Quantum-Scaling RL Hybrid Agent
A self-improving hybrid agent that integrates quantum optimization with reinforcement learning for multilingual semantic graph editing.
Quick Start
from quantum_scaling_rl_hybrid import QuantumScalingRLHybrid, QuantumRLConfig
# Initialize agent
config = QuantumRLConfig(backends=['ibm', 'russian'])
agent = QuantumScalingRLHybrid(config)
# Run edit cycle
result = agent.run_edit_cycle(edit, corpus)
print(f"Performance: {result.performance_delta:.3f}")
Run Demo
# Simple demo (no quantum dependencies)
python agent/demo_quantum_scaling_rl_simple.py
# Full demo (requires qiskit)
pip install qiskit qiskit-machine-learning
python agent/demo_quantum_scaling_rl.py
# Visualization demo
python agent/visualizations/demo_all_visualizations.py
Architecture: 5-Stage Pipeline
- Quantum Optimization - QAOA traversal, QSVM hallucination detection, QEC correction
- RLHF Adaptation - KL-regularized PPO, backend selection learning
- ScalingRL Budgeting - Batch sizing (∝ √model_size), reward shaping, compute tracking
- Feedback Loop - Reflector, curator, RL retraining
- Benchmarking & Visualization - Performance metrics and visual analytics
Key Features
- ✅ Self-improving: Learns optimal backends per language
- ✅ Multilingual: Adapts strategies for each language (ru, zh, es, fr, en)
- ✅ Compute-efficient: Optimizes batch sizes and resources
- ✅ Benchmarking: Tracks IBM vs Russian backend performance
- ✅ NEW: Comprehensive visualization suite (4 modules, 11 charts)
Visualization Modules
Location: agent/visualizations/
- Backend Performance Comparison - IBM vs Russian backend analysis
- Reward vs Batch Size Scaling - Validates batch_size ∝ √(model_size)
- Cross-Lingual Backend Preference - Language-specific backend preferences
- Performance Trend Over Edit Cycles - Learning curves and improvement tracking
# Generate all visualizations
cd agent/visualizations
python demo_all_visualizations.py
# Output: 11 high-resolution PNG charts in output/ directory
Files
Core Implementation
quantum_scaling_rl_hybrid.py- Main implementation (450+ lines)demo_quantum_scaling_rl_simple.py- Simple demo (tested & working)demo_quantum_scaling_rl.py- Full demo (requires qiskit)test_quantum_scaling_rl.py- Test suite (13 tests)
Visualization Modules
visualizations/Backend_Performance_Comparison.pyvisualizations/Reward_vs_BatchSize_Scaling.pyvisualizations/Cross_Lingual_Backend_Preference.pyvisualizations/Performance_Trend_Over_Edit_Cycles.pyvisualizations/demo_all_visualizations.py
Documentation
QUANTUM_SCALING_RL_ARCHITECTURE.md- Complete 5-stage architectureQUANTUM_SCALING_RL_HYBRID_DOCUMENTATION.md- Full technical docsQUANTUM_SCALING_RL_QUICK_REFERENCE.md- Quick referenceQUANTUM_SCALING_RL_IMPLEMENTATION_SUMMARY.md- Implementation summary
Demo Results
Total Edits: 15
Performance Trend: improving
Backend Performance:
ibm: Mean Reward: 0.807 ± 0.022
russian: Mean Reward: 0.825 ± 0.024
Learned Heuristics:
ru: Preferred Backend: ibm (0.807)
zh: Preferred Backend: russian (0.814)
es: Preferred Backend: russian (0.853)
fr: Preferred Backend: russian (0.842)
en: Preferred Backend: russian (0.803)
Performance Metrics
Quantum Metrics
- QAOA Coherence: 0.6-0.9
- QEC Logical Error: 0.001-0.01
- QSVM Valid Prob: 0.7-0.95
RL Metrics
- Final Reward: 0.75-0.88
- Edit Reliability: 0.99-1.0
- KL Penalty: 0.0-0.01
Scaling Metrics
- Compute Efficiency: 6-11 reward/sec
- Optimal Batch Size: 8-16
- Performance Trend: Improving
Dependencies
# Core (required)
pip install numpy
# Visualization (required for charts)
pip install matplotlib
# Quantum (optional, for full functionality)
pip install qiskit qiskit-machine-learning torch transformers
Integration
With Quantum Modules
qaoa_traversal.py- Semantic graph optimizationqsvm_hallucination.py- Hallucination detectionrepair_qec_extension.py- Error correction
With RLHF System
rlhf/reward_model.py- Reward model managerrlhf/rl_trainer.py- RL training config
With Scaling Laws
scaling_laws/scaling_measurement_framework.py- Scaling analysis
Usage with Visualizations
from quantum_scaling_rl_hybrid import QuantumScalingRLHybrid
from visualizations.Backend_Performance_Comparison import plot_backend_performance_comparison
# Run agent
agent = QuantumScalingRLHybrid()
for i in range(30):
result = agent.run_edit_cycle(edit, corpus)
# Get statistics
stats = agent.get_statistics()
# Visualize results
plot_backend_performance_comparison(
stats['backend_performance'],
'backend_comparison.png'
)
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support