Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,13 @@ import string
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
from transformers import BlipForQuestionAnswering, BlipProcessor
|
|
@@ -41,15 +48,19 @@ def gpt3(question,vqa_answer,caption):
|
|
| 41 |
# return "input_text:\n"+prompt+"\n\n output_answer:\n"+answer
|
| 42 |
return answer
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
def inference_chat(input_image,input_text):
|
| 46 |
cap=caption(input_image)
|
| 47 |
-
inputs = processor(images=input_image, text=input_text,return_tensors="pt")
|
| 48 |
-
inputs["max_length"] = 10
|
| 49 |
-
inputs["num_beams"] = 5
|
| 50 |
-
inputs['num_return_sequences'] =4
|
| 51 |
-
out = model_vqa.generate(**inputs)
|
| 52 |
-
out=processor.batch_decode(out, skip_special_tokens=True)
|
|
|
|
|
|
|
| 53 |
vqa="\n".join(out)
|
| 54 |
gpt3_out=gpt3(input_text,vqa,cap)
|
| 55 |
gpt3_out1=gpt3(input_text,'',cap)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import torch
|
| 5 |
+
from models.VLE import VLEForVQA, VLEProcessor, VLEForVQAPipeline
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
model_name="hfl/vle-base-for-vqa"
|
| 9 |
+
model = VLEForVQA.from_pretrained(model_name)
|
| 10 |
+
vle_processor = VLEProcessor.from_pretrained(model_name)
|
| 11 |
+
vqa_pipeline = VLEForVQAPipeline(model=model, device='cpu', vle_processor=vle_processor)
|
| 12 |
|
| 13 |
|
| 14 |
from transformers import BlipForQuestionAnswering, BlipProcessor
|
|
|
|
| 48 |
# return "input_text:\n"+prompt+"\n\n output_answer:\n"+answer
|
| 49 |
return answer
|
| 50 |
|
| 51 |
+
def vle(input_image,input_text):
|
| 52 |
+
vqa_answers = vqa_pipeline(image=input_image, question=input_image, top_k=4)
|
| 53 |
+
return vqa_answers
|
| 54 |
def inference_chat(input_image,input_text):
|
| 55 |
cap=caption(input_image)
|
| 56 |
+
# inputs = processor(images=input_image, text=input_text,return_tensors="pt")
|
| 57 |
+
# inputs["max_length"] = 10
|
| 58 |
+
# inputs["num_beams"] = 5
|
| 59 |
+
# inputs['num_return_sequences'] =4
|
| 60 |
+
# out = model_vqa.generate(**inputs)
|
| 61 |
+
# out=processor.batch_decode(out, skip_special_tokens=True)
|
| 62 |
+
|
| 63 |
+
out=vle(input_image,input_text)
|
| 64 |
vqa="\n".join(out)
|
| 65 |
gpt3_out=gpt3(input_text,vqa,cap)
|
| 66 |
gpt3_out1=gpt3(input_text,'',cap)
|