Quantum-Scaling RL Hybrid Agent

A self-improving hybrid agent that integrates quantum optimization with reinforcement learning for multilingual semantic graph editing.

Quick Start

from quantum_scaling_rl_hybrid import QuantumScalingRLHybrid, QuantumRLConfig

# Initialize agent
config = QuantumRLConfig(backends=['ibm', 'russian'])
agent = QuantumScalingRLHybrid(config)

# Run edit cycle
result = agent.run_edit_cycle(edit, corpus)
print(f"Performance: {result.performance_delta:.3f}")

Run Demo

# Simple demo (no quantum dependencies)
python agent/demo_quantum_scaling_rl_simple.py

# Full demo (requires qiskit)
pip install qiskit qiskit-machine-learning
python agent/demo_quantum_scaling_rl.py

# Visualization demo
python agent/visualizations/demo_all_visualizations.py

Architecture: 5-Stage Pipeline

  1. Quantum Optimization - QAOA traversal, QSVM hallucination detection, QEC correction
  2. RLHF Adaptation - KL-regularized PPO, backend selection learning
  3. ScalingRL Budgeting - Batch sizing (∝ √model_size), reward shaping, compute tracking
  4. Feedback Loop - Reflector, curator, RL retraining
  5. Benchmarking & Visualization - Performance metrics and visual analytics

Key Features

  • ✅ Self-improving: Learns optimal backends per language
  • ✅ Multilingual: Adapts strategies for each language (ru, zh, es, fr, en)
  • ✅ Compute-efficient: Optimizes batch sizes and resources
  • ✅ Benchmarking: Tracks IBM vs Russian backend performance
  • NEW: Comprehensive visualization suite (4 modules, 11 charts)

Visualization Modules

Location: agent/visualizations/

  1. Backend Performance Comparison - IBM vs Russian backend analysis
  2. Reward vs Batch Size Scaling - Validates batch_size ∝ √(model_size)
  3. Cross-Lingual Backend Preference - Language-specific backend preferences
  4. Performance Trend Over Edit Cycles - Learning curves and improvement tracking
# Generate all visualizations
cd agent/visualizations
python demo_all_visualizations.py
# Output: 11 high-resolution PNG charts in output/ directory

Files

Core Implementation

  • quantum_scaling_rl_hybrid.py - Main implementation (450+ lines)
  • demo_quantum_scaling_rl_simple.py - Simple demo (tested & working)
  • demo_quantum_scaling_rl.py - Full demo (requires qiskit)
  • test_quantum_scaling_rl.py - Test suite (13 tests)

Visualization Modules

  • visualizations/Backend_Performance_Comparison.py
  • visualizations/Reward_vs_BatchSize_Scaling.py
  • visualizations/Cross_Lingual_Backend_Preference.py
  • visualizations/Performance_Trend_Over_Edit_Cycles.py
  • visualizations/demo_all_visualizations.py

Documentation

  • QUANTUM_SCALING_RL_ARCHITECTURE.md - Complete 5-stage architecture
  • QUANTUM_SCALING_RL_HYBRID_DOCUMENTATION.md - Full technical docs
  • QUANTUM_SCALING_RL_QUICK_REFERENCE.md - Quick reference
  • QUANTUM_SCALING_RL_IMPLEMENTATION_SUMMARY.md - Implementation summary

Demo Results

Total Edits: 15
Performance Trend: improving

Backend Performance:
  ibm:     Mean Reward: 0.807 ± 0.022
  russian: Mean Reward: 0.825 ± 0.024

Learned Heuristics:
  ru: Preferred Backend: ibm (0.807)
  zh: Preferred Backend: russian (0.814)
  es: Preferred Backend: russian (0.853)
  fr: Preferred Backend: russian (0.842)
  en: Preferred Backend: russian (0.803)

Performance Metrics

Quantum Metrics

  • QAOA Coherence: 0.6-0.9
  • QEC Logical Error: 0.001-0.01
  • QSVM Valid Prob: 0.7-0.95

RL Metrics

  • Final Reward: 0.75-0.88
  • Edit Reliability: 0.99-1.0
  • KL Penalty: 0.0-0.01

Scaling Metrics

  • Compute Efficiency: 6-11 reward/sec
  • Optimal Batch Size: 8-16
  • Performance Trend: Improving

Dependencies

# Core (required)
pip install numpy

# Visualization (required for charts)
pip install matplotlib

# Quantum (optional, for full functionality)
pip install qiskit qiskit-machine-learning torch transformers

Integration

With Quantum Modules

  • qaoa_traversal.py - Semantic graph optimization
  • qsvm_hallucination.py - Hallucination detection
  • repair_qec_extension.py - Error correction

With RLHF System

  • rlhf/reward_model.py - Reward model manager
  • rlhf/rl_trainer.py - RL training config

With Scaling Laws

  • scaling_laws/scaling_measurement_framework.py - Scaling analysis

Usage with Visualizations

from quantum_scaling_rl_hybrid import QuantumScalingRLHybrid
from visualizations.Backend_Performance_Comparison import plot_backend_performance_comparison

# Run agent
agent = QuantumScalingRLHybrid()
for i in range(30):
    result = agent.run_edit_cycle(edit, corpus)

# Get statistics
stats = agent.get_statistics()

# Visualize results
plot_backend_performance_comparison(
    stats['backend_performance'],
    'backend_comparison.png'
)

License

MIT License

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support