Update README.md
Browse files
README.md
CHANGED
|
@@ -21,4 +21,118 @@ image = pipe(
|
|
| 21 |
guidance_scale=7.0,
|
| 22 |
).images[0]
|
| 23 |
image
|
| 24 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
guidance_scale=7.0,
|
| 22 |
).images[0]
|
| 23 |
image
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
## Codes
|
| 27 |
+
```python
|
| 28 |
+
import importlib
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
import transformers
|
| 32 |
+
|
| 33 |
+
import diffusers
|
| 34 |
+
import rich
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_original_model_configs(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str):
|
| 38 |
+
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
|
| 39 |
+
model_configs = {}
|
| 40 |
+
|
| 41 |
+
for subfolder, import_strings in pipeline_config.items():
|
| 42 |
+
if subfolder.startswith("_"):
|
| 43 |
+
continue
|
| 44 |
+
module = importlib.import_module(".".join(import_strings[:-1]))
|
| 45 |
+
cls = getattr(module, import_strings[-1])
|
| 46 |
+
if issubclass(cls, transformers.PreTrainedModel):
|
| 47 |
+
config_class: transformers.PretrainedConfig = cls.config_class
|
| 48 |
+
config = config_class.from_pretrained(pipeline_id, subfolder=subfolder)
|
| 49 |
+
model_configs[subfolder] = config
|
| 50 |
+
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
|
| 51 |
+
config = cls.load_config(pipeline_id, subfolder=subfolder)
|
| 52 |
+
model_configs[subfolder] = config
|
| 53 |
+
|
| 54 |
+
return model_configs
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]):
|
| 58 |
+
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
|
| 59 |
+
components = {}
|
| 60 |
+
for subfolder, import_strings in pipeline_config.items():
|
| 61 |
+
if subfolder.startswith("_"):
|
| 62 |
+
continue
|
| 63 |
+
module = importlib.import_module(".".join(import_strings[:-1]))
|
| 64 |
+
cls = getattr(module, import_strings[-1])
|
| 65 |
+
print(f"Loading:", ".".join(import_strings))
|
| 66 |
+
if issubclass(cls, transformers.PreTrainedModel):
|
| 67 |
+
config = model_configs[subfolder]
|
| 68 |
+
component = cls(config)
|
| 69 |
+
elif issubclass(cls, transformers.PreTrainedTokenizerBase):
|
| 70 |
+
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
|
| 71 |
+
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
|
| 72 |
+
config = model_configs[subfolder]
|
| 73 |
+
component = cls.from_config(config)
|
| 74 |
+
elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin):
|
| 75 |
+
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
|
| 76 |
+
else:
|
| 77 |
+
raise (f"unknown {subfolder}: {import_strings}")
|
| 78 |
+
components[subfolder] = component
|
| 79 |
+
pipeline = pipeline_cls(**components)
|
| 80 |
+
return pipeline
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_pipeline():
|
| 84 |
+
torch.manual_seed(42)
|
| 85 |
+
pipeline_id = "stabilityai/stable-diffusion-3-medium-diffusers"
|
| 86 |
+
pipeline_cls = diffusers.StableDiffusion3Pipeline
|
| 87 |
+
model_configs = get_original_model_configs(pipeline_cls, pipeline_id)
|
| 88 |
+
rich.print(model_configs)
|
| 89 |
+
|
| 90 |
+
HIDDEN_SIZE = 8
|
| 91 |
+
|
| 92 |
+
model_configs["text_encoder"].hidden_size = HIDDEN_SIZE
|
| 93 |
+
model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2
|
| 94 |
+
model_configs["text_encoder"].num_attention_heads = 2
|
| 95 |
+
model_configs["text_encoder"].num_hidden_layers = 2
|
| 96 |
+
model_configs["text_encoder"].projection_dim = HIDDEN_SIZE
|
| 97 |
+
|
| 98 |
+
model_configs["text_encoder_2"].hidden_size = HIDDEN_SIZE
|
| 99 |
+
model_configs["text_encoder_2"].intermediate_size = HIDDEN_SIZE * 2
|
| 100 |
+
model_configs["text_encoder_2"].num_attention_heads = 2
|
| 101 |
+
model_configs["text_encoder_2"].num_hidden_layers = 2
|
| 102 |
+
model_configs["text_encoder_2"].projection_dim = HIDDEN_SIZE
|
| 103 |
+
|
| 104 |
+
model_configs["text_encoder_3"].d_model = HIDDEN_SIZE
|
| 105 |
+
model_configs["text_encoder_3"].d_ff = HIDDEN_SIZE * 2
|
| 106 |
+
model_configs["text_encoder_3"].d_kv = HIDDEN_SIZE // 2
|
| 107 |
+
model_configs["text_encoder_3"].num_heads = 2
|
| 108 |
+
model_configs["text_encoder_3"].num_layers = 2
|
| 109 |
+
|
| 110 |
+
model_configs["transformer"]["num_layers"] = 2
|
| 111 |
+
model_configs["transformer"]["num_attention_heads"] = 2
|
| 112 |
+
model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE // 2
|
| 113 |
+
model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE * 2
|
| 114 |
+
model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE
|
| 115 |
+
model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE
|
| 116 |
+
|
| 117 |
+
model_configs["vae"]["layers_per_block"] = 1
|
| 118 |
+
model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4
|
| 119 |
+
model_configs["vae"]["norm_num_groups"] = 2
|
| 120 |
+
model_configs["vae"]["latent_channels"] = 16
|
| 121 |
+
|
| 122 |
+
pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs)
|
| 123 |
+
return pipeline
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
pipeline = get_pipeline()
|
| 127 |
+
image = pipeline(
|
| 128 |
+
"hello world",
|
| 129 |
+
negative_prompt="runtime error",
|
| 130 |
+
num_inference_steps=2,
|
| 131 |
+
guidance_scale=7.0,
|
| 132 |
+
).images[0]
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
pipeline = pipeline.to(torch.float16)
|
| 136 |
+
pipeline.save_pretrained("/tmp/stable-diffusion-3-tiny-random")
|
| 137 |
+
pipeline.push_to_hub("yujiepan/stable-diffusion-3-tiny-random")
|
| 138 |
+
```
|