File size: 23,267 Bytes
b793755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# -*- coding: utf-8 -*-
"""

Multilingual Quantum Processor for Enhanced Language Support



Specialized quantum processing for Indonesian, Arabic, Spanish, English, and Chinese

with language-specific semantic and cultural encoding.

"""

import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import logging
from qiskit import QuantumCircuit, QuantumRegister
from qiskit_aer import AerSimulator
import re

logger = logging.getLogger(__name__)

class MultilingualQuantumProcessor:
    """

    Enhanced multilingual quantum processor with specialized handling

    for Indonesian, Arabic, Spanish, English, and Chinese languages.

    """
    
    def __init__(self, max_qubits: int = 24):
        """Initialize multilingual quantum processor."""
        self.max_qubits = max_qubits
        self.simulator = AerSimulator()
        
        # Language-specific configurations
        self.language_configs = {
            'indonesian': {
                'script': 'latin',
                'direction': 'ltr',
                'tonal': False,
                'agglutinative': True,
                'cultural_weight': 0.8,
                'quantum_phase': np.pi/6,
                'entanglement_pattern': 'community_based'
            },
            'arabic': {
                'script': 'arabic',
                'direction': 'rtl',
                'tonal': False,
                'semitic': True,
                'cultural_weight': 0.9,
                'quantum_phase': np.pi/4,
                'entanglement_pattern': 'hierarchical_honor'
            },
            'spanish': {
                'script': 'latin',
                'direction': 'ltr',
                'tonal': False,
                'romance': True,
                'cultural_weight': 0.7,
                'quantum_phase': np.pi/3,
                'entanglement_pattern': 'family_centered'
            },
            'english': {
                'script': 'latin',
                'direction': 'ltr',
                'tonal': False,
                'germanic': True,
                'cultural_weight': 0.6,
                'quantum_phase': np.pi/2,
                'entanglement_pattern': 'individualistic'
            },
            'chinese': {
                'script': 'hanzi',
                'direction': 'ltr',
                'tonal': True,
                'logographic': True,
                'cultural_weight': 0.95,
                'quantum_phase': np.pi/5,
                'entanglement_pattern': 'hierarchical_harmony'
            }
        }
        
        # Cultural dimension quantum encodings
        self.cultural_quantum_encodings = {
            'collectivism': {'indonesian': 0.8, 'arabic': 0.7, 'spanish': 0.6, 'english': 0.2, 'chinese': 0.9},
            'hierarchy': {'indonesian': 0.7, 'arabic': 0.8, 'spanish': 0.6, 'english': 0.4, 'chinese': 0.9},
            'context_dependency': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.7, 'english': 0.5, 'chinese': 0.9},
            'harmony_orientation': {'indonesian': 0.8, 'arabic': 0.6, 'spanish': 0.7, 'english': 0.4, 'chinese': 0.9},
            'time_orientation': {'indonesian': 0.6, 'arabic': 0.7, 'spanish': 0.5, 'english': 0.8, 'chinese': 0.9},
            'relationship_focus': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.8, 'english': 0.5, 'chinese': 0.9}
        }
        
        logger.info("Initialized MultilingualQuantumProcessor with 5-language support")
    
    def detect_language_features(self, text: str, language: str) -> Dict[str, Any]:
        """

        Detect and encode language-specific features for quantum processing.

        

        Args:

            text: Input text

            language: Language identifier

            

        Returns:

            Language feature encoding

        """
        config = self.language_configs.get(language, self.language_configs['english'])
        features = {
            'language': language,
            'script_type': config['script'],
            'text_direction': config['direction'],
            'is_tonal': config['tonal'],
            'cultural_weight': config['cultural_weight']
        }
        
        # Language-specific feature detection
        if language == 'chinese':
            features.update(self._analyze_chinese_features(text))
        elif language == 'arabic':
            features.update(self._analyze_arabic_features(text))
        elif language == 'indonesian':
            features.update(self._analyze_indonesian_features(text))
        elif language == 'spanish':
            features.update(self._analyze_spanish_features(text))
        elif language == 'english':
            features.update(self._analyze_english_features(text))
        
        return features
    
    def _analyze_chinese_features(self, text: str) -> Dict[str, Any]:
        """Analyze Chinese-specific linguistic features."""
        features = {
            'character_count': len([c for c in text if '\u4e00' <= c <= '\u9fff']),
            'tone_complexity': 0.9,  # High tonal complexity
            'logographic_density': len(text) / max(len(text.split()), 1),
            'cultural_concepts': self._detect_chinese_cultural_concepts(text),
            'harmony_indicators': self._detect_harmony_concepts(text, 'chinese'),
            'hierarchy_markers': self._detect_hierarchy_markers(text, 'chinese')
        }
        return features
    
    def _analyze_arabic_features(self, text: str) -> Dict[str, Any]:
        """Analyze Arabic-specific linguistic features."""
        features = {
            'arabic_chars': len([c for c in text if '\u0600' <= c <= '\u06ff']),
            'rtl_complexity': 0.8,
            'semitic_patterns': self._detect_semitic_patterns(text),
            'honor_concepts': self._detect_honor_concepts(text),
            'family_references': self._detect_family_concepts(text, 'arabic'),
            'religious_context': self._detect_religious_context(text)
        }
        return features
    
    def _analyze_indonesian_features(self, text: str) -> Dict[str, Any]:
        """Analyze Indonesian-specific linguistic features."""
        features = {
            'agglutination_level': self._measure_agglutination(text),
            'community_focus': self._detect_community_concepts(text),
            'respect_markers': self._detect_respect_markers(text, 'indonesian'),
            'harmony_emphasis': self._detect_harmony_concepts(text, 'indonesian'),
            'collective_pronouns': self._count_collective_pronouns(text, 'indonesian')
        }
        return features
    
    def _analyze_spanish_features(self, text: str) -> Dict[str, Any]:
        """Analyze Spanish-specific linguistic features."""
        features = {
            'romance_patterns': self._detect_romance_patterns(text),
            'family_centrality': self._detect_family_concepts(text, 'spanish'),
            'emotional_expression': self._measure_emotional_expression(text),
            'formality_level': self._detect_formality_level(text, 'spanish'),
            'regional_variations': self._detect_regional_markers(text)
        }
        return features
    
    def _analyze_english_features(self, text: str) -> Dict[str, Any]:
        """Analyze English-specific linguistic features."""
        features = {
            'germanic_base': self._detect_germanic_patterns(text),
            'directness_level': self._measure_directness(text),
            'individual_focus': self._detect_individual_concepts(text),
            'efficiency_markers': self._detect_efficiency_concepts(text),
            'innovation_language': self._detect_innovation_concepts(text)
        }
        return features
    
    def create_multilingual_quantum_circuit(self, texts: Dict[str, str]) -> QuantumCircuit:
        """

        Create quantum circuit encoding multiple languages simultaneously.

        

        Args:

            texts: Dictionary of language -> text mappings

            

        Returns:

            Quantum circuit with multilingual encoding

        """
        num_languages = len(texts)
        qubits_per_lang = self.max_qubits // num_languages
        
        qreg = QuantumRegister(self.max_qubits, 'multilingual')
        circuit = QuantumCircuit(qreg)
        
        # Initialize superposition for all languages
        for i in range(self.max_qubits):
            circuit.h(qreg[i])
        
        qubit_offset = 0
        for language, text in texts.items():
            if qubit_offset + qubits_per_lang > self.max_qubits:
                break
                
            # Get language features
            features = self.detect_language_features(text, language)
            config = self.language_configs[language]
            
            # Encode language-specific quantum state
            for i in range(qubits_per_lang):
                qubit_idx = qubit_offset + i
                
                # Base language phase
                circuit.rz(config['quantum_phase'], qreg[qubit_idx])
                
                # Cultural weight encoding
                cultural_angle = features['cultural_weight'] * np.pi
                circuit.ry(cultural_angle, qreg[qubit_idx])
                
                # Feature-specific encoding
                if language == 'chinese':
                    # Encode tonal and logographic features
                    tone_angle = features.get('tone_complexity', 0) * np.pi / 4
                    circuit.rz(tone_angle, qreg[qubit_idx])
                elif language == 'arabic':
                    # Encode RTL and semitic features
                    rtl_angle = features.get('rtl_complexity', 0) * np.pi / 3
                    circuit.ry(rtl_angle, qreg[qubit_idx])
            
            # Create language-specific entanglement patterns
            self._apply_entanglement_pattern(circuit, qreg, qubit_offset, qubits_per_lang, 
                                           config['entanglement_pattern'])
            
            qubit_offset += qubits_per_lang
        
        # Cross-language entanglement for cultural alignment
        self._create_cross_language_entanglement(circuit, qreg, texts)
        
        logger.info(f"Created multilingual quantum circuit for {len(texts)} languages")
        return circuit
    
    def _apply_entanglement_pattern(self, circuit: QuantumCircuit, qreg: QuantumRegister,

                                  offset: int, length: int, pattern: str):
        """Apply language-specific entanglement patterns."""
        if pattern == 'community_based':
            # Indonesian: Community-focused circular entanglement
            for i in range(length - 1):
                circuit.cx(qreg[offset + i], qreg[offset + i + 1])
            if length > 2:
                circuit.cx(qreg[offset + length - 1], qreg[offset])
                
        elif pattern == 'hierarchical_honor':
            # Arabic: Honor-based hierarchical entanglement
            for level in range(int(np.log2(length)) + 1):
                for i in range(0, length, 2**(level+1)):
                    if offset + i + 2**level < offset + length:
                        circuit.cx(qreg[offset + i], qreg[offset + i + 2**level])
                        
        elif pattern == 'family_centered':
            # Spanish: Family-centered star pattern
            center = offset + length // 2
            for i in range(length):
                if offset + i != center:
                    circuit.cx(qreg[center], qreg[offset + i])
                    
        elif pattern == 'individualistic':
            # English: Individual-focused minimal entanglement
            for i in range(0, length - 1, 2):
                if offset + i + 1 < offset + length:
                    circuit.cx(qreg[offset + i], qreg[offset + i + 1])
                    
        elif pattern == 'hierarchical_harmony':
            # Chinese: Hierarchical harmony with balanced structure
            # Create balanced tree structure
            for level in range(int(np.log2(length))):
                step = 2**(level + 1)
                for i in range(0, length, step):
                    if offset + i + step//2 < offset + length:
                        circuit.cx(qreg[offset + i], qreg[offset + i + step//2])
    
    def _create_cross_language_entanglement(self, circuit: QuantumCircuit, 

                                          qreg: QuantumRegister, texts: Dict[str, str]):
        """Create entanglement between different languages based on cultural similarity."""
        languages = list(texts.keys())
        qubits_per_lang = self.max_qubits // len(languages)
        
        # Calculate cultural similarity and create proportional entanglement
        for i, lang1 in enumerate(languages):
            for j, lang2 in enumerate(languages[i+1:], i+1):
                similarity = self._calculate_cultural_similarity(lang1, lang2)
                
                if similarity > 0.5:  # Only entangle culturally similar languages
                    # Entangle representative qubits
                    qubit1 = i * qubits_per_lang
                    qubit2 = j * qubits_per_lang
                    
                    if qubit1 < self.max_qubits and qubit2 < self.max_qubits:
                        circuit.cx(qreg[qubit1], qreg[qubit2])
                        
                        # Add phase based on similarity strength
                        phase = similarity * np.pi / 2
                        circuit.rz(phase, qreg[qubit1])
                        circuit.rz(phase, qreg[qubit2])
    
    def _calculate_cultural_similarity(self, lang1: str, lang2: str) -> float:
        """Calculate cultural similarity between two languages."""
        if lang1 not in self.cultural_quantum_encodings['collectivism']:
            return 0.0
        if lang2 not in self.cultural_quantum_encodings['collectivism']:
            return 0.0
            
        similarities = []
        for dimension, values in self.cultural_quantum_encodings.items():
            val1 = values[lang1]
            val2 = values[lang2]
            similarity = 1.0 - abs(val1 - val2)
            similarities.append(similarity)
        
        return np.mean(similarities)
    
    # Helper methods for feature detection
    def _detect_chinese_cultural_concepts(self, text: str) -> int:
        """Detect Chinese cultural concepts in text."""
        concepts = ['和谐', '面子', '关系', '孝顺', '中庸', '礼', '仁', '义']
        return sum(1 for concept in concepts if concept in text)
    
    def _detect_harmony_concepts(self, text: str, language: str) -> int:
        """Detect harmony-related concepts."""
        harmony_words = {
            'chinese': ['和谐', '平衡', '协调'],
            'indonesian': ['harmoni', 'keseimbangan', 'rukun'],
            'arabic': ['انسجام', 'توازن', 'وئام'],
            'spanish': ['armonía', 'equilibrio', 'concordia'],
            'english': ['harmony', 'balance', 'peace']
        }
        words = harmony_words.get(language, [])
        return sum(1 for word in words if word.lower() in text.lower())
    
    def _detect_hierarchy_markers(self, text: str, language: str) -> int:
        """Detect hierarchical markers in text."""
        hierarchy_words = {
            'chinese': ['上级', '下级', '领导', '权威'],
            'arabic': ['رئيس', 'مرؤوس', 'سلطة', 'قائد'],
            'indonesian': ['atasan', 'bawahan', 'pemimpin', 'otoritas'],
            'spanish': ['jefe', 'subordinado', 'líder', 'autoridad'],
            'english': ['boss', 'subordinate', 'leader', 'authority']
        }
        words = hierarchy_words.get(language, [])
        return sum(1 for word in words if word.lower() in text.lower())
    
    def _detect_semitic_patterns(self, text: str) -> float:
        """Detect Semitic language patterns in Arabic text."""
        # Simplified pattern detection
        arabic_pattern_count = len(re.findall(r'[\u0600-\u06ff]{3,}', text))
        return min(1.0, arabic_pattern_count / max(len(text.split()), 1))
    
    def _detect_honor_concepts(self, text: str) -> int:
        """Detect honor-related concepts in Arabic text."""
        honor_words = ['شرف', 'كرامة', 'عزة', 'مروءة']
        return sum(1 for word in honor_words if word in text)
    
    def _detect_family_concepts(self, text: str, language: str) -> int:
        """Detect family-related concepts."""
        family_words = {
            'arabic': ['عائلة', 'أسرة', 'أهل', 'قبيلة'],
            'spanish': ['familia', 'parientes', 'hogar', 'clan'],
            'indonesian': ['keluarga', 'sanak', 'rumah', 'klan'],
            'english': ['family', 'relatives', 'home', 'clan'],
            'chinese': ['家庭', '家族', '亲戚', '家']
        }
        words = family_words.get(language, [])
        return sum(1 for word in words if word.lower() in text.lower())
    
    def _detect_religious_context(self, text: str) -> int:
        """Detect religious context in Arabic text."""
        religious_words = ['الله', 'إسلام', 'مسجد', 'صلاة', 'قرآن']
        return sum(1 for word in religious_words if word in text)
    
    def _measure_agglutination(self, text: str) -> float:
        """Measure agglutination level in Indonesian text."""
        words = text.split()
        long_words = [w for w in words if len(w) > 8]
        return len(long_words) / max(len(words), 1)
    
    def _detect_community_concepts(self, text: str) -> int:
        """Detect community concepts in Indonesian text."""
        community_words = ['masyarakat', 'komunitas', 'gotong-royong', 'bersama']
        return sum(1 for word in community_words if word.lower() in text.lower())
    
    def _detect_respect_markers(self, text: str, language: str) -> int:
        """Detect respect markers."""
        respect_words = {
            'indonesian': ['hormat', 'sopan', 'santun', 'menghargai'],
            'chinese': ['尊重', '礼貌', '敬意', '客气'],
            'arabic': ['احترام', 'أدب', 'تقدير', 'وقار'],
            'spanish': ['respeto', 'cortesía', 'educación', 'consideración'],
            'english': ['respect', 'courtesy', 'politeness', 'consideration']
        }
        words = respect_words.get(language, [])
        return sum(1 for word in words if word.lower() in text.lower())
    
    def _count_collective_pronouns(self, text: str, language: str) -> int:
        """Count collective pronouns."""
        collective_pronouns = {
            'indonesian': ['kita', 'kami', 'kita semua'],
            'chinese': ['我们', '咱们', '大家'],
            'arabic': ['نحن', 'إيانا', 'جميعنا'],
            'spanish': ['nosotros', 'nosotras', 'todos'],
            'english': ['we', 'us', 'everyone', 'all of us']
        }
        pronouns = collective_pronouns.get(language, [])
        return sum(1 for pronoun in pronouns if pronoun.lower() in text.lower())
    
    def _detect_romance_patterns(self, text: str) -> float:
        """Detect Romance language patterns in Spanish."""
        # Simplified pattern detection for Spanish
        spanish_endings = ['ción', 'sión', 'dad', 'tad', 'mente']
        pattern_count = sum(1 for ending in spanish_endings 
                          if any(word.endswith(ending) for word in text.split()))
        return min(1.0, pattern_count / max(len(text.split()), 1))
    
    def _measure_emotional_expression(self, text: str) -> float:
        """Measure emotional expression level."""
        emotional_markers = ['!', '¡', '¿', '?', 'muy', 'mucho', 'tanto']
        count = sum(text.count(marker) for marker in emotional_markers)
        return min(1.0, count / max(len(text), 1))
    
    def _detect_formality_level(self, text: str, language: str) -> float:
        """Detect formality level in text."""
        formal_words = {
            'spanish': ['usted', 'señor', 'señora', 'estimado'],
            'english': ['sir', 'madam', 'dear', 'respectfully'],
            'chinese': ['您', '先生', '女士', '敬爱的'],
            'arabic': ['سيد', 'سيدة', 'محترم', 'مقدر'],
            'indonesian': ['bapak', 'ibu', 'saudara', 'terhormat']
        }
        words = formal_words.get(language, [])
        count = sum(1 for word in words if word.lower() in text.lower())
        return min(1.0, count / max(len(text.split()), 1))
    
    def _detect_regional_markers(self, text: str) -> int:
        """Detect regional variation markers in Spanish."""
        regional_words = ['vos', 'che', 'güey', 'pibe', 'chamo']
        return sum(1 for word in regional_words if word.lower() in text.lower())
    
    def _detect_germanic_patterns(self, text: str) -> float:
        """Detect Germanic patterns in English."""
        germanic_words = ['the', 'and', 'of', 'to', 'in', 'that', 'have', 'it']
        count = sum(1 for word in germanic_words if word.lower() in text.lower())
        return min(1.0, count / max(len(text.split()), 1))
    
    def _measure_directness(self, text: str) -> float:
        """Measure directness level in English."""
        direct_markers = ['must', 'should', 'will', 'need to', 'have to']
        count = sum(1 for marker in direct_markers if marker.lower() in text.lower())
        return min(1.0, count / max(len(text.split()), 1))
    
    def _detect_individual_concepts(self, text: str) -> int:
        """Detect individualistic concepts."""
        individual_words = ['i', 'me', 'my', 'myself', 'personal', 'individual']
        return sum(1 for word in individual_words if word.lower() in text.lower())
    
    def _detect_efficiency_concepts(self, text: str) -> int:
        """Detect efficiency-related concepts."""
        efficiency_words = ['efficient', 'fast', 'quick', 'optimize', 'streamline']
        return sum(1 for word in efficiency_words if word.lower() in text.lower())
    
    def _detect_innovation_concepts(self, text: str) -> int:
        """Detect innovation-related concepts."""
        innovation_words = ['new', 'innovative', 'creative', 'breakthrough', 'novel']
        return sum(1 for word in innovation_words if word.lower() in text.lower())
    
    def get_multilingual_metrics(self) -> Dict[str, Any]:
        """Get comprehensive metrics for multilingual processing."""
        return {
            'supported_languages': list(self.language_configs.keys()),
            'cultural_dimensions': list(self.cultural_quantum_encodings.keys()),
            'max_qubits': self.max_qubits,
            'quantum_advantage_factor': len(self.language_configs) ** 2,
            'cross_cultural_mappings': len(self.language_configs) * (len(self.language_configs) - 1) // 2
        }