File size: 23,267 Bytes
b793755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# -*- coding: utf-8 -*-
"""
Multilingual Quantum Processor for Enhanced Language Support
Specialized quantum processing for Indonesian, Arabic, Spanish, English, and Chinese
with language-specific semantic and cultural encoding.
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import logging
from qiskit import QuantumCircuit, QuantumRegister
from qiskit_aer import AerSimulator
import re
logger = logging.getLogger(__name__)
class MultilingualQuantumProcessor:
"""
Enhanced multilingual quantum processor with specialized handling
for Indonesian, Arabic, Spanish, English, and Chinese languages.
"""
def __init__(self, max_qubits: int = 24):
"""Initialize multilingual quantum processor."""
self.max_qubits = max_qubits
self.simulator = AerSimulator()
# Language-specific configurations
self.language_configs = {
'indonesian': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'agglutinative': True,
'cultural_weight': 0.8,
'quantum_phase': np.pi/6,
'entanglement_pattern': 'community_based'
},
'arabic': {
'script': 'arabic',
'direction': 'rtl',
'tonal': False,
'semitic': True,
'cultural_weight': 0.9,
'quantum_phase': np.pi/4,
'entanglement_pattern': 'hierarchical_honor'
},
'spanish': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'romance': True,
'cultural_weight': 0.7,
'quantum_phase': np.pi/3,
'entanglement_pattern': 'family_centered'
},
'english': {
'script': 'latin',
'direction': 'ltr',
'tonal': False,
'germanic': True,
'cultural_weight': 0.6,
'quantum_phase': np.pi/2,
'entanglement_pattern': 'individualistic'
},
'chinese': {
'script': 'hanzi',
'direction': 'ltr',
'tonal': True,
'logographic': True,
'cultural_weight': 0.95,
'quantum_phase': np.pi/5,
'entanglement_pattern': 'hierarchical_harmony'
}
}
# Cultural dimension quantum encodings
self.cultural_quantum_encodings = {
'collectivism': {'indonesian': 0.8, 'arabic': 0.7, 'spanish': 0.6, 'english': 0.2, 'chinese': 0.9},
'hierarchy': {'indonesian': 0.7, 'arabic': 0.8, 'spanish': 0.6, 'english': 0.4, 'chinese': 0.9},
'context_dependency': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.7, 'english': 0.5, 'chinese': 0.9},
'harmony_orientation': {'indonesian': 0.8, 'arabic': 0.6, 'spanish': 0.7, 'english': 0.4, 'chinese': 0.9},
'time_orientation': {'indonesian': 0.6, 'arabic': 0.7, 'spanish': 0.5, 'english': 0.8, 'chinese': 0.9},
'relationship_focus': {'indonesian': 0.9, 'arabic': 0.8, 'spanish': 0.8, 'english': 0.5, 'chinese': 0.9}
}
logger.info("Initialized MultilingualQuantumProcessor with 5-language support")
def detect_language_features(self, text: str, language: str) -> Dict[str, Any]:
"""
Detect and encode language-specific features for quantum processing.
Args:
text: Input text
language: Language identifier
Returns:
Language feature encoding
"""
config = self.language_configs.get(language, self.language_configs['english'])
features = {
'language': language,
'script_type': config['script'],
'text_direction': config['direction'],
'is_tonal': config['tonal'],
'cultural_weight': config['cultural_weight']
}
# Language-specific feature detection
if language == 'chinese':
features.update(self._analyze_chinese_features(text))
elif language == 'arabic':
features.update(self._analyze_arabic_features(text))
elif language == 'indonesian':
features.update(self._analyze_indonesian_features(text))
elif language == 'spanish':
features.update(self._analyze_spanish_features(text))
elif language == 'english':
features.update(self._analyze_english_features(text))
return features
def _analyze_chinese_features(self, text: str) -> Dict[str, Any]:
"""Analyze Chinese-specific linguistic features."""
features = {
'character_count': len([c for c in text if '\u4e00' <= c <= '\u9fff']),
'tone_complexity': 0.9, # High tonal complexity
'logographic_density': len(text) / max(len(text.split()), 1),
'cultural_concepts': self._detect_chinese_cultural_concepts(text),
'harmony_indicators': self._detect_harmony_concepts(text, 'chinese'),
'hierarchy_markers': self._detect_hierarchy_markers(text, 'chinese')
}
return features
def _analyze_arabic_features(self, text: str) -> Dict[str, Any]:
"""Analyze Arabic-specific linguistic features."""
features = {
'arabic_chars': len([c for c in text if '\u0600' <= c <= '\u06ff']),
'rtl_complexity': 0.8,
'semitic_patterns': self._detect_semitic_patterns(text),
'honor_concepts': self._detect_honor_concepts(text),
'family_references': self._detect_family_concepts(text, 'arabic'),
'religious_context': self._detect_religious_context(text)
}
return features
def _analyze_indonesian_features(self, text: str) -> Dict[str, Any]:
"""Analyze Indonesian-specific linguistic features."""
features = {
'agglutination_level': self._measure_agglutination(text),
'community_focus': self._detect_community_concepts(text),
'respect_markers': self._detect_respect_markers(text, 'indonesian'),
'harmony_emphasis': self._detect_harmony_concepts(text, 'indonesian'),
'collective_pronouns': self._count_collective_pronouns(text, 'indonesian')
}
return features
def _analyze_spanish_features(self, text: str) -> Dict[str, Any]:
"""Analyze Spanish-specific linguistic features."""
features = {
'romance_patterns': self._detect_romance_patterns(text),
'family_centrality': self._detect_family_concepts(text, 'spanish'),
'emotional_expression': self._measure_emotional_expression(text),
'formality_level': self._detect_formality_level(text, 'spanish'),
'regional_variations': self._detect_regional_markers(text)
}
return features
def _analyze_english_features(self, text: str) -> Dict[str, Any]:
"""Analyze English-specific linguistic features."""
features = {
'germanic_base': self._detect_germanic_patterns(text),
'directness_level': self._measure_directness(text),
'individual_focus': self._detect_individual_concepts(text),
'efficiency_markers': self._detect_efficiency_concepts(text),
'innovation_language': self._detect_innovation_concepts(text)
}
return features
def create_multilingual_quantum_circuit(self, texts: Dict[str, str]) -> QuantumCircuit:
"""
Create quantum circuit encoding multiple languages simultaneously.
Args:
texts: Dictionary of language -> text mappings
Returns:
Quantum circuit with multilingual encoding
"""
num_languages = len(texts)
qubits_per_lang = self.max_qubits // num_languages
qreg = QuantumRegister(self.max_qubits, 'multilingual')
circuit = QuantumCircuit(qreg)
# Initialize superposition for all languages
for i in range(self.max_qubits):
circuit.h(qreg[i])
qubit_offset = 0
for language, text in texts.items():
if qubit_offset + qubits_per_lang > self.max_qubits:
break
# Get language features
features = self.detect_language_features(text, language)
config = self.language_configs[language]
# Encode language-specific quantum state
for i in range(qubits_per_lang):
qubit_idx = qubit_offset + i
# Base language phase
circuit.rz(config['quantum_phase'], qreg[qubit_idx])
# Cultural weight encoding
cultural_angle = features['cultural_weight'] * np.pi
circuit.ry(cultural_angle, qreg[qubit_idx])
# Feature-specific encoding
if language == 'chinese':
# Encode tonal and logographic features
tone_angle = features.get('tone_complexity', 0) * np.pi / 4
circuit.rz(tone_angle, qreg[qubit_idx])
elif language == 'arabic':
# Encode RTL and semitic features
rtl_angle = features.get('rtl_complexity', 0) * np.pi / 3
circuit.ry(rtl_angle, qreg[qubit_idx])
# Create language-specific entanglement patterns
self._apply_entanglement_pattern(circuit, qreg, qubit_offset, qubits_per_lang,
config['entanglement_pattern'])
qubit_offset += qubits_per_lang
# Cross-language entanglement for cultural alignment
self._create_cross_language_entanglement(circuit, qreg, texts)
logger.info(f"Created multilingual quantum circuit for {len(texts)} languages")
return circuit
def _apply_entanglement_pattern(self, circuit: QuantumCircuit, qreg: QuantumRegister,
offset: int, length: int, pattern: str):
"""Apply language-specific entanglement patterns."""
if pattern == 'community_based':
# Indonesian: Community-focused circular entanglement
for i in range(length - 1):
circuit.cx(qreg[offset + i], qreg[offset + i + 1])
if length > 2:
circuit.cx(qreg[offset + length - 1], qreg[offset])
elif pattern == 'hierarchical_honor':
# Arabic: Honor-based hierarchical entanglement
for level in range(int(np.log2(length)) + 1):
for i in range(0, length, 2**(level+1)):
if offset + i + 2**level < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + 2**level])
elif pattern == 'family_centered':
# Spanish: Family-centered star pattern
center = offset + length // 2
for i in range(length):
if offset + i != center:
circuit.cx(qreg[center], qreg[offset + i])
elif pattern == 'individualistic':
# English: Individual-focused minimal entanglement
for i in range(0, length - 1, 2):
if offset + i + 1 < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + 1])
elif pattern == 'hierarchical_harmony':
# Chinese: Hierarchical harmony with balanced structure
# Create balanced tree structure
for level in range(int(np.log2(length))):
step = 2**(level + 1)
for i in range(0, length, step):
if offset + i + step//2 < offset + length:
circuit.cx(qreg[offset + i], qreg[offset + i + step//2])
def _create_cross_language_entanglement(self, circuit: QuantumCircuit,
qreg: QuantumRegister, texts: Dict[str, str]):
"""Create entanglement between different languages based on cultural similarity."""
languages = list(texts.keys())
qubits_per_lang = self.max_qubits // len(languages)
# Calculate cultural similarity and create proportional entanglement
for i, lang1 in enumerate(languages):
for j, lang2 in enumerate(languages[i+1:], i+1):
similarity = self._calculate_cultural_similarity(lang1, lang2)
if similarity > 0.5: # Only entangle culturally similar languages
# Entangle representative qubits
qubit1 = i * qubits_per_lang
qubit2 = j * qubits_per_lang
if qubit1 < self.max_qubits and qubit2 < self.max_qubits:
circuit.cx(qreg[qubit1], qreg[qubit2])
# Add phase based on similarity strength
phase = similarity * np.pi / 2
circuit.rz(phase, qreg[qubit1])
circuit.rz(phase, qreg[qubit2])
def _calculate_cultural_similarity(self, lang1: str, lang2: str) -> float:
"""Calculate cultural similarity between two languages."""
if lang1 not in self.cultural_quantum_encodings['collectivism']:
return 0.0
if lang2 not in self.cultural_quantum_encodings['collectivism']:
return 0.0
similarities = []
for dimension, values in self.cultural_quantum_encodings.items():
val1 = values[lang1]
val2 = values[lang2]
similarity = 1.0 - abs(val1 - val2)
similarities.append(similarity)
return np.mean(similarities)
# Helper methods for feature detection
def _detect_chinese_cultural_concepts(self, text: str) -> int:
"""Detect Chinese cultural concepts in text."""
concepts = ['和谐', '面子', '关系', '孝顺', '中庸', '礼', '仁', '义']
return sum(1 for concept in concepts if concept in text)
def _detect_harmony_concepts(self, text: str, language: str) -> int:
"""Detect harmony-related concepts."""
harmony_words = {
'chinese': ['和谐', '平衡', '协调'],
'indonesian': ['harmoni', 'keseimbangan', 'rukun'],
'arabic': ['انسجام', 'توازن', 'وئام'],
'spanish': ['armonía', 'equilibrio', 'concordia'],
'english': ['harmony', 'balance', 'peace']
}
words = harmony_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_hierarchy_markers(self, text: str, language: str) -> int:
"""Detect hierarchical markers in text."""
hierarchy_words = {
'chinese': ['上级', '下级', '领导', '权威'],
'arabic': ['رئيس', 'مرؤوس', 'سلطة', 'قائد'],
'indonesian': ['atasan', 'bawahan', 'pemimpin', 'otoritas'],
'spanish': ['jefe', 'subordinado', 'líder', 'autoridad'],
'english': ['boss', 'subordinate', 'leader', 'authority']
}
words = hierarchy_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_semitic_patterns(self, text: str) -> float:
"""Detect Semitic language patterns in Arabic text."""
# Simplified pattern detection
arabic_pattern_count = len(re.findall(r'[\u0600-\u06ff]{3,}', text))
return min(1.0, arabic_pattern_count / max(len(text.split()), 1))
def _detect_honor_concepts(self, text: str) -> int:
"""Detect honor-related concepts in Arabic text."""
honor_words = ['شرف', 'كرامة', 'عزة', 'مروءة']
return sum(1 for word in honor_words if word in text)
def _detect_family_concepts(self, text: str, language: str) -> int:
"""Detect family-related concepts."""
family_words = {
'arabic': ['عائلة', 'أسرة', 'أهل', 'قبيلة'],
'spanish': ['familia', 'parientes', 'hogar', 'clan'],
'indonesian': ['keluarga', 'sanak', 'rumah', 'klan'],
'english': ['family', 'relatives', 'home', 'clan'],
'chinese': ['家庭', '家族', '亲戚', '家']
}
words = family_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _detect_religious_context(self, text: str) -> int:
"""Detect religious context in Arabic text."""
religious_words = ['الله', 'إسلام', 'مسجد', 'صلاة', 'قرآن']
return sum(1 for word in religious_words if word in text)
def _measure_agglutination(self, text: str) -> float:
"""Measure agglutination level in Indonesian text."""
words = text.split()
long_words = [w for w in words if len(w) > 8]
return len(long_words) / max(len(words), 1)
def _detect_community_concepts(self, text: str) -> int:
"""Detect community concepts in Indonesian text."""
community_words = ['masyarakat', 'komunitas', 'gotong-royong', 'bersama']
return sum(1 for word in community_words if word.lower() in text.lower())
def _detect_respect_markers(self, text: str, language: str) -> int:
"""Detect respect markers."""
respect_words = {
'indonesian': ['hormat', 'sopan', 'santun', 'menghargai'],
'chinese': ['尊重', '礼貌', '敬意', '客气'],
'arabic': ['احترام', 'أدب', 'تقدير', 'وقار'],
'spanish': ['respeto', 'cortesía', 'educación', 'consideración'],
'english': ['respect', 'courtesy', 'politeness', 'consideration']
}
words = respect_words.get(language, [])
return sum(1 for word in words if word.lower() in text.lower())
def _count_collective_pronouns(self, text: str, language: str) -> int:
"""Count collective pronouns."""
collective_pronouns = {
'indonesian': ['kita', 'kami', 'kita semua'],
'chinese': ['我们', '咱们', '大家'],
'arabic': ['نحن', 'إيانا', 'جميعنا'],
'spanish': ['nosotros', 'nosotras', 'todos'],
'english': ['we', 'us', 'everyone', 'all of us']
}
pronouns = collective_pronouns.get(language, [])
return sum(1 for pronoun in pronouns if pronoun.lower() in text.lower())
def _detect_romance_patterns(self, text: str) -> float:
"""Detect Romance language patterns in Spanish."""
# Simplified pattern detection for Spanish
spanish_endings = ['ción', 'sión', 'dad', 'tad', 'mente']
pattern_count = sum(1 for ending in spanish_endings
if any(word.endswith(ending) for word in text.split()))
return min(1.0, pattern_count / max(len(text.split()), 1))
def _measure_emotional_expression(self, text: str) -> float:
"""Measure emotional expression level."""
emotional_markers = ['!', '¡', '¿', '?', 'muy', 'mucho', 'tanto']
count = sum(text.count(marker) for marker in emotional_markers)
return min(1.0, count / max(len(text), 1))
def _detect_formality_level(self, text: str, language: str) -> float:
"""Detect formality level in text."""
formal_words = {
'spanish': ['usted', 'señor', 'señora', 'estimado'],
'english': ['sir', 'madam', 'dear', 'respectfully'],
'chinese': ['您', '先生', '女士', '敬爱的'],
'arabic': ['سيد', 'سيدة', 'محترم', 'مقدر'],
'indonesian': ['bapak', 'ibu', 'saudara', 'terhormat']
}
words = formal_words.get(language, [])
count = sum(1 for word in words if word.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _detect_regional_markers(self, text: str) -> int:
"""Detect regional variation markers in Spanish."""
regional_words = ['vos', 'che', 'güey', 'pibe', 'chamo']
return sum(1 for word in regional_words if word.lower() in text.lower())
def _detect_germanic_patterns(self, text: str) -> float:
"""Detect Germanic patterns in English."""
germanic_words = ['the', 'and', 'of', 'to', 'in', 'that', 'have', 'it']
count = sum(1 for word in germanic_words if word.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _measure_directness(self, text: str) -> float:
"""Measure directness level in English."""
direct_markers = ['must', 'should', 'will', 'need to', 'have to']
count = sum(1 for marker in direct_markers if marker.lower() in text.lower())
return min(1.0, count / max(len(text.split()), 1))
def _detect_individual_concepts(self, text: str) -> int:
"""Detect individualistic concepts."""
individual_words = ['i', 'me', 'my', 'myself', 'personal', 'individual']
return sum(1 for word in individual_words if word.lower() in text.lower())
def _detect_efficiency_concepts(self, text: str) -> int:
"""Detect efficiency-related concepts."""
efficiency_words = ['efficient', 'fast', 'quick', 'optimize', 'streamline']
return sum(1 for word in efficiency_words if word.lower() in text.lower())
def _detect_innovation_concepts(self, text: str) -> int:
"""Detect innovation-related concepts."""
innovation_words = ['new', 'innovative', 'creative', 'breakthrough', 'novel']
return sum(1 for word in innovation_words if word.lower() in text.lower())
def get_multilingual_metrics(self) -> Dict[str, Any]:
"""Get comprehensive metrics for multilingual processing."""
return {
'supported_languages': list(self.language_configs.keys()),
'cultural_dimensions': list(self.cultural_quantum_encodings.keys()),
'max_qubits': self.max_qubits,
'quantum_advantage_factor': len(self.language_configs) ** 2,
'cross_cultural_mappings': len(self.language_configs) * (len(self.language_configs) - 1) // 2
} |