--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). ### Example usage: ```python from transformers import pipeline model_id = "yujiepan/llama-3.3-tiny-random-dim64" pipe = pipeline( "text-generation", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=3, ) print(pipe("Hello World!")) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "meta-llama/Llama-3.3-70B-Instruct" save_folder = "/tmp/yujiepan/llama-3.3-tiny-random-dim64" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config.hidden_size = 64 config.intermediate_size = 128 config.num_attention_heads = 2 config.num_key_value_heads = 1 config.head_dim = 32 config.num_hidden_layers = 2 config.tie_word_embeddings = True model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(128256, 64) (layers): ModuleList( (0-1): 2 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (o_proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm((64,), eps=1e-05) (post_attention_layernorm): LlamaRMSNorm((64,), eps=1e-05) ) ) (norm): LlamaRMSNorm((64,), eps=1e-05) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=64, out_features=128256, bias=False) ) ```