entanglement_pattern': 'individualistic'
},
'chinese': {
'script': 'hanzi',
'direction': 'ltr',
'tonal': True,
'logographic': True,
'cultural_weight': 0.95,
'quantum_phase': np.pi/5,
'entanglement_pattern': 'hierarchical_harmony'
}
}
# Cultural dimension quantum encodings
self.cultural_quantum_encodings = {
'collectivism': {'indonesian': 0.8, 'arabic': 0.7, 'spanish': 0.6, 'english': 0.2, 'chinese': 0.9},
'hierarchy': {'indonesian': 0.7, 'arabic': 0.8, 'spanish': 0.6, 'english': 0.4, 'chinese': 0.9},
'context_dependency': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.7, 'english': 0.5, 'chinese': 0.9},
'harmony_orientation': {'indonesian': 0.8, 'arabic': 0.6, 'spanish': 0.7, 'english': 0.4, 'chinese': 0.9},
'time_orientation': {'indonesian': 0.6, 'arabic': 0.7, 'spanish': 0.5, 'english': 0.8, 'chinese': 0.9},
'relationship_focus': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.8, 'english': 0.5, 'chinese': 0.9}
}
logger.info("Initialized MultilingualQuantumProcessor with 5-language support")
def detect_language_features(self, text: str, language: str) -> Dict[str, Any]:
"""
Detect and encode language-specific features for quantum processing.
Args:
text: Input text
language: Language identifier
Returns:
Language feature encoding
"""
config = self.language_configs.get(language, self.language_configs['english'])
features = {
'language': language,
'script_type': config['script'],
'text_direction': config['direction'],
'is_tonal': config['tonal'],
'cultural_weight': config['cultural_weight']
}
# Language-specific feature detection
if language == 'chinese':
features.update(self._analyze_chinese_features(text))
elif language == 'arabic':
features.update(self._analyze_arabic_features(text))
elif language == 'indonesian':
features.update(self._analyze_indonesian_features(text))
elif language == 'spanish':
features.update(self._analyze_spanish_features(text))
elif language == 'english':
features.update(self._analyze_english_features(text))
return features
def _analyze_chinese_features(self, text: str) -> Dict[str, Any]:
"""Analyze Chinese-specific linguistic features."""
features = {
'character_count': len([c for c in text if '\u4e00' <= c <= '\u9fff']),
'tone_complexity': 0.9, # High tonal complexity
'logographic_density': len(text) / max(len(text.split()), 1),
'cultural_concepts': self._detect_chinese_cultural_concepts(text),
'harmony_indicators': self._detect_harmony_concepts(text, 'chinese'),
'hierarchy_markers': self._detect_hierarchy_markers(text, 'chinese')
}
return features
def _analyze_arabic_features(self, text: str) -> Dict[str, Any]:
"""Analyze Arabic-specific linguistic features."""
features = {
'arabic_chars': len([c for c in text if '\u0600' <= c <= '\u06ff']),
'rtl_complexity': 0.8,
'semitic_patterns': self._detect_semitic_patterns(text),
'honor_concepts': self._detect_honor_concepts(text),
'family_references': self._detect_family_concepts(text, 'arabic'),
'religious_context': self._detect_religious_context(text)
}
return features
def _analyze_indonesian_features(self, text: str) -> Dict[str, Any]:
"""Analyze Indonesian-specific linguistic features."""
features = {
'agglutination_level': self._measure_agglutination(text),
'community_focus': self._detect_community_concepts(text),
'respect_markers': self._detect_respect_markers(text, 'indonesian'),
'harmony_emphasis': self._detect_harmony_concepts(text, 'indonesian'),
'collective_pronouns': self._count_collective_pronouns(text, 'indonesian')
}
return features
def _analyze_spanish_features(self, text: str) -> Dict[str, Any]:
"""Analyze Spanish-specific linguistic features."""
features = {
'romance_patterns': self._detect_romance_patterns(text),
'family_centrality': self._detect_family_concepts(text, 'spanish'),
'emotional_expression': self._measure_emotional_expression(text),
'formality_level': self._detect_formality_level(text, 'spanish'),
'regional_variations': self._detect_regional_markers(text)
}
return features
def _analyze_english_features(self, text: str) -> Dict[str, Any]:
"""Analyze English-specific linguistic features."""
features = {
'germanic_base': self._detect_germanic_patterns(text),
'directness_level': self._measure_directness(text),
'individual_focus': self._detect_individual_concepts(text),
'efficiency_markers': self._detect_efficiency_concepts(text),
'innovation_language': self._detect_innovation_concepts(text)
}
return features
def create_multilingual_quantum_circuit(self, texts: Dict[str, str]) -> QuantumCircuit:
"""
Create quantum circuit encoding multiple languages simultaneously.
Args:
texts: Dictionary of language -> text mappings
Returns:
Quantum circuit with multilingual encoding
"""
num_languages = len(texts)
qubits_per_lang = self.max_qubits // num_languages
qreg = QuantumRegister(self.max_qubits, 'multilingual')
circuit = QuantumCircuit(qreg)
# Initialize superposition for all languages
for i in range(self.max_qubits):
circuit.h(qreg[i])
qubit_offset = 0
for language, text in texts.items():
if qubit_offset + qubits_per_lang > self.max_qubits:
break
# Get language features
features = self.detect_language_features(text, language)
config = self.language_configs[language]
# Encode language-specific quantum state
for i in range(qubits_per_lang):
qubit_idx = qubit_offset + i
# Base language phase
circuit.rz(config['quantum_phase'], qreg[qubit_idx])
# Cultural weight encoding
cultural_angle = features['cultural_weight'] * np.pi
circuit.ry(cultural_angle, qreg[qubit_idx])
# Feature-specific encoding
if language == 'chinese':
# Encode tonal and logographic features
tone_angle = features.get('tone_complexity', 0) * np.pi / 4
circuit.rz(tone_angle, qreg[qubit_idx])
elif language == 'arabic':
# Encode RTL and semitic features
rtl_angle = features.get('rtl_complexity', 0) * np.pi / 3
circuit.ry(rtl_angle, qreg[qubit_idx])
# Create language-specific entanglement patterns
self._apply_entanglement_pattern(circuit, qreg, qubit_offset, qubits_per_lang,
config['entanglement_pattern'])
qubit_offset += qubits_per_lang
# Cross-language entanglement for cultural alignment
self._create_cross_language_entanglement(circuit, qreg, texts)
logger.info(f"Created multilingual quantum circuit for {len(texts)} languages")
return circuit
def _apply_entanglement_pattern(self, circuit: QuantumCircuit, qreg: QuantumRegister,
offset: int, length: int, pattern: str):
"""Apply language-specific entanglement patterns."""
if pattern == 'community_based':
# Indonesian: Community-focused circular entanglement
for i in range(length - 1):
circuit.cx(qreg[offset + i], qreg[offset + i + 1])
if length > 2:
circuit.cx(qreg[offset + length - 1], qreg[offset])
elif pattern == 'hierarchical_honor':
# Arabic: Honor-based hierarchical entanglement
for level in range(int(np.log2(length)) + 1):
for i in range(0, length, 2**(level+1)):
if offset + i + 2**level < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + 2**level])
elif pattern == 'family_centered':
# Spanish: Family-centered star pattern
center = offset + length // 2
for i in range(length):
if offset + i != center:
circuit.cx(qreg[center], qreg[offset + i])
elif pattern == 'individualistic':
# English: Individual-focused minimal entanglement
for i in range(0, length - 1, 2):
if offset + i + 1 < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + 1])
elif pattern == 'hierarchical_harmony':
# Chinese: Hierarchical harmony with balanced structure
# Create balanced tree structure
for level in range(int(np.log2(length))):
step = 2**(level + 1)
for i in range(0, length, step):
if offset + i + step//2 < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + step//2])
def _create_cross_language_entanglement(self, circuit: QuantumCircuit,
qreg: QuantumRegister, texts: Dict[str, str]):
"""Create entanglement between different languages based on cultural similarity."""
languages = list(texts.keys())
qubits_per_lang = self.max_qubits // len(languages)
# Calculate cultural similarity and create proportional entanglement
for i, lang1 in enumerate(languages):
for j, lang2 in enumerate(languages[i+1:], i+1):
similarity = self._calculate_cultural_similarity(lang1, lang2)
if similarity > 0.5: # Only entangle culturally similar languages
# Entangle representative qubits
qubit1 = i * qubits_per_lang
qubit2 = j * qubits_per_lang
if qubit1 < self.max_qubits and qubit2 < self.max_qubits:
circuit.cx(qreg[qubit1], qreg[qubit2])
# Add phase based on similarity strength
phase = similarity * np.pi / 2
circuit.rz(phase, qreg[qubit1])
circuit.rz(phase, qreg[qubit2])
def _calculate_cultural_similarity(self, lang1: str, lang2: str) -> float:
"""Calculate cultural similarity between two languages."""
if lang1 not in self.cultural_quantum_encodings['collectivism']:
return 0.0
if lang2 not in self.cultural_quantum_encodings['collectivism']:
return 0.0
similarities = []
for dimension, values in self.cultural_quantum_encodings.items():
val1 = values[lang1]
val2 = values[lang2]
similarity = 1.0 - abs(val1 - val2)
similarities.append(similarity)
return np.mean(similarities)
# Helper methods for feature detection
def _detect_chinese_cultural_concepts(self, text: str) -> int:
"""Detect Chinese cultural concepts in text."""
concepts = ['和谐', '面子', '关系', '孝顺', '中庸', '礼', '仁', '义']
return sum(1 for concept in concepts if concept in text)
def _detect_harmony_concepts(self, text: str, language: str) -> int:
"""Detect harmony-related concepts."""
harmony_words = {
'chinese': ['和谐', '平衡', '协调'],
'indonesian': ['harmoni', 'keseimbangan', 'rukun'],
'arabic': ['انسجام', 'توازن', 'وئام'],
'spanish': ['armonía', 'equilibrio', 'concordia'],
'english': ['harmony', 'balance', 'peace']
}
words = harmony_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_hierarchy_markers(self, text: str, language: str) -> int:
"""Detect hierarchical markers in text."""
hierarchy_words = {
'chinese': ['上级', '下级', '领导', '权威'],
'arabic': ['رئيس', 'مرؤوس', 'سلطة', 'قائد'],
'indonesian': ['atasan', 'bawahan', 'pemimpin', 'otoritas'],
'spanish': ['jefe', 'subordinado', 'líder', 'autoridad'],
'english': ['boss', 'subordinate', 'leader', 'authority']
}
words = hierarchy_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_semitic_patterns(self, text: str) -> float:
"""Detect Semitic language patterns in Arabic text."""
# Simplified pattern detection
arabic_pattern_count = len(re.findall(r'[\u0600-\u06ff]{3,}', text))
return min(1.0, arabic_pattern_count / max(len(text.split()), 1))
def _detect_honor_concepts(self, text: str) -> int:
"""Detect honor-related concepts in Arabic text."""
honor_words = ['شرف', 'كرامة', 'عزة', 'مروءة']
return sum(1 for word in honor_words if word in text)
def _detect_family_concepts(self, text: str, language: str) -> int:
"""Detect family-related concepts."""
family_words = {
'arabic': ['عائلة', 'أسرة', 'أهل', 'قبيلة'],
'spanish': ['familia', 'parientes', 'hogar', 'clan'],
'indonesian': ['keluarga', 'sanak', 'rumah', 'klan'],
'english': ['family', 'relatives', 'home', 'clan'],
'chinese': ['家庭', '家族', '亲戚', '家']
}
words = family_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_religious_context(self, text: str) -> int:
"""Detect religious context in Arabic text."""
religious_words = ['الله', 'إسلام', 'مسجد', 'صلاة', 'قرآن']
return sum(1 for word in religious_words if word in text)
def _measure_agglutination(self, text: str) -> float:
"""Measure agglutination level in Indonesian text."""
words = text.split()
long_words = [w for w in words if len(w) > 8]
return len(long_words) / max(len(words), 1)
def _detect_community_concepts(self, text: str) -> int:
"""Detect community concepts in Indonesian text."""
community_words = ['masyarakat', 'komunitas', 'gotong-royong', 'bersama']
return sum(1 for word in community_words if word.lower() in text.lower())
def _detect_respect_markers(self, text: str, language: str) -> int:
"""Detect respect markers."""
respect_words = {
'indonesian': ['hormat', 'sopan', 'santun', 'menghargai'],
'chinese': ['尊重', '礼貌', '敬意', '客气'],
'arabic': ['احترام', 'أدب', 'تقدير', 'وقار'],
'spanish': ['respeto', 'cortesía', 'educación', 'consideración'],
'english': ['respect', 'courtesy', 'politeness', 'consideration']
}
words = respect_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _count_collective_pronouns(self, text: str, language: str) -> int:
"""Count collective pronouns."""
collective_pronouns = {
'indonesian': ['kita', 'kami', 'kita semua'],
'chinese': ['我们', '咱们', '大家'],
'arabic': ['نحن', 'إيانا', 'جميعنا'],
'spanish': ['nosotros', 'nosotras', 'todos'],
'english': ['we', 'us', 'everyone', 'all of us']
}
pronouns = collective_pronouns.get(language, [])
return sum(1 for pronoun in pronouns if pronoun.lower() in text.lower())
def _detect_romance_patterns(self, text: str) -> float:
"""Detect Romance language patterns in Spanish."""
# Simplified pattern detection for Spanish
spanish_endings = ['ción', 'sión', 'dad', 'tad', 'mente']
pattern_count = sum(1 for ending in spanish_endings
if any(word.endswith(ending) for word in text.split()))
return min(1.0, pattern_count / max(len(text.split()), 1))
def _measure_emotional_expression(self, text: str) -> float:
"""Measure emotional expression level."""
emotional_markers = ['!', '¡', '¿', '?', 'muy', 'mucho', 'tanto']
count = sum(text.count(marker) for marker in emotional_markers)
return min(1.0, count / max(len(text), 1))
def _detect_formality_level(self, text: str, language: str) -> float:
"""Detect formality level in text."""
formal_words = {
'spanish': ['usted', 'señor', 'señora', 'estimado'],
'english': ['sir', 'madam', 'dear', 'respectfully'],
'chinese': ['您', '先生', '女士', '敬爱的'],
'arabic': ['سيد', 'سيدة', 'محترم', 'مقدر'],
'indonesian': ['bapak', 'ibu', 'saudara', 'terhormat']
}
words = formal_words.get(language, [])
count = sum(1 for word in words if word.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _detect_regional_markers(self, text: str) -> int:
"""Detect regional variation markers in Spanish."""
regional_words = ['vos', 'che', 'güey', 'pibe', 'chamo']
return sum(1 for word in regional_words if word.lower() in text.lower())
def _detect_germanic_patterns(self, text: str) -> float:
"""Detect Germanic patterns in English."""
germanic_words = ['the', 'and', 'of', 'to', 'in', 'that', 'have', 'it']
count = sum(1 for word in germanic_words if word.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _measure_directness(self, text: str) -> float:
"""Measure directness level in English."""
direct_markers = ['must', 'should', 'will', 'need to', 'have to']
count = sum(1 for marker in direct_markers if marker.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _detect_individual_concepts(self, text: str) -> int:
"""Detect individualistic concepts."""
individual_words = ['i', 'me', 'my', 'myself', 'personal', 'individual']
return sum(1 for word in individual_words if word.lower() in text.lower())
def _detect_efficiency_concepts(self, text: str) -> int:
"""Detect efficiency-related concepts."""
efficiency_words = ['efficient', 'fast', 'quick', 'optimize', 'streamline']
return sum(1 for word in efficiency_words if word.lower() in text.lower())
def _detect_innovation_concepts(self, text: str) -> int:
"""Detect innovation-related concepts."""
innovation_words = ['new', 'innovative', 'creative', 'breakthrough', 'novel']
return sum(1 for word in innovation_words if word.lower() in text.lower())
def get_multilingual_metrics(self) -> Dict[str, Any]:
"""Get comprehensive metrics for multilingual processing."""
return {
'supported_languages': list(self.language_configs.keys()),
'cultural_dimensions': list(self.cultural_quantum_encodings.keys()),
'max_qubits': self.max_qubits,
'quantum_advantage_factor': len(self.language_configs) ** 2,
'cross_cultural_mappings': len(self.language_configs) * (len(self.language_configs) - 1) // 2
}