Spaces:
Sleeping
Sleeping
Upload __init__.py
Browse files- __init__.py +1838 -0
__init__.py
ADDED
|
@@ -0,0 +1,1838 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import ctypes
|
| 3 |
+
import gc
|
| 4 |
+
import inspect
|
| 5 |
+
import json
|
| 6 |
+
import mmap
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
import signal
|
| 10 |
+
import sys
|
| 11 |
+
import time
|
| 12 |
+
import warnings
|
| 13 |
+
from collections import defaultdict
|
| 14 |
+
from concurrent.futures import as_completed, ThreadPoolExecutor
|
| 15 |
+
from contextlib import contextmanager, nullcontext
|
| 16 |
+
from contextvars import copy_context
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
from datetime import timedelta
|
| 19 |
+
from functools import lru_cache as cache, partial, wraps
|
| 20 |
+
from importlib import metadata
|
| 21 |
+
import importlib
|
| 22 |
+
from queue import Empty, Queue as ThreadQueue
|
| 23 |
+
from threading import Thread
|
| 24 |
+
from types import ModuleType, SimpleNamespace
|
| 25 |
+
from typing import (
|
| 26 |
+
Any, Callable, Dict, Generator, Generic, List, Literal, NamedTuple,
|
| 27 |
+
Optional, Set, Tuple, Type, TypedDict, TypeVar, Union, overload
|
| 28 |
+
)
|
| 29 |
+
from typing_extensions import (
|
| 30 |
+
assert_never, ParamSpec, TypeAlias, Unpack, get_args
|
| 31 |
+
)
|
| 32 |
+
from pathlib import Path
|
| 33 |
+
from packaging import version
|
| 34 |
+
|
| 35 |
+
import gradio as gr
|
| 36 |
+
import httpx
|
| 37 |
+
from gradio.context import Context, LocalContext
|
| 38 |
+
from gradio.helpers import Progress, TrackedIterable
|
| 39 |
+
from gradio.queueing import Queue
|
| 40 |
+
from pydantic import BaseModel
|
| 41 |
+
|
| 42 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="Can't initialize NVML")
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
import torch
|
| 46 |
+
from torch.utils.weak import WeakTensorKeyDictionary
|
| 47 |
+
except ImportError:
|
| 48 |
+
torch = None
|
| 49 |
+
WeakTensorKeyDictionary = dict
|
| 50 |
+
|
| 51 |
+
if torch and "weights_only" in inspect.signature(torch.load).parameters:
|
| 52 |
+
_original_torch_load = torch.load
|
| 53 |
+
@wraps(_original_torch_load)
|
| 54 |
+
def patched_torch_load(*args, **kwargs):
|
| 55 |
+
kwargs.setdefault("weights_only", False)
|
| 56 |
+
return _original_torch_load(*args, **kwargs)
|
| 57 |
+
torch.load = patched_torch_load
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
from tqdm import tqdm as _tqdm
|
| 61 |
+
except ImportError:
|
| 62 |
+
_tqdm = None
|
| 63 |
+
|
| 64 |
+
def boolean(value: str | None) -> bool:
|
| 65 |
+
return value is not None and value.lower() in ("1", "t", "true")
|
| 66 |
+
|
| 67 |
+
class Settings:
|
| 68 |
+
def __init__(self):
|
| 69 |
+
self.zero_gpu = boolean(os.getenv('SPACES_ZERO_GPU'))
|
| 70 |
+
self.zero_device_api_url = os.getenv('SPACES_ZERO_DEVICE_API_URL')
|
| 71 |
+
self.gradio_auto_wrap = boolean(os.getenv('SPACES_GRADIO_AUTO_WRAP'))
|
| 72 |
+
self.zero_patch_torch_device = boolean(os.getenv('ZERO_GPU_PATCH_TORCH_DEVICE'))
|
| 73 |
+
self.zero_gpu_v2 = boolean(os.getenv('ZEROGPU_V2'))
|
| 74 |
+
GPUSizeConfig = Literal['auto', 'medium', 'large']
|
| 75 |
+
self.zerogpu_size: Union[Literal['medium', 'large'], Literal['auto']] = os.getenv('ZEROGPU_SIZE', 'large')
|
| 76 |
+
self.zerogpu_medium_size_threshold = int(os.getenv('ZEROGPU_MEDIUM_SIZE_THRESHOLD', 30 * 2**30))
|
| 77 |
+
ZEROGPU_OFFLOAD_DIR_DEFAULT = str(Path.home() / '.zerogpu' / 'tensors')
|
| 78 |
+
self.zerogpu_offload_dir = os.getenv('ZEROGPU_OFFLOAD_DIR', ZEROGPU_OFFLOAD_DIR_DEFAULT)
|
| 79 |
+
self.zerogpu_proc_self_cgroup_path = os.getenv('ZEROGPU_PROC_SELF_CGROUP_PATH', '/proc/self/cgroup')
|
| 80 |
+
self.zerogpu_cuda_device_name = os.getenv('ZEROGPU_CUDA_DEVICE_NAME', "NVIDIA H200 MIG 3g.71gb")
|
| 81 |
+
self.zerogpu_cuda_total_memory = int(os.getenv('ZEROGPU_CUDA_TOTAL_MEMORY', 74625056768))
|
| 82 |
+
self.zerogpu_cuda_reserved_memory = int(os.getenv('ZEROGPU_CUDA_RESERVED_MEMORY', 0))
|
| 83 |
+
self.zerogpu_cuda_capability_major = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MAJOR', 9))
|
| 84 |
+
self.zerogpu_cuda_capability_minor = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MINOR', 0))
|
| 85 |
+
self.zerogpu_cuda_multi_processor_count = int(os.getenv('ZEROGPU_CUDA_MULTI_PROCESSOR_COUNT', 60))
|
| 86 |
+
|
| 87 |
+
Config = Settings()
|
| 88 |
+
|
| 89 |
+
if Config.zero_gpu:
|
| 90 |
+
if Config.zero_device_api_url is None:
|
| 91 |
+
print("Error: SPACES_ZERO_DEVICE_API_URL environment variable must be set on ZeroGPU Spaces.", file=sys.stderr)
|
| 92 |
+
GPUSizeConfig = Literal['auto', 'medium', 'large']
|
| 93 |
+
if Config.zerogpu_size not in get_args(GPUSizeConfig):
|
| 94 |
+
print(f"Error: ZEROGPU_SIZE should be one of {', '.join(get_args(GPUSizeConfig))}", file=sys.stderr)
|
| 95 |
+
|
| 96 |
+
T = TypeVar('T')
|
| 97 |
+
|
| 98 |
+
@cache
|
| 99 |
+
def self_cgroup_device_path() -> str:
|
| 100 |
+
try:
|
| 101 |
+
cgroup_content = Path(Config.zerogpu_proc_self_cgroup_path).read_text()
|
| 102 |
+
for line in cgroup_content.strip().split('\n'):
|
| 103 |
+
contents = line.split(':devices:')
|
| 104 |
+
if len(contents) == 2:
|
| 105 |
+
return contents[1]
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"Could not determine cgroup device path: {e}", file=sys.stderr)
|
| 108 |
+
return ""
|
| 109 |
+
|
| 110 |
+
class SimpleQueue(ThreadQueue[T]):
|
| 111 |
+
def put(self, obj: T):
|
| 112 |
+
try:
|
| 113 |
+
super().put(obj)
|
| 114 |
+
except Exception as e:
|
| 115 |
+
print(f"Error in SimpleQueue.put: {e}", file=sys.stderr)
|
| 116 |
+
|
| 117 |
+
def close(self):
|
| 118 |
+
try:
|
| 119 |
+
pass
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Error closing SimpleQueue: {e}", file=sys.stderr)
|
| 122 |
+
|
| 123 |
+
def wlock_release(self):
|
| 124 |
+
try:
|
| 125 |
+
pass
|
| 126 |
+
except (ValueError, Exception):
|
| 127 |
+
pass
|
| 128 |
+
|
| 129 |
+
def drop_params(fn: Callable[[], T]) -> Callable[..., T]:
|
| 130 |
+
def drop(*args, **kwargs):
|
| 131 |
+
return fn()
|
| 132 |
+
return drop
|
| 133 |
+
|
| 134 |
+
def gradio_request_var():
|
| 135 |
+
try:
|
| 136 |
+
from gradio.context import LocalContext
|
| 137 |
+
return LocalContext.request
|
| 138 |
+
except ImportError:
|
| 139 |
+
print("Could not import Gradio LocalContext. Ensure Gradio version is at least 3.46.", file=sys.stderr)
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
def malloc_trim():
|
| 143 |
+
try:
|
| 144 |
+
ctypes.CDLL("libc.so.6").malloc_trim(0)
|
| 145 |
+
except (OSError, AttributeError) as e:
|
| 146 |
+
print(f"malloc_trim not available on this system: {e}", file=sys.stderr)
|
| 147 |
+
|
| 148 |
+
debug = partial(print, 'SPACES_ZERO_GPU_DEBUG')
|
| 149 |
+
|
| 150 |
+
def jwt_payload(token: str) -> dict[str, Any]:
|
| 151 |
+
try:
|
| 152 |
+
_, payload, _ = token.split('.')
|
| 153 |
+
return json.loads(base64.urlsafe_b64decode(f'{payload}=='))
|
| 154 |
+
except Exception as e:
|
| 155 |
+
print(f"Error decoding JWT payload: {e}", file=sys.stderr)
|
| 156 |
+
return {}
|
| 157 |
+
|
| 158 |
+
if torch:
|
| 159 |
+
@wraps(torch.empty_like)
|
| 160 |
+
def empty_like_raw_alloc(tensor: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 161 |
+
empty = torch.empty_like(tensor, **{**kwargs, 'requires_grad': False})
|
| 162 |
+
if (nbytes := empty.untyped_storage().nbytes()) > 0:
|
| 163 |
+
try:
|
| 164 |
+
buffer = mmap.mmap(-1, nbytes, prot=mmap.PROT_READ | mmap.PROT_WRITE)
|
| 165 |
+
buffer_torch = torch.frombuffer(buffer, dtype=torch.uint8)
|
| 166 |
+
empty.set_(buffer_torch.untyped_storage(), 0, empty.shape, empty.stride())
|
| 167 |
+
except Exception as e:
|
| 168 |
+
print(f"Failed to create mmap buffer for tensor: {e}", file=sys.stderr)
|
| 169 |
+
empty.requires_grad_(kwargs.get('requires_grad', False))
|
| 170 |
+
return empty
|
| 171 |
+
|
| 172 |
+
Params = Tuple[Tuple[object, ...], Dict[str, Any]]
|
| 173 |
+
Res = TypeVar('Res')
|
| 174 |
+
Param = ParamSpec('Param')
|
| 175 |
+
|
| 176 |
+
class EmptyKwargs(TypedDict):
|
| 177 |
+
pass
|
| 178 |
+
|
| 179 |
+
@dataclass
|
| 180 |
+
class OkResult(Generic[Res]):
|
| 181 |
+
value: Res
|
| 182 |
+
|
| 183 |
+
@dataclass
|
| 184 |
+
class ExceptionResult:
|
| 185 |
+
traceback: str
|
| 186 |
+
error_cls: str
|
| 187 |
+
|
| 188 |
+
@dataclass
|
| 189 |
+
class AbortedResult:
|
| 190 |
+
pass
|
| 191 |
+
|
| 192 |
+
@dataclass
|
| 193 |
+
class EndResult:
|
| 194 |
+
pass
|
| 195 |
+
|
| 196 |
+
@dataclass
|
| 197 |
+
class GradioQueueEvent:
|
| 198 |
+
method_name: str
|
| 199 |
+
args: tuple[Any, ...]
|
| 200 |
+
kwargs: dict[str, Any]
|
| 201 |
+
|
| 202 |
+
RegularResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "GradioQueueEvent"]
|
| 203 |
+
GeneratorResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "GradioQueueEvent"]
|
| 204 |
+
YieldQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "AbortedResult"]
|
| 205 |
+
|
| 206 |
+
Duration: TypeAlias = Union[int, timedelta]
|
| 207 |
+
DynamicDuration: TypeAlias = Union[Duration, Callable[Param, Duration], None]
|
| 208 |
+
|
| 209 |
+
if torch:
|
| 210 |
+
class AliasId(NamedTuple):
|
| 211 |
+
data_ptr: int
|
| 212 |
+
dtype: torch.dtype
|
| 213 |
+
shape: tuple[int, ...]
|
| 214 |
+
stride: tuple[int, ...]
|
| 215 |
+
|
| 216 |
+
@classmethod
|
| 217 |
+
def from_tensor(cls, tensor: torch.Tensor):
|
| 218 |
+
return cls(
|
| 219 |
+
tensor.data_ptr(),
|
| 220 |
+
tensor.dtype,
|
| 221 |
+
tensor.shape,
|
| 222 |
+
tensor.stride(),
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
AllowToken = str
|
| 226 |
+
NvidiaIndex = int
|
| 227 |
+
NvidiaUUID = str
|
| 228 |
+
CGroupPath = str
|
| 229 |
+
TaskId = int
|
| 230 |
+
GPUSize = Literal['medium', 'large']
|
| 231 |
+
AuthLevel = Literal['regular', 'pro']
|
| 232 |
+
QueuingReason = Literal['node', 'concurrency']
|
| 233 |
+
|
| 234 |
+
AUTHENTICATED_HEADER = 'X-Authenticated'
|
| 235 |
+
QUEUING_REASON_HEADER = 'X-Queuing-Reason'
|
| 236 |
+
|
| 237 |
+
class ScheduleResponse(BaseModel):
|
| 238 |
+
idle: bool
|
| 239 |
+
nvidiaIndex: int
|
| 240 |
+
nvidiaUUID: str
|
| 241 |
+
allowToken: str
|
| 242 |
+
|
| 243 |
+
class ScheduleMetadata(BaseModel):
|
| 244 |
+
auth: Optional[AuthLevel] = None
|
| 245 |
+
queuing_reason: Optional[QueuingReason] = None
|
| 246 |
+
|
| 247 |
+
class QuotaInfos(BaseModel):
|
| 248 |
+
left: int
|
| 249 |
+
wait: timedelta
|
| 250 |
+
|
| 251 |
+
class QueueEvent(BaseModel):
|
| 252 |
+
event: Literal['ping', 'failed', 'succeeded']
|
| 253 |
+
data: Optional[ScheduleResponse] = None
|
| 254 |
+
|
| 255 |
+
def sse_parse(text: str):
|
| 256 |
+
event, *data = text.strip().splitlines()
|
| 257 |
+
assert event.startswith('event:')
|
| 258 |
+
event = event[6:].strip()
|
| 259 |
+
if event in ('ping', 'failed'):
|
| 260 |
+
return QueueEvent(event=event)
|
| 261 |
+
assert event == 'succeeded'
|
| 262 |
+
(data,) = data
|
| 263 |
+
assert data.startswith('data:')
|
| 264 |
+
data = data[5:].strip()
|
| 265 |
+
return QueueEvent(event=event, data=ScheduleResponse.parse_raw(data))
|
| 266 |
+
|
| 267 |
+
def sse_stream(res: httpx.Response) -> Generator[QueueEvent, Any, None]:
|
| 268 |
+
for text in res.iter_text():
|
| 269 |
+
if len(text) == 0:
|
| 270 |
+
break
|
| 271 |
+
try:
|
| 272 |
+
yield sse_parse(text)
|
| 273 |
+
except GeneratorExit:
|
| 274 |
+
res.close()
|
| 275 |
+
break
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(f"Error parsing SSE event: {e}", file=sys.stderr)
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
class APIClient:
|
| 281 |
+
def __init__(self, client: httpx.Client):
|
| 282 |
+
self.client = client
|
| 283 |
+
|
| 284 |
+
def startup_report(self, cgroup_path: str, gpu_size: GPUSize) -> httpx.codes:
|
| 285 |
+
try:
|
| 286 |
+
res = self.client.post('/startup-report', params={'cgroupPath': cgroup_path, 'gpuSize': gpu_size})
|
| 287 |
+
return httpx.codes(res.status_code)
|
| 288 |
+
except Exception as e:
|
| 289 |
+
print(f"Failed to send startup report: {e}", file=sys.stderr)
|
| 290 |
+
return httpx.codes.INTERNAL_SERVER_ERROR
|
| 291 |
+
|
| 292 |
+
def schedule(self, cgroup_path: str, task_id: int = 0, token: str | None = None, token_version: int = 1, duration_seconds: int = 0, enable_queue: bool = True):
|
| 293 |
+
try:
|
| 294 |
+
params: dict[str, str | int | bool] = {'cgroupPath': cgroup_path, 'taskId': task_id, 'enableQueue': enable_queue, 'tokenVersion': token_version, 'durationSeconds': duration_seconds}
|
| 295 |
+
if token is not None:
|
| 296 |
+
params['token'] = token
|
| 297 |
+
req = self.client.build_request(method='POST', url='/schedule', params=params)
|
| 298 |
+
res = self.client.send(req, stream=True)
|
| 299 |
+
status = httpx.codes(res.status_code)
|
| 300 |
+
auth: AuthLevel | None = res.headers.get(AUTHENTICATED_HEADER)
|
| 301 |
+
queuing_reason: QueuingReason | None = res.headers.get(QUEUING_REASON_HEADER)
|
| 302 |
+
metadata = ScheduleMetadata(auth=auth, queuing_reason=queuing_reason)
|
| 303 |
+
if status is not httpx.codes.OK and status is not httpx.codes.TOO_MANY_REQUESTS:
|
| 304 |
+
res.close()
|
| 305 |
+
return status, metadata
|
| 306 |
+
if "text/event-stream" in res.headers.get('content-type', ''):
|
| 307 |
+
return sse_stream(res), metadata
|
| 308 |
+
res.read()
|
| 309 |
+
if status is httpx.codes.TOO_MANY_REQUESTS:
|
| 310 |
+
return QuotaInfos(**res.json()), metadata
|
| 311 |
+
if status is httpx.codes.OK:
|
| 312 |
+
return ScheduleResponse(**res.json()), metadata
|
| 313 |
+
assert_never(status)
|
| 314 |
+
except Exception as e:
|
| 315 |
+
print(f"Error in APIClient.schedule: {e}", file=sys.stderr)
|
| 316 |
+
return httpx.codes.INTERNAL_SERVER_ERROR, ScheduleMetadata()
|
| 317 |
+
|
| 318 |
+
def allow(self, allow_token: str, pid: int):
|
| 319 |
+
try:
|
| 320 |
+
res = self.client.post('/allow', params={'allowToken': allow_token, 'pid': pid})
|
| 321 |
+
return httpx.codes(res.status_code)
|
| 322 |
+
except Exception as e:
|
| 323 |
+
print(f"Error in APIClient.allow: {e}", file=sys.stderr)
|
| 324 |
+
return httpx.codes.INTERNAL_SERVER_ERROR
|
| 325 |
+
|
| 326 |
+
def release(self, allow_token: str, fail: bool = False) -> httpx.codes:
|
| 327 |
+
try:
|
| 328 |
+
res = self.client.post('/release', params={'allowToken': allow_token, 'fail': fail})
|
| 329 |
+
return httpx.codes(res.status_code)
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"Error in APIClient.release: {e}", file=sys.stderr)
|
| 332 |
+
return httpx.codes.INTERNAL_SERVER_ERROR
|
| 333 |
+
|
| 334 |
+
def get_queue_size(self) -> float:
|
| 335 |
+
try:
|
| 336 |
+
res = self.client.get('/queue-size')
|
| 337 |
+
assert res.status_code == 200, res.status_code
|
| 338 |
+
return res.json()
|
| 339 |
+
except Exception as e:
|
| 340 |
+
print(f"Error in APIClient.get_queue_size: {e}", file=sys.stderr)
|
| 341 |
+
return 0.0
|
| 342 |
+
|
| 343 |
+
def remove_tqdm_multiprocessing_lock():
|
| 344 |
+
if _tqdm is None:
|
| 345 |
+
return
|
| 346 |
+
try:
|
| 347 |
+
tqdm_lock = _tqdm.get_lock()
|
| 348 |
+
if hasattr(tqdm_lock, 'locks'):
|
| 349 |
+
pass
|
| 350 |
+
except Exception as e:
|
| 351 |
+
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
|
| 352 |
+
|
| 353 |
+
tqdm = _tqdm
|
| 354 |
+
|
| 355 |
+
try:
|
| 356 |
+
Success = gr.Success
|
| 357 |
+
except AttributeError:
|
| 358 |
+
Success = gr.Info
|
| 359 |
+
|
| 360 |
+
Level: TypeAlias = "Literal['success', 'info', 'warning']"
|
| 361 |
+
|
| 362 |
+
def modal(level: Level):
|
| 363 |
+
if level == 'info': return gr.Info
|
| 364 |
+
if level == 'success': return Success
|
| 365 |
+
if level == 'warning': return gr.Warning
|
| 366 |
+
return gr.Info
|
| 367 |
+
|
| 368 |
+
class GradioPartialContext(NamedTuple):
|
| 369 |
+
event_id: str | None
|
| 370 |
+
in_event_listener: bool
|
| 371 |
+
progress: Progress | None
|
| 372 |
+
|
| 373 |
+
@staticmethod
|
| 374 |
+
def get():
|
| 375 |
+
TrackedIterable.__reduce__ = tracked_iterable__reduce__
|
| 376 |
+
return GradioPartialContext(
|
| 377 |
+
event_id=LocalContext.event_id.get(None),
|
| 378 |
+
in_event_listener=LocalContext.in_event_listener.get(False),
|
| 379 |
+
progress=LocalContext.progress.get(None),
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
@staticmethod
|
| 383 |
+
def apply(context: 'GradioPartialContext'):
|
| 384 |
+
LocalContext.event_id.set(context.event_id)
|
| 385 |
+
LocalContext.in_event_listener.set(context.in_event_listener)
|
| 386 |
+
LocalContext.progress.set(context.progress)
|
| 387 |
+
|
| 388 |
+
def get_queue_instance():
|
| 389 |
+
blocks = LocalContext.blocks.get(None)
|
| 390 |
+
if blocks is None: return None
|
| 391 |
+
return getattr(blocks, '_queue', None)
|
| 392 |
+
|
| 393 |
+
def get_event():
|
| 394 |
+
queue = get_queue_instance()
|
| 395 |
+
event_id = LocalContext.event_id.get(None)
|
| 396 |
+
if queue is None or event_id is None: return None
|
| 397 |
+
for job in getattr(queue, 'active_jobs', []):
|
| 398 |
+
if job is None: continue
|
| 399 |
+
for event in job:
|
| 400 |
+
if getattr(event, '_id', None) == event_id:
|
| 401 |
+
return event
|
| 402 |
+
return None
|
| 403 |
+
|
| 404 |
+
def get_server_port() -> int | None:
|
| 405 |
+
from_request_context = True
|
| 406 |
+
if (blocks := LocalContext.blocks.get(None)) is None:
|
| 407 |
+
from_request_context = False
|
| 408 |
+
if (blocks := Context.root_block) is None: return None
|
| 409 |
+
if (server := getattr(blocks, "server", None)) is None:
|
| 410 |
+
if from_request_context:
|
| 411 |
+
warnings.warn("Gradio: No blocks.server inside a request")
|
| 412 |
+
return -1
|
| 413 |
+
|
| 414 |
+
server_config = getattr(server, 'config', None)
|
| 415 |
+
|
| 416 |
+
if isinstance(server_config, dict):
|
| 417 |
+
return server_config.get('port')
|
| 418 |
+
elif isinstance(server_config, Settings):
|
| 419 |
+
warnings.warn("ZeroGPU: Gradio server.config appears to be the global ZeroGPU Config object. Cannot determine Gradio port from this object.")
|
| 420 |
+
return None
|
| 421 |
+
elif hasattr(server_config, 'port'):
|
| 422 |
+
return server_config.port
|
| 423 |
+
|
| 424 |
+
warnings.warn(f"ZeroGPU: Unexpected type for server.config ({type(server_config)}). Cannot determine Gradio port.")
|
| 425 |
+
return None
|
| 426 |
+
|
| 427 |
+
def try_process_queue_event(method_name: str, *args, **kwargs):
|
| 428 |
+
queue = get_queue_instance()
|
| 429 |
+
if queue is None:
|
| 430 |
+
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
|
| 431 |
+
return
|
| 432 |
+
method = getattr(queue, method_name, None)
|
| 433 |
+
if callable(method):
|
| 434 |
+
try:
|
| 435 |
+
method(*args, **kwargs)
|
| 436 |
+
except Exception as e:
|
| 437 |
+
print(f"Error processing Gradio queue event '{method_name}': {e}", file=sys.stderr)
|
| 438 |
+
|
| 439 |
+
QUEUE_RPC_METHODS = ["set_progress", "log_message"]
|
| 440 |
+
|
| 441 |
+
def patch_gradio_queue(res_queue: Union[SimpleQueue[RegularResQueueResult | None], SimpleQueue[GeneratorResQueueResult | None]]):
|
| 442 |
+
def rpc_method(method_name: str):
|
| 443 |
+
def method(*args, **kwargs):
|
| 444 |
+
if args and isinstance(args[0], Queue): args = args[1:]
|
| 445 |
+
res_queue.put(GradioQueueEvent(method_name, args, kwargs))
|
| 446 |
+
return method
|
| 447 |
+
|
| 448 |
+
for method_name in QUEUE_RPC_METHODS:
|
| 449 |
+
if (method := getattr(Queue, method_name, None)) is None:
|
| 450 |
+
warnings.warn(f"ZeroGPU: Gradio Queue has no {method_name} attribute")
|
| 451 |
+
continue
|
| 452 |
+
if not callable(method):
|
| 453 |
+
warnings.warn(f"ZeroGPU: Gradio Queue {method_name} is not callable")
|
| 454 |
+
continue
|
| 455 |
+
setattr(Queue, method_name, rpc_method(method_name))
|
| 456 |
+
TrackedIterable.__reduce__ = tracked_iterable__reduce__
|
| 457 |
+
|
| 458 |
+
def tracked_iterable__reduce__(self):
|
| 459 |
+
try:
|
| 460 |
+
res: tuple = super(TrackedIterable, self).__reduce__()
|
| 461 |
+
cls, base, state, *_ = res
|
| 462 |
+
return cls, base, {**state, **{'iterable': None, '_tqdm': None}}
|
| 463 |
+
except Exception:
|
| 464 |
+
return object, (), {}
|
| 465 |
+
|
| 466 |
+
def supports_auth():
|
| 467 |
+
try:
|
| 468 |
+
return version.parse(gr.__version__) >= version.Version('4.27.0')
|
| 469 |
+
except Exception:
|
| 470 |
+
return False
|
| 471 |
+
|
| 472 |
+
Param_one_launch = ParamSpec('Param_one_launch')
|
| 473 |
+
|
| 474 |
+
def one_launch(task: Callable[Param_one_launch, None], *task_args: Param_one_launch.args, **task_kwargs: Param_one_launch.kwargs):
|
| 475 |
+
_launch = gr.Blocks.launch
|
| 476 |
+
@wraps(gr.Blocks.launch)
|
| 477 |
+
def launch(*args, **kwargs):
|
| 478 |
+
task(*task_args, **task_kwargs)
|
| 479 |
+
gr.Blocks.launch = _launch
|
| 480 |
+
return gr.Blocks.launch(*args, **kwargs)
|
| 481 |
+
gr.Blocks.launch = launch
|
| 482 |
+
|
| 483 |
+
class HTMLError(gr.Error):
|
| 484 |
+
def __str__(self): return str(self.message)
|
| 485 |
+
|
| 486 |
+
def error(title: str, message: str, html: bool = False):
|
| 487 |
+
print(f"ERROR: {title} - {message}", file=sys.stderr)
|
| 488 |
+
error_cls = HTMLError if html else gr.Error
|
| 489 |
+
params = inspect.signature(gr.Error).parameters
|
| 490 |
+
kwargs: dict[str, Any] = {}
|
| 491 |
+
if 'title' in params: kwargs['title'] = title
|
| 492 |
+
if 'print_exception' in params: kwargs['print_exception'] = False
|
| 493 |
+
try:
|
| 494 |
+
pass
|
| 495 |
+
except Exception:
|
| 496 |
+
pass
|
| 497 |
+
|
| 498 |
+
def info(title: str, message: str, level: Level = 'info'):
|
| 499 |
+
print(f"INFO: {title} - {message}")
|
| 500 |
+
info_cls = modal(level)
|
| 501 |
+
params = inspect.signature(gr.Info).parameters
|
| 502 |
+
kwargs: dict[str, Any] = {}
|
| 503 |
+
if 'title' in params: kwargs['title'] = title
|
| 504 |
+
try:
|
| 505 |
+
info_cls(message, **kwargs)
|
| 506 |
+
except Exception:
|
| 507 |
+
pass
|
| 508 |
+
|
| 509 |
+
TOKEN_HEADER = 'X-IP-Token'
|
| 510 |
+
UNUSED_MESSAGE = "GPU device not used"
|
| 511 |
+
NO_GPU_MESSAGE_REGULAR = "No GPU was available"
|
| 512 |
+
NO_GPU_MESSAGE_INQUEUE = "No GPU was available after 60 seconds"
|
| 513 |
+
EXAMPLES_RETRY_MESSAGE = "Try re-running outside of examples if it happened after clicking one"
|
| 514 |
+
SIGNUP_ON_HF_TXT = "Create a free account"
|
| 515 |
+
SIGNUP_ON_HF_URL = "https://huggingface.co/join"
|
| 516 |
+
SUBSCRIBE_TO_PRO_TXT = "Subscribe to Pro"
|
| 517 |
+
SUBSCRIBE_TO_PRO_URL = "https://huggingface.co/settings/billing/subscription"
|
| 518 |
+
|
| 519 |
+
def api_client():
|
| 520 |
+
assert Config.zero_device_api_url is not None
|
| 521 |
+
httpx_client = httpx.Client(base_url=Config.zero_device_api_url, timeout=60, verify=False)
|
| 522 |
+
return APIClient(httpx_client)
|
| 523 |
+
|
| 524 |
+
def startup_report_client(cgroup_path: str, gpu_size: GPUSize):
|
| 525 |
+
retries, max_retries = 0, 2
|
| 526 |
+
client = api_client()
|
| 527 |
+
status = None
|
| 528 |
+
while retries <= max_retries:
|
| 529 |
+
status = client.startup_report(cgroup_path, gpu_size)
|
| 530 |
+
if status is not httpx.codes.NOT_FOUND:
|
| 531 |
+
break
|
| 532 |
+
time.sleep(1)
|
| 533 |
+
retries += 1
|
| 534 |
+
if status is not httpx.codes.OK:
|
| 535 |
+
print(f"Error while initializing ZeroGPU: status {status}", file=sys.stderr)
|
| 536 |
+
|
| 537 |
+
def html_string(html_contents: str, text_contents: str):
|
| 538 |
+
class HTMLString(str):
|
| 539 |
+
def __str__(self): return text_contents
|
| 540 |
+
return HTMLString(html_contents)
|
| 541 |
+
|
| 542 |
+
def _toast_action(auth: AuthLevel | None, supports_html: bool, pro_message: str, unlogged_desc: str, logged_desc: str, ending: str) -> tuple[str, str]:
|
| 543 |
+
if not supports_auth() or auth == 'pro':
|
| 544 |
+
return pro_message, pro_message
|
| 545 |
+
link = SIGNUP_ON_HF_URL if auth is None else SUBSCRIBE_TO_PRO_URL
|
| 546 |
+
text = SIGNUP_ON_HF_TXT if auth is None else SUBSCRIBE_TO_PRO_TXT
|
| 547 |
+
desc = unlogged_desc if auth is None else logged_desc
|
| 548 |
+
desc += f" {ending}."
|
| 549 |
+
style = ";".join(["white-space: nowrap", "text-underline-offset: 2px", "color: var(--body-text-color)"])
|
| 550 |
+
html = f'<a style="{style}" href="{link}">{text}</a> {desc}'
|
| 551 |
+
markdown = f'[{text}]({link}) {desc}'
|
| 552 |
+
return html, markdown
|
| 553 |
+
|
| 554 |
+
def schedule(task_id: int, request: gr.Request | None = None, duration: timedelta = timedelta(0), _first_attempt: bool = True) -> Optional[ScheduleResponse]:
|
| 555 |
+
try:
|
| 556 |
+
gradio_version = version.parse(gr.__version__)
|
| 557 |
+
if gradio_version.major < 4:
|
| 558 |
+
print("ZeroGPU is only compatible with Gradio 4+", file=sys.stderr)
|
| 559 |
+
return None
|
| 560 |
+
except Exception:
|
| 561 |
+
print("Could not parse Gradio version.", file=sys.stderr)
|
| 562 |
+
return None
|
| 563 |
+
|
| 564 |
+
GRADIO_HTML_TOASTS = gradio_version >= version.Version('4.39')
|
| 565 |
+
GRADIO_HANDSHAKE = gradio_version >= version.Version('5.16.1')
|
| 566 |
+
token, payload = _get_token_and_payload(request)
|
| 567 |
+
if token is not None and (token_error := payload.get('error')):
|
| 568 |
+
info("ZeroGPU client warning", f"Falling back to IP-based quotas ({token_error})", level='warning')
|
| 569 |
+
|
| 570 |
+
duration_seconds = duration.seconds
|
| 571 |
+
|
| 572 |
+
res, meta = api_client().schedule(cgroup_path=self_cgroup_device_path(), task_id=task_id, token=token, token_version=2 if GRADIO_HANDSHAKE else 1, duration_seconds=duration_seconds)
|
| 573 |
+
|
| 574 |
+
if isinstance(res, ScheduleResponse):
|
| 575 |
+
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
|
| 576 |
+
return res
|
| 577 |
+
if isinstance(res, QuotaInfos):
|
| 578 |
+
requested = duration.seconds
|
| 579 |
+
message = ""
|
| 580 |
+
if res.wait < timedelta(0):
|
| 581 |
+
message = f"The requested GPU duration ({requested}s) is larger than the maximum allowed"
|
| 582 |
+
elif token is None:
|
| 583 |
+
message = f"Space app has reached its GPU limit. {EXAMPLES_RETRY_MESSAGE}"
|
| 584 |
+
else:
|
| 585 |
+
if payload.get('user') is None and res.wait == timedelta(0):
|
| 586 |
+
message = "You have exceeded your runs limit."
|
| 587 |
+
else:
|
| 588 |
+
gpu = "Pro GPU" if meta.auth == 'pro' else ("free GPU" if meta.auth == 'regular' else "GPU")
|
| 589 |
+
message = f"You have exceeded your {gpu} quota ({requested}s requested vs. {res.left}s left). Try again in {res.wait}"
|
| 590 |
+
print(f"ZeroGPU quota exceeded: {message}", file=sys.stderr)
|
| 591 |
+
return None
|
| 592 |
+
if not isinstance(res, httpx.codes):
|
| 593 |
+
if meta.queuing_reason in ('node', None): info("ZeroGPU queue", "Waiting for a GPU to become available")
|
| 594 |
+
elif meta.queuing_reason == 'concurrency': info("ZeroGPU queue", "Waiting for a GPU slot on this Space")
|
| 595 |
+
else: assert_never(meta.queuing_reason)
|
| 596 |
+
connection_event = get_event()
|
| 597 |
+
if connection_event is None and request is not None:
|
| 598 |
+
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
|
| 599 |
+
while True:
|
| 600 |
+
try:
|
| 601 |
+
event = next(res)
|
| 602 |
+
except StopIteration:
|
| 603 |
+
print("Unexpected end of stream in schedule", file=sys.stderr)
|
| 604 |
+
return None
|
| 605 |
+
except httpx.RemoteProtocolError:
|
| 606 |
+
if not _first_attempt:
|
| 607 |
+
print("Error while re-trying after queue disconnect", file=sys.stderr)
|
| 608 |
+
return None
|
| 609 |
+
return schedule(task_id, request, duration, _first_attempt=False)
|
| 610 |
+
except Exception as e:
|
| 611 |
+
print(f"Error processing schedule event stream: {e}", file=sys.stderr)
|
| 612 |
+
return None
|
| 613 |
+
if event.event == 'ping':
|
| 614 |
+
if connection_event is not None and not connection_event.alive:
|
| 615 |
+
res.close()
|
| 616 |
+
print("Connection closed by visitor while queueing", file=sys.stderr)
|
| 617 |
+
return None
|
| 618 |
+
continue
|
| 619 |
+
if event.event == 'failed':
|
| 620 |
+
if token is None:
|
| 621 |
+
message = f"{NO_GPU_MESSAGE_INQUEUE}. {EXAMPLES_RETRY_MESSAGE}"
|
| 622 |
+
else:
|
| 623 |
+
_, details_markdown = _toast_action(auth=meta.auth, supports_html=GRADIO_HTML_TOASTS, pro_message="Retry later", unlogged_desc="to get a higher", logged_desc="to get the highest", ending="priority in ZeroGPU queues")
|
| 624 |
+
message = f"{NO_GPU_MESSAGE_INQUEUE} {details_markdown}"
|
| 625 |
+
print(f"ZeroGPU queue timeout: {message}", file=sys.stderr)
|
| 626 |
+
return None
|
| 627 |
+
if event.event == 'succeeded':
|
| 628 |
+
assert event.data is not None
|
| 629 |
+
if connection_event is not None and not connection_event.alive:
|
| 630 |
+
release(event.data.allowToken)
|
| 631 |
+
print("Connection closed by visitor on queue success", file=sys.stderr)
|
| 632 |
+
return None
|
| 633 |
+
info("ZeroGPU queue", "Successfully acquired a GPU", level='success')
|
| 634 |
+
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
|
| 635 |
+
return event.data
|
| 636 |
+
if res is httpx.codes.SERVICE_UNAVAILABLE:
|
| 637 |
+
print(f"ZeroGPU client error: {NO_GPU_MESSAGE_REGULAR}", file=sys.stderr)
|
| 638 |
+
return None
|
| 639 |
+
if res is httpx.codes.UNAUTHORIZED:
|
| 640 |
+
print("ZeroGPU client error: Expired ZeroGPU proxy token", file=sys.stderr)
|
| 641 |
+
return None
|
| 642 |
+
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
|
| 643 |
+
print(f"ZeroGPU API /schedule error: {res} ({reason})", file=sys.stderr)
|
| 644 |
+
return None
|
| 645 |
+
|
| 646 |
+
def allow(allow_token: str) -> None:
|
| 647 |
+
process_id = os.getpid()
|
| 648 |
+
if process_id == 1:
|
| 649 |
+
print("CRITICAL: Allowing PID 1 on ZeroGPU will end up killing your Space. Aborting.", file=sys.stderr)
|
| 650 |
+
return
|
| 651 |
+
if api_client().allow(allow_token=allow_token, pid=process_id) is not httpx.codes.OK:
|
| 652 |
+
print(f"API call to /allow failed for token {allow_token}", file=sys.stderr)
|
| 653 |
+
|
| 654 |
+
def release(allow_token: str, *, fail: bool = False, allow_404: bool = True) -> None:
|
| 655 |
+
res = api_client().release(allow_token=allow_token, fail=fail)
|
| 656 |
+
if res is httpx.codes.NO_CONTENT:
|
| 657 |
+
try:
|
| 658 |
+
info("ZeroGPU client warning", UNUSED_MESSAGE, level='warning')
|
| 659 |
+
except AttributeError:
|
| 660 |
+
pass
|
| 661 |
+
warnings.warn(UNUSED_MESSAGE, RuntimeWarning)
|
| 662 |
+
return
|
| 663 |
+
if res is httpx.codes.NOT_FOUND:
|
| 664 |
+
if not allow_404:
|
| 665 |
+
warnings.warn("ZeroGPU API /release warning: 404 Not Found")
|
| 666 |
+
return
|
| 667 |
+
if httpx.codes.is_success(res):
|
| 668 |
+
return
|
| 669 |
+
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
|
| 670 |
+
print(f"ZeroGPU API /release error: {res} ({reason})", file=sys.stderr)
|
| 671 |
+
|
| 672 |
+
def _get_token(request: gr.Request | None) -> str | None:
|
| 673 |
+
if request is None: return None
|
| 674 |
+
headers = getattr(request, 'headers', None)
|
| 675 |
+
if headers is None or not hasattr(headers, '__dict__'):
|
| 676 |
+
print("ZeroGPU client error: Internal Gradio error (headers not found)", file=sys.stderr)
|
| 677 |
+
return None
|
| 678 |
+
if not hasattr(headers, 'get'):
|
| 679 |
+
headers = headers.__dict__
|
| 680 |
+
return headers.get(TOKEN_HEADER.lower())
|
| 681 |
+
|
| 682 |
+
def _get_token_and_payload(request: gr.Request | None) -> tuple[str | None, dict[str, Any]]:
|
| 683 |
+
token = _get_token(request)
|
| 684 |
+
if token is None: return None, {}
|
| 685 |
+
payload = jwt_payload(token)
|
| 686 |
+
return token, payload
|
| 687 |
+
|
| 688 |
+
def compute_base_free_memory(total_memory: int) -> int:
|
| 689 |
+
pytorch_base_memory = 309002240
|
| 690 |
+
return total_memory - pytorch_base_memory - Config.zerogpu_cuda_reserved_memory
|
| 691 |
+
|
| 692 |
+
CUDA_DEVICE_NAME_STATIC = Config.zerogpu_cuda_device_name
|
| 693 |
+
CUDA_TOTAL_MEMORY_STATIC = Config.zerogpu_cuda_total_memory
|
| 694 |
+
CUDA_MEM_GET_INFO_STATIC = (compute_base_free_memory(CUDA_TOTAL_MEMORY_STATIC), CUDA_TOTAL_MEMORY_STATIC)
|
| 695 |
+
CUDA_DEVICE_CAPABILITY_STATIC = (Config.zerogpu_cuda_capability_major, Config.zerogpu_cuda_capability_minor)
|
| 696 |
+
CUDA_DEVICE_PROPERTIES_STATIC = SimpleNamespace(name=CUDA_DEVICE_NAME_STATIC, major=CUDA_DEVICE_CAPABILITY_STATIC[0], minor=CUDA_DEVICE_CAPABILITY_STATIC[1], total_memory=CUDA_TOTAL_MEMORY_STATIC, multi_processor_count=Config.zerogpu_cuda_multi_processor_count)
|
| 697 |
+
|
| 698 |
+
if torch:
|
| 699 |
+
class MockCudaRuntime:
|
| 700 |
+
def setDevice(self, device):
|
| 701 |
+
pass
|
| 702 |
+
def getDevice(self):
|
| 703 |
+
return 0
|
| 704 |
+
def deviceSynchronize(self):
|
| 705 |
+
pass
|
| 706 |
+
def deviceGetStreamPriorityRange(self):
|
| 707 |
+
return 0, 0
|
| 708 |
+
cudart = MockCudaRuntime()
|
| 709 |
+
|
| 710 |
+
if torch and torch.version.cuda.startswith("12."):
|
| 711 |
+
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "num_sync_all_streams": 0, "num_device_alloc": 0, "num_device_free": 0, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
|
| 712 |
+
else:
|
| 713 |
+
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
|
| 714 |
+
|
| 715 |
+
def cudaMemGetInfo(device: int, /):
|
| 716 |
+
return CUDA_MEM_GET_INFO_STATIC
|
| 717 |
+
|
| 718 |
+
PAGE_SIZE = 4096
|
| 719 |
+
try:
|
| 720 |
+
TOTAL_MEMORY = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')
|
| 721 |
+
except (ValueError, AttributeError):
|
| 722 |
+
TOTAL_MEMORY = 8 * (1024**3)
|
| 723 |
+
VM_MAX_SIZE = min(2**38, TOTAL_MEMORY // 2)
|
| 724 |
+
BUFFER_SIZE = 128 * 2**20
|
| 725 |
+
BUFFER_COUNT = 2
|
| 726 |
+
if torch:
|
| 727 |
+
TensorWithSizes: TypeAlias = 'tuple[torch.Tensor, int, int]'
|
| 728 |
+
|
| 729 |
+
if torch:
|
| 730 |
+
@dataclass
|
| 731 |
+
class ZeroGPUTensorPack:
|
| 732 |
+
base_dir: str
|
| 733 |
+
batches: list[list[TensorWithSizes]]
|
| 734 |
+
big_tensors: list[list[TensorWithSizes]]
|
| 735 |
+
fakes: dict[torch.Tensor, list[torch.Tensor]]
|
| 736 |
+
total_size: int
|
| 737 |
+
|
| 738 |
+
def path(self):
|
| 739 |
+
return f'{self.base_dir}/{id(self)}'
|
| 740 |
+
|
| 741 |
+
def __del__(self):
|
| 742 |
+
try:
|
| 743 |
+
os.remove(self.path())
|
| 744 |
+
except (FileNotFoundError, TypeError, AttributeError):
|
| 745 |
+
pass
|
| 746 |
+
|
| 747 |
+
def write_packing(fd: int, tensor: torch.Tensor):
|
| 748 |
+
try:
|
| 749 |
+
clone = torch.empty_like(tensor)
|
| 750 |
+
size = clone.untyped_storage().size()
|
| 751 |
+
buffer = torch.UntypedStorage(VM_MAX_SIZE)
|
| 752 |
+
buffer_ptr = buffer.data_ptr()
|
| 753 |
+
offset = -buffer_ptr % PAGE_SIZE
|
| 754 |
+
padding = -size % PAGE_SIZE
|
| 755 |
+
clone.set_(buffer[offset:offset + size], 0, clone.shape, clone.stride())
|
| 756 |
+
clone.copy_(tensor)
|
| 757 |
+
mv = memoryview((ctypes.c_char * (size + padding)).from_address(buffer_ptr + offset))
|
| 758 |
+
written_bytes = 0
|
| 759 |
+
while written_bytes < size:
|
| 760 |
+
written_bytes += os.write(fd, mv[written_bytes:])
|
| 761 |
+
except Exception as e:
|
| 762 |
+
print(f"Error during tensor write packing: {e}", file=sys.stderr)
|
| 763 |
+
|
| 764 |
+
def pack_tensors(tensors: set[torch.Tensor], fakes: dict[torch.Tensor, list[torch.Tensor]], offload_dir: str, callback: Callable[[int], None] | None = None):
|
| 765 |
+
callback = (lambda b: None) if callback is None else callback
|
| 766 |
+
batches: list[list[TensorWithSizes]] = []
|
| 767 |
+
big_tensors: list[list[TensorWithSizes]] = []
|
| 768 |
+
tensors_with_sizes: list[tuple[torch.Tensor, int, int]] = []
|
| 769 |
+
for tensor in tensors:
|
| 770 |
+
size = tensor.numel() * tensor.element_size()
|
| 771 |
+
aligned_size = size + (-size % PAGE_SIZE)
|
| 772 |
+
tensors_with_sizes.append((tensor, size, aligned_size))
|
| 773 |
+
current_batch, current_size = [], 0
|
| 774 |
+
for (tensor, size, aligned_size) in sorted(tensors_with_sizes, key=lambda item: item[2]):
|
| 775 |
+
if aligned_size > BUFFER_SIZE:
|
| 776 |
+
big_tensors.append((tensor, size, aligned_size))
|
| 777 |
+
continue
|
| 778 |
+
current_size += aligned_size
|
| 779 |
+
if current_size > BUFFER_SIZE:
|
| 780 |
+
batches.append(current_batch)
|
| 781 |
+
current_batch, current_size = [(tensor, size, aligned_size)], aligned_size
|
| 782 |
+
else:
|
| 783 |
+
current_batch.append((tensor, size, aligned_size))
|
| 784 |
+
if current_batch:
|
| 785 |
+
batches.append(current_batch)
|
| 786 |
+
get_meta = {tensor: empty_like_raw_alloc(tensor) for tensor in tensors}
|
| 787 |
+
batches_meta = [[(get_meta[tensor], size, asize) for tensor, size, asize in batch] for batch in batches]
|
| 788 |
+
big_tensors_meta = [(get_meta[tensor], size, asize) for tensor, size, asize in big_tensors]
|
| 789 |
+
fakes_meta = {get_meta[tensor]: fake_list for tensor, fake_list in fakes.items()}
|
| 790 |
+
pack = ZeroGPUTensorPack(base_dir=offload_dir, batches=batches_meta, big_tensors=big_tensors_meta, fakes=fakes_meta, total_size=sum([size for _, size, _ in tensors_with_sizes]))
|
| 791 |
+
fd = -1
|
| 792 |
+
try:
|
| 793 |
+
fd = os.open(pack.path(), os.O_CREAT | os.O_WRONLY | os.O_DIRECT)
|
| 794 |
+
total_asize = sum([aligned_size for batch in batches for *_, aligned_size in batch])
|
| 795 |
+
total_asize += sum([aligned_size for *_, aligned_size in big_tensors])
|
| 796 |
+
if total_asize > 0:
|
| 797 |
+
os.posix_fallocate(fd, 0, total_asize)
|
| 798 |
+
for batch in batches:
|
| 799 |
+
for tensor, size, _ in batch:
|
| 800 |
+
write_packing(fd, tensor)
|
| 801 |
+
callback(size)
|
| 802 |
+
for tensor, size, _ in big_tensors:
|
| 803 |
+
write_packing(fd, tensor)
|
| 804 |
+
callback(size)
|
| 805 |
+
return pack
|
| 806 |
+
except Exception as e:
|
| 807 |
+
print(f"Failed to pack tensors to disk: {e}", file=sys.stderr)
|
| 808 |
+
return pack
|
| 809 |
+
finally:
|
| 810 |
+
if fd != -1:
|
| 811 |
+
os.close(fd)
|
| 812 |
+
|
| 813 |
+
def pack_to_cuda(pack: ZeroGPUTensorPack, callback: Callable[[int], None] | None = None):
|
| 814 |
+
callback = (lambda b: None) if callback is None else callback
|
| 815 |
+
free_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
|
| 816 |
+
read_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
|
| 817 |
+
for _ in range(BUFFER_COUNT):
|
| 818 |
+
free_buffers.put(torch.ByteTensor(BUFFER_SIZE).pin_memory())
|
| 819 |
+
def read(fd: int, buffer: torch.Tensor, size: int):
|
| 820 |
+
mv = memoryview((ctypes.c_char * size).from_address(buffer.data_ptr()))
|
| 821 |
+
read_bytes = 0
|
| 822 |
+
while read_bytes < size:
|
| 823 |
+
read_bytes += os.readv(fd, [mv[read_bytes:]])
|
| 824 |
+
def disk_to_pin(fd: int):
|
| 825 |
+
for batch in pack.batches:
|
| 826 |
+
buffer = free_buffers.get()
|
| 827 |
+
batch_size = sum([aligned_size for *_, aligned_size in batch])
|
| 828 |
+
read(fd, buffer, batch_size)
|
| 829 |
+
read_buffers.put(buffer)
|
| 830 |
+
for *_, aligned_size in pack.big_tensors:
|
| 831 |
+
read_bytes = 0
|
| 832 |
+
while read_bytes < aligned_size:
|
| 833 |
+
buffer = free_buffers.get()
|
| 834 |
+
read_size = min(BUFFER_SIZE, aligned_size - read_bytes)
|
| 835 |
+
read(fd, buffer, read_size)
|
| 836 |
+
read_buffers.put(buffer)
|
| 837 |
+
read_bytes += read_size
|
| 838 |
+
def pin_to_cuda():
|
| 839 |
+
total_duration_in_callback = 0
|
| 840 |
+
for batch in pack.batches:
|
| 841 |
+
buffer = read_buffers.get()
|
| 842 |
+
offset = 0
|
| 843 |
+
cuda_storages = []
|
| 844 |
+
for tensor, size, aligned_size in batch:
|
| 845 |
+
cuda_storages.append(buffer[offset:offset + size].cuda(non_blocking=True))
|
| 846 |
+
offset += aligned_size
|
| 847 |
+
torch.cuda.synchronize()
|
| 848 |
+
free_buffers.put(buffer)
|
| 849 |
+
batch_total_size = 0
|
| 850 |
+
for (tensor, size, _), cuda_storage in zip(batch, cuda_storages):
|
| 851 |
+
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
|
| 852 |
+
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
|
| 853 |
+
for fake in pack.fakes[tensor]:
|
| 854 |
+
fake.data = cuda_tensor
|
| 855 |
+
batch_total_size += size
|
| 856 |
+
t0 = time.perf_counter()
|
| 857 |
+
callback(batch_total_size)
|
| 858 |
+
total_duration_in_callback += time.perf_counter() - t0
|
| 859 |
+
for tensor, size, _ in pack.big_tensors:
|
| 860 |
+
cuda_storage = torch.empty(size, dtype=torch.uint8, device='cuda')
|
| 861 |
+
offset = 0
|
| 862 |
+
while offset < size:
|
| 863 |
+
buffer = read_buffers.get()
|
| 864 |
+
read_size = min(BUFFER_SIZE, size - offset)
|
| 865 |
+
cuda_storage[offset:offset + read_size] = buffer[:read_size]
|
| 866 |
+
offset += read_size
|
| 867 |
+
torch.cuda.synchronize()
|
| 868 |
+
free_buffers.put(buffer)
|
| 869 |
+
t0 = time.perf_counter()
|
| 870 |
+
callback(read_size)
|
| 871 |
+
total_duration_in_callback += time.perf_counter() - t0
|
| 872 |
+
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
|
| 873 |
+
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
|
| 874 |
+
for fake in pack.fakes[tensor]:
|
| 875 |
+
fake.data = cuda_tensor
|
| 876 |
+
debug(f"{total_duration_in_callback=}")
|
| 877 |
+
fd = -1
|
| 878 |
+
try:
|
| 879 |
+
with ThreadPoolExecutor(2) as e:
|
| 880 |
+
fd = os.open(pack.path(), os.O_RDONLY | os.O_DIRECT)
|
| 881 |
+
futures = [e.submit(copy_context().run, disk_to_pin, fd), e.submit(copy_context().run, pin_to_cuda)]
|
| 882 |
+
for future in as_completed(futures):
|
| 883 |
+
future.result()
|
| 884 |
+
except Exception as e:
|
| 885 |
+
print(f"Error during pack_to_cuda: {e}", file=sys.stderr)
|
| 886 |
+
finally:
|
| 887 |
+
if fd != -1:
|
| 888 |
+
os.close(fd)
|
| 889 |
+
|
| 890 |
+
@contextmanager
|
| 891 |
+
def cuda_unavailable(torch_module: ModuleType):
|
| 892 |
+
_is_available = torch_module.cuda.is_available
|
| 893 |
+
torch_module.cuda.is_available = lambda: False
|
| 894 |
+
yield
|
| 895 |
+
torch_module.cuda.is_available = _is_available
|
| 896 |
+
|
| 897 |
+
def maybe_import_bitsandbytes():
|
| 898 |
+
try:
|
| 899 |
+
if torch is None: return None
|
| 900 |
+
bnb_version = version.parse(metadata.version('bitsandbytes'))
|
| 901 |
+
if bnb_version < version.parse('0.40.0'):
|
| 902 |
+
print(f"Warning: ZeroGPU requires bitsandbytes >= 0.40.0 (installed: {bnb_version})", file=sys.stderr)
|
| 903 |
+
return None
|
| 904 |
+
ctx_factory = (lambda: cuda_unavailable(torch)) if bnb_version < version.parse('0.43.1') else nullcontext
|
| 905 |
+
with (ctx := ctx_factory()):
|
| 906 |
+
importlib.import_module('bitsandbytes')
|
| 907 |
+
if not isinstance(ctx, nullcontext):
|
| 908 |
+
print("↑ Those bitsandbytes warnings are expected on ZeroGPU ↑", file=sys.stderr)
|
| 909 |
+
return ctx_factory
|
| 910 |
+
except (ImportError, metadata.PackageNotFoundError):
|
| 911 |
+
return None
|
| 912 |
+
except Exception as e:
|
| 913 |
+
print(f"Unexpected error during bitsandbytes check: {e}", file=sys.stderr)
|
| 914 |
+
return None
|
| 915 |
+
|
| 916 |
+
bnb_import_context = maybe_import_bitsandbytes()
|
| 917 |
+
|
| 918 |
+
if bnb_import_context and torch:
|
| 919 |
+
from torch.utils.weak import WeakTensorKeyDictionary
|
| 920 |
+
with (import_ctx := bnb_import_context()):
|
| 921 |
+
CUDASetup = None
|
| 922 |
+
if not isinstance(import_ctx, nullcontext):
|
| 923 |
+
from bitsandbytes.cuda_setup.main import CUDASetup
|
| 924 |
+
from bitsandbytes import cextension, functional
|
| 925 |
+
from bitsandbytes.nn import Int8Params, Params4bit
|
| 926 |
+
|
| 927 |
+
_param_to_8bit = Int8Params.to
|
| 928 |
+
_param_cuda_8bit = Int8Params.cuda
|
| 929 |
+
_param_to_4bit = Params4bit.to
|
| 930 |
+
_param_cuda_4bit = Params4bit.cuda
|
| 931 |
+
TensorToArgs_bnb = Tuple[torch.device, torch.dtype, bool, torch.memory_format]
|
| 932 |
+
to_ops_8bit: dict[Int8Params, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
|
| 933 |
+
to_ops_4bit: dict[Params4bit, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
|
| 934 |
+
|
| 935 |
+
def _to_op_register_8bit(self: Int8Params, *args, **kwargs):
|
| 936 |
+
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
| 937 |
+
device, *_ = parsed
|
| 938 |
+
if not isinstance(device, torch.device) or device.type != 'cuda':
|
| 939 |
+
return _param_to_8bit(self, *args, **kwargs)
|
| 940 |
+
to_ops_8bit[self] = parsed
|
| 941 |
+
return self
|
| 942 |
+
|
| 943 |
+
def _to_op_register_4bit(self: Params4bit, *args, **kwargs):
|
| 944 |
+
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
| 945 |
+
device, *_ = parsed
|
| 946 |
+
if not isinstance(device, torch.device) or device.type != 'cuda':
|
| 947 |
+
return _param_to_4bit(self, *args, **kwargs)
|
| 948 |
+
to_ops_4bit[self] = parsed
|
| 949 |
+
return self
|
| 950 |
+
|
| 951 |
+
def _cuda_op_arg_check_bnb(device: Union[torch.device, int, str, None]) -> bool:
|
| 952 |
+
if device is None or isinstance(device, int): return True
|
| 953 |
+
if isinstance(device, str): device = torch.device(device)
|
| 954 |
+
return device.type == 'cuda'
|
| 955 |
+
|
| 956 |
+
def _cuda_op_register_8bit(self: Int8Params, device: Union[torch.device, int, str, None] = None, **kwargs):
|
| 957 |
+
if not _cuda_op_arg_check_bnb(device): return _param_cuda_8bit(self, device, **kwargs)
|
| 958 |
+
to_ops_8bit[self] = None
|
| 959 |
+
return self
|
| 960 |
+
|
| 961 |
+
def _cuda_op_register_4bit(self: Params4bit, device: Union[torch.device, int, str, None] = None, **kwargs):
|
| 962 |
+
if not _cuda_op_arg_check_bnb(device): return _param_cuda_4bit(self, device, **kwargs)
|
| 963 |
+
to_ops_4bit[self] = None
|
| 964 |
+
return self
|
| 965 |
+
|
| 966 |
+
def _patch_bnb():
|
| 967 |
+
Int8Params.to = _to_op_register_8bit
|
| 968 |
+
Int8Params.cuda = _cuda_op_register_8bit
|
| 969 |
+
Params4bit.to = _to_op_register_4bit
|
| 970 |
+
Params4bit.cuda = _cuda_op_register_4bit
|
| 971 |
+
|
| 972 |
+
def _unpatch_bnb():
|
| 973 |
+
Int8Params.to = _param_to_8bit
|
| 974 |
+
Int8Params.cuda = _param_cuda_8bit
|
| 975 |
+
Params4bit.to = _param_to_4bit
|
| 976 |
+
Params4bit.cuda = _param_cuda_4bit
|
| 977 |
+
|
| 978 |
+
def _move_bnb():
|
| 979 |
+
if CUDASetup is not None:
|
| 980 |
+
CUDASetup._instance = None
|
| 981 |
+
importlib.reload(cextension)
|
| 982 |
+
functional.lib = cextension.lib
|
| 983 |
+
for tensor, parsed_args in to_ops_8bit.items():
|
| 984 |
+
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
|
| 985 |
+
tensor.data = _param_to_8bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
|
| 986 |
+
for tensor, parsed_args in to_ops_4bit.items():
|
| 987 |
+
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
|
| 988 |
+
tensor.data = _param_to_4bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
|
| 989 |
+
else:
|
| 990 |
+
def _patch_bnb(): pass
|
| 991 |
+
def _unpatch_bnb(): pass
|
| 992 |
+
def _move_bnb(): pass
|
| 993 |
+
|
| 994 |
+
patch_bnb = _patch_bnb
|
| 995 |
+
unpatch_bnb = _unpatch_bnb
|
| 996 |
+
move_bnb = _move_bnb
|
| 997 |
+
|
| 998 |
+
class _BitsAndBytesManager:
|
| 999 |
+
def patch(self): return patch_bnb()
|
| 1000 |
+
def unpatch(self): return unpatch_bnb()
|
| 1001 |
+
def move(self): return move_bnb()
|
| 1002 |
+
|
| 1003 |
+
if torch:
|
| 1004 |
+
PINNED_MEMORY_RATIO_LIMIT = 0.1
|
| 1005 |
+
OPS_INPUTS_CHECK_NO_RETURN = (torch.Tensor.equal,)
|
| 1006 |
+
OPS_INPUT_CHECK_SELF_RETURN = (torch.Tensor.set_, torch.ops.aten.set_.source_Tensor)
|
| 1007 |
+
OFFLOADED_ERROR_MESSAGE = "Cannot apply function {} on disk-offloaded Tensor {}"
|
| 1008 |
+
_tensor_make_subclass = torch.Tensor._make_subclass
|
| 1009 |
+
_asarray = torch.asarray
|
| 1010 |
+
_device = torch.device
|
| 1011 |
+
_cuda_init_v2 = torch._C._cuda_init
|
| 1012 |
+
_cuda_exchange_device = torch.cuda._exchange_device
|
| 1013 |
+
_cuda_available_v2 = torch.cuda.is_available
|
| 1014 |
+
_cuda_device_count_v2 = torch.cuda.device_count
|
| 1015 |
+
_cuda_current_device_v2 = torch.cuda.current_device
|
| 1016 |
+
_cuda_synchronize = torch.cuda.synchronize
|
| 1017 |
+
_cuda_get_device_capability_v2 = torch.cuda.get_device_capability
|
| 1018 |
+
_cuda_get_device_properties_v2 = torch.cuda.get_device_properties
|
| 1019 |
+
_cuda_get_device_name_v2 = torch.cuda.get_device_name
|
| 1020 |
+
_cuda_memory_stats_as_nested_dict = torch.cuda.memory.memory_stats_as_nested_dict
|
| 1021 |
+
_cuda_cudart = torch.cuda.cudart
|
| 1022 |
+
_cuda_maybe_exchange_device = getattr(torch.cuda, '_maybe_exchange_device', None)
|
| 1023 |
+
cuda_aliases: dict[torch.Tensor, torch.Tensor | None] = WeakTensorKeyDictionary()
|
| 1024 |
+
tensor_packs: list[ZeroGPUTensorPack] = []
|
| 1025 |
+
|
| 1026 |
+
class ZeroGPUTensor(torch.Tensor): pass
|
| 1027 |
+
|
| 1028 |
+
def empty_fake(tensor: torch.Tensor):
|
| 1029 |
+
fake = empty_like_raw_alloc(tensor, requires_grad=tensor.requires_grad)
|
| 1030 |
+
if fake.__class__ != tensor.__class__:
|
| 1031 |
+
fake = _tensor_make_subclass(tensor.__class__, fake, require_grad=tensor.requires_grad)
|
| 1032 |
+
return fake
|
| 1033 |
+
|
| 1034 |
+
def no_int_device(*args, **kwargs):
|
| 1035 |
+
if len(args) and isinstance(index := args[0], int):
|
| 1036 |
+
args = (f'cuda:{index}', *args[1:])
|
| 1037 |
+
if isinstance(index := kwargs.get('device'), int):
|
| 1038 |
+
kwargs['device'] = f'cuda:{index}'
|
| 1039 |
+
return args, kwargs
|
| 1040 |
+
|
| 1041 |
+
class ZeroGPUFunctionMode(torch.overrides.TorchFunctionMode):
|
| 1042 |
+
def __torch_function__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
|
| 1043 |
+
kwargs = {} if kwargs is None else kwargs
|
| 1044 |
+
try:
|
| 1045 |
+
if func == torch._C._nn._parse_to:
|
| 1046 |
+
args, kwargs = no_int_device(*args, **kwargs)
|
| 1047 |
+
return func(*args, **kwargs)
|
| 1048 |
+
if func == torch.Tensor.cuda or func == torch.Tensor.cpu:
|
| 1049 |
+
memory_format = kwargs.get("memory_format")
|
| 1050 |
+
device_str = "cuda" if func == torch.Tensor.cuda else "cpu"
|
| 1051 |
+
to_kwargs = {"device": device_str}
|
| 1052 |
+
if memory_format is not None: to_kwargs["memory_format"] = memory_format
|
| 1053 |
+
return self.__torch_function__(torch.Tensor.to, types, (args[0],), to_kwargs)
|
| 1054 |
+
if func == torch.Tensor.to and len(args) > 1:
|
| 1055 |
+
parse_to_args, parse_to_kwargs = no_int_device(*args[1:], **kwargs)
|
| 1056 |
+
device, dtype, _, memory_format = torch._C._nn._parse_to(*parse_to_args, **parse_to_kwargs)
|
| 1057 |
+
return self.__torch_function__(torch.Tensor.to, types, (args[0],), {'device': device, 'dtype': dtype, 'memory_format': memory_format})
|
| 1058 |
+
if func == torch.Tensor.data.__set__:
|
| 1059 |
+
self_tensor, target = args
|
| 1060 |
+
if target in cuda_aliases:
|
| 1061 |
+
if (target_original := cuda_aliases[target]) is None:
|
| 1062 |
+
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), target), file=sys.stderr)
|
| 1063 |
+
return
|
| 1064 |
+
original = empty_fake(self_tensor)
|
| 1065 |
+
original.data = target_original
|
| 1066 |
+
cuda_aliases[self_tensor] = original
|
| 1067 |
+
elif self_tensor in cuda_aliases:
|
| 1068 |
+
del cuda_aliases[self_tensor]
|
| 1069 |
+
self_tensor.data = target
|
| 1070 |
+
return
|
| 1071 |
+
if func == torch.Tensor.device.__get__:
|
| 1072 |
+
tensor, = args
|
| 1073 |
+
if tensor in cuda_aliases: return torch.device('cuda', index=0)
|
| 1074 |
+
elif func == torch.Tensor.__repr__:
|
| 1075 |
+
tensor, = args
|
| 1076 |
+
if tensor in cuda_aliases:
|
| 1077 |
+
original = cuda_aliases[tensor] or tensor.to('meta')
|
| 1078 |
+
original_class = original.__class__
|
| 1079 |
+
original.__class__ = ZeroGPUTensor
|
| 1080 |
+
try:
|
| 1081 |
+
return func(original, **kwargs)
|
| 1082 |
+
finally:
|
| 1083 |
+
original.__class__ = original_class
|
| 1084 |
+
elif func == torch.Tensor.untyped_storage:
|
| 1085 |
+
tensor, = args
|
| 1086 |
+
if tensor in cuda_aliases:
|
| 1087 |
+
if (original := cuda_aliases[tensor]) is None:
|
| 1088 |
+
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), tensor), file=sys.stderr)
|
| 1089 |
+
return None
|
| 1090 |
+
res = func(original, **kwargs)
|
| 1091 |
+
res._zerogpu = True
|
| 1092 |
+
return res
|
| 1093 |
+
cuda: bool | None = None
|
| 1094 |
+
if (device := kwargs.get('device')) is not None:
|
| 1095 |
+
device = torch.device(device)
|
| 1096 |
+
cuda = device.type == 'cuda'
|
| 1097 |
+
if cuda: kwargs['device'] = torch.device('cpu')
|
| 1098 |
+
swapped, inputs_are_cuda = {}, set()
|
| 1099 |
+
def swap(t: torch.Tensor):
|
| 1100 |
+
nonlocal inputs_are_cuda
|
| 1101 |
+
if t not in cuda_aliases:
|
| 1102 |
+
inputs_are_cuda.add(False)
|
| 1103 |
+
return t
|
| 1104 |
+
original = cuda_aliases[t]
|
| 1105 |
+
if original is None:
|
| 1106 |
+
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), t), file=sys.stderr)
|
| 1107 |
+
return t
|
| 1108 |
+
swapped[original] = t
|
| 1109 |
+
inputs_are_cuda.add(True)
|
| 1110 |
+
return original
|
| 1111 |
+
args_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, args)
|
| 1112 |
+
kwargs_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, kwargs)
|
| 1113 |
+
if inputs_are_cuda == {True} and cuda is not False: cuda = True
|
| 1114 |
+
if len(args) == 1 and torch.utils._python_dispatch.is_traceable_wrapper_subclass(wt := args[0]):
|
| 1115 |
+
if func in {torch.Tensor.detach, torch.ops.aten.alias.default, torch.ops.aten.clone.default}:
|
| 1116 |
+
with self: return torch.utils._python_dispatch.transform_subclass(wt, lambda _, t: func(t))
|
| 1117 |
+
res = func(*args_, **kwargs_)
|
| 1118 |
+
for original, fake in swapped.items(): fake.data = empty_fake(original)
|
| 1119 |
+
if func in {torch.ops.aten.index.Tensor, torch.Tensor.__getitem__}:
|
| 1120 |
+
cuda = args[0] in cuda_aliases
|
| 1121 |
+
inputs_are_cuda = {cuda}
|
| 1122 |
+
if (isinstance(res, torch.Tensor) or func in OPS_INPUTS_CHECK_NO_RETURN) and not (func == torch.ops.aten.set_.source_Tensor and len(args_) == 3):
|
| 1123 |
+
st = args_[0] if len(args_) >= 1 and isinstance(args_[0], torch.Tensor) else None
|
| 1124 |
+
if (res is not st or func in OPS_INPUT_CHECK_SELF_RETURN) and inputs_are_cuda == {True, False}:
|
| 1125 |
+
print("RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 (ZeroGPU) and cpu!", file=sys.stderr)
|
| 1126 |
+
def register(t: torch.Tensor):
|
| 1127 |
+
if t in swapped and cuda is not False: return swapped[t]
|
| 1128 |
+
if cuda is not True: return t
|
| 1129 |
+
fake = empty_fake(t)
|
| 1130 |
+
cuda_aliases[fake] = t
|
| 1131 |
+
return fake
|
| 1132 |
+
return torch.utils._pytree.tree_map_only(torch.Tensor, register, res)
|
| 1133 |
+
except Exception as e:
|
| 1134 |
+
print(f"Error in ZeroGPUFunctionMode: {e}", file=sys.stderr)
|
| 1135 |
+
return func(*args, **kwargs)
|
| 1136 |
+
|
| 1137 |
+
class DefaultDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
|
| 1138 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
|
| 1139 |
+
return func(*args, **(kwargs or {}))
|
| 1140 |
+
|
| 1141 |
+
function_mode = ZeroGPUFunctionMode()
|
| 1142 |
+
dispatch_mode = DefaultDispatchMode()
|
| 1143 |
+
|
| 1144 |
+
def _untyped_storage_new_register(*args, **kwargs):
|
| 1145 |
+
cuda = False
|
| 1146 |
+
if (device := kwargs.get('device')) is not None and device.type == 'cuda':
|
| 1147 |
+
cuda = True
|
| 1148 |
+
del kwargs['device']
|
| 1149 |
+
storage = torch._C.StorageBase.__new__(*args, **kwargs)
|
| 1150 |
+
if cuda: storage._zerogpu = True
|
| 1151 |
+
return storage
|
| 1152 |
+
|
| 1153 |
+
@property
|
| 1154 |
+
def _untyped_storage_device(self):
|
| 1155 |
+
if hasattr(self, '_zerogpu'): return torch.device('cuda', index=0)
|
| 1156 |
+
return torch._C.StorageBase.device.__get__(self)
|
| 1157 |
+
|
| 1158 |
+
def _tensor_make_subclass_function_mode(*args, **kwargs):
|
| 1159 |
+
with torch._C.DisableTorchFunction():
|
| 1160 |
+
return function_mode.__torch_function__(_tensor_make_subclass, (), args=args, kwargs=kwargs)
|
| 1161 |
+
|
| 1162 |
+
def _asarray_function_mode(*args, **kwargs):
|
| 1163 |
+
with torch._C.DisableTorchFunction():
|
| 1164 |
+
return function_mode.__torch_function__(_asarray, (), args=args, kwargs=kwargs)
|
| 1165 |
+
|
| 1166 |
+
class _DeviceStringOnlyMeta(type):
|
| 1167 |
+
def __instancecheck__(cls, instance): return isinstance(instance, _device)
|
| 1168 |
+
|
| 1169 |
+
class _DeviceStringOnly(metaclass=_DeviceStringOnlyMeta):
|
| 1170 |
+
def __new__(cls, *args, **kwargs):
|
| 1171 |
+
args, kwargs = no_int_device(*args, **kwargs)
|
| 1172 |
+
return _device(*args, **kwargs)
|
| 1173 |
+
|
| 1174 |
+
def _cuda_init_raise_v2():
|
| 1175 |
+
pass
|
| 1176 |
+
|
| 1177 |
+
def _cuda_dummy_exchange_device(device):
|
| 1178 |
+
assert device in {-1, 0}
|
| 1179 |
+
return device
|
| 1180 |
+
|
| 1181 |
+
def patch_v2():
|
| 1182 |
+
function_mode.__enter__()
|
| 1183 |
+
dispatch_mode.__enter__()
|
| 1184 |
+
torch.Tensor._make_subclass = _tensor_make_subclass_function_mode
|
| 1185 |
+
torch.UntypedStorage.__new__ = _untyped_storage_new_register
|
| 1186 |
+
torch.UntypedStorage.device = _untyped_storage_device
|
| 1187 |
+
torch.asarray = _asarray_function_mode
|
| 1188 |
+
torch.device = _DeviceStringOnly
|
| 1189 |
+
torch._C._cuda_init = _cuda_init_raise_v2
|
| 1190 |
+
torch.cuda._exchange_device = _cuda_dummy_exchange_device
|
| 1191 |
+
torch.cuda.is_available = lambda: True
|
| 1192 |
+
torch.cuda.device_count = lambda: 1
|
| 1193 |
+
torch.cuda.current_device = lambda: 0
|
| 1194 |
+
torch.cuda.synchronize = lambda *args: None
|
| 1195 |
+
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_STATIC
|
| 1196 |
+
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_STATIC
|
| 1197 |
+
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_STATIC
|
| 1198 |
+
torch.cuda.memory.memory_stats_as_nested_dict = lambda *args, **kwargs: CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC
|
| 1199 |
+
torch.cuda.cudart = lambda: cudart
|
| 1200 |
+
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
|
| 1201 |
+
_BitsAndBytesManager().patch()
|
| 1202 |
+
|
| 1203 |
+
def unpatch_v2():
|
| 1204 |
+
from contextlib import suppress
|
| 1205 |
+
try:
|
| 1206 |
+
dispatch_mode.__exit__(None, None, None)
|
| 1207 |
+
function_mode.__exit__(None, None, None)
|
| 1208 |
+
except RuntimeError: pass
|
| 1209 |
+
torch.Tensor._make_subclass = _tensor_make_subclass
|
| 1210 |
+
torch.UntypedStorage.__new__ = torch._C.StorageBase.__new__
|
| 1211 |
+
torch.UntypedStorage.device = torch._C.StorageBase.device
|
| 1212 |
+
torch.asarray = _asarray
|
| 1213 |
+
torch.device = _device
|
| 1214 |
+
torch._C._cuda_init = _cuda_init_v2
|
| 1215 |
+
torch.cuda._exchange_device = _cuda_exchange_device
|
| 1216 |
+
torch.cuda.is_available = _cuda_available_v2
|
| 1217 |
+
torch.cuda.device_count = _cuda_device_count_v2
|
| 1218 |
+
torch.cuda.current_device = _cuda_current_device_v2
|
| 1219 |
+
torch.cuda.synchronize = _cuda_synchronize
|
| 1220 |
+
torch.cuda.get_device_capability = _cuda_get_device_capability_v2
|
| 1221 |
+
torch.cuda.get_device_properties = _cuda_get_device_properties_v2
|
| 1222 |
+
torch.cuda.get_device_name = _cuda_get_device_name_v2
|
| 1223 |
+
torch.cuda.memory.memory_stats_as_nested_dict = _cuda_memory_stats_as_nested_dict
|
| 1224 |
+
torch.cuda.cudart = _cuda_cudart
|
| 1225 |
+
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
|
| 1226 |
+
_BitsAndBytesManager().unpatch()
|
| 1227 |
+
|
| 1228 |
+
def _total_unpacked_size():
|
| 1229 |
+
tensors = [t for t in cuda_aliases.values() if t is not None]
|
| 1230 |
+
deduped = {AliasId.from_tensor(t): t for t in tensors}
|
| 1231 |
+
return sum([t.numel() * t.element_size() for t in deduped.values()])
|
| 1232 |
+
|
| 1233 |
+
def _pack_v2_internal(offload_dir: str):
|
| 1234 |
+
originals, originals_dedup, fakes = set(), {}, defaultdict(list)
|
| 1235 |
+
for fake, original in cuda_aliases.items():
|
| 1236 |
+
if original is not None:
|
| 1237 |
+
original_id = AliasId.from_tensor(original)
|
| 1238 |
+
if original_id not in originals_dedup:
|
| 1239 |
+
originals_dedup[original_id] = original
|
| 1240 |
+
originals.add(original)
|
| 1241 |
+
fakes[originals_dedup[original_id]].append(fake)
|
| 1242 |
+
total_size = _total_unpacked_size()
|
| 1243 |
+
progress_context = tqdm(total=total_size, unit='B', unit_scale=True, desc="ZeroGPU tensors packing") if tqdm is not None and total_size > 0 else nullcontext()
|
| 1244 |
+
with progress_context as progress:
|
| 1245 |
+
update = progress.update if progress is not None else lambda _: None
|
| 1246 |
+
pack = pack_tensors(originals, fakes, offload_dir, callback=update)
|
| 1247 |
+
tensor_packs.append(pack)
|
| 1248 |
+
for fake_list in fakes.values():
|
| 1249 |
+
for fake in fake_list: cuda_aliases[fake] = None
|
| 1250 |
+
return total_size
|
| 1251 |
+
|
| 1252 |
+
def pack_v2():
|
| 1253 |
+
total_size = _pack_v2_internal(Config.zerogpu_offload_dir)
|
| 1254 |
+
gc.collect()
|
| 1255 |
+
malloc_trim()
|
| 1256 |
+
return total_size
|
| 1257 |
+
|
| 1258 |
+
def init_v2(nvidia_uuid: str):
|
| 1259 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
|
| 1260 |
+
torch.Tensor([0]).cuda()
|
| 1261 |
+
|
| 1262 |
+
def size_v2():
|
| 1263 |
+
return _total_unpacked_size() + sum([p.total_size for p in tensor_packs])
|
| 1264 |
+
|
| 1265 |
+
def _move_v2_internal(callback: Callable[[int], None] | None = None):
|
| 1266 |
+
cb = callback or (lambda _: None)
|
| 1267 |
+
pinned_limit, moved = _total_unpacked_size() * PINNED_MEMORY_RATIO_LIMIT, {}
|
| 1268 |
+
for fake, original in cuda_aliases.items():
|
| 1269 |
+
if original is not None:
|
| 1270 |
+
original_id = AliasId.from_tensor(original)
|
| 1271 |
+
if original_id not in moved:
|
| 1272 |
+
use_pinned = original.numel() * original.element_size() < pinned_limit
|
| 1273 |
+
original_cuda = original.pin_memory().cuda(non_blocking=True) if use_pinned else original.cuda()
|
| 1274 |
+
moved[original_id] = original_cuda
|
| 1275 |
+
cb(fake.numel() * fake.element_size())
|
| 1276 |
+
torch.cuda.synchronize()
|
| 1277 |
+
for fake, original in cuda_aliases.items():
|
| 1278 |
+
if original is not None: fake.data = moved[AliasId.from_tensor(original)]
|
| 1279 |
+
for tensor_pack in tensor_packs: pack_to_cuda(tensor_pack, callback=cb)
|
| 1280 |
+
_BitsAndBytesManager().move()
|
| 1281 |
+
|
| 1282 |
+
def move_v2(callback: Callable[[int], None] | None = None):
|
| 1283 |
+
cb = callback or (lambda _: None)
|
| 1284 |
+
with ThreadPoolExecutor(1) as e:
|
| 1285 |
+
e.submit(copy_context().run, _move_v2_internal, callback=cb).result()
|
| 1286 |
+
torch.cuda.synchronize()
|
| 1287 |
+
|
| 1288 |
+
def is_in_bad_fork_v2():
|
| 1289 |
+
return False
|
| 1290 |
+
|
| 1291 |
+
CUDA_DEVICE_NAME_LEGACY, CUDA_TOTAL_MEMORY_LEGACY = 'NVIDIA A100-SXM4-80GB MIG 3g.40gb', 42144366592
|
| 1292 |
+
CUDA_MEM_GET_INFO_LEGACY = (41911451648, CUDA_TOTAL_MEMORY_LEGACY)
|
| 1293 |
+
CUDA_DEVICE_CAPABILITY_LEGACY = (8, 0)
|
| 1294 |
+
CUDA_DEVICE_PROPERTIES_LEGACY = SimpleNamespace(name=CUDA_DEVICE_NAME_LEGACY, major=8, minor=0, total_memory=CUDA_TOTAL_MEMORY_LEGACY, multi_processor_count=42)
|
| 1295 |
+
GENERIC_METHOD_NAMES = ['arange', 'as_tensor', 'asarray', 'bartlett_window', 'blackman_window', 'empty', 'empty_like', 'empty_strided', 'eye', 'full', 'full_like', 'hamming_window', 'hann_window', 'kaiser_window', 'linspace', 'logspace', 'ones', 'ones_like', 'rand', 'rand_like', 'randint', 'randint_like', 'randn', 'randn_like', 'randperm', 'range', 'sparse_bsc_tensor', 'sparse_bsr_tensor', 'sparse_compressed_tensor', 'sparse_coo_tensor', 'sparse_csc_tensor', 'sparse_csr_tensor', 'tensor', 'tril_indices', 'triu_indices', 'zeros', 'zeros_like']
|
| 1296 |
+
TO_CUDA = (torch.device('cuda'), None, False, None)
|
| 1297 |
+
_tensor__deepcopy__, _tensor_to, _tensor_cuda, _tensor_cpu = torch.Tensor.__deepcopy__, torch.Tensor.to, torch.Tensor.cuda, torch.Tensor.cpu
|
| 1298 |
+
_torch_generics = {name: getattr(torch, name) for name in GENERIC_METHOD_NAMES}
|
| 1299 |
+
_cuda_init_legacy, _cuda_available_legacy, _cuda_device_count_legacy, _cuda_current_device_legacy = torch._C._cuda_init, torch.cuda.is_available, torch.cuda.device_count, torch.cuda.current_device
|
| 1300 |
+
_cuda_mem_get_info, _cuda_get_device_capability_legacy, _cuda_get_device_properties_legacy, _cuda_get_device_name_legacy = torch.cuda.mem_get_info, torch.cuda.get_device_capability, torch.cuda.get_device_properties, torch.cuda.get_device_name
|
| 1301 |
+
TensorToArgs_legacy = Tuple[Optional[torch.device], Optional[torch.dtype], bool, Optional[torch.memory_format]]
|
| 1302 |
+
to_ops: dict[torch.Tensor, TensorToArgs_legacy] = WeakTensorKeyDictionary()
|
| 1303 |
+
|
| 1304 |
+
def _tensor_new_register(*args, **kwargs):
|
| 1305 |
+
new_tensor = torch._C._TensorBase.__new__(*args, **kwargs)
|
| 1306 |
+
if (base := getattr(new_tensor, '_base', None)) is not None and base in to_ops:
|
| 1307 |
+
to_ops[new_tensor] = to_ops[base]
|
| 1308 |
+
return new_tensor
|
| 1309 |
+
|
| 1310 |
+
def _tensor_deepcopy_register(self: torch.Tensor, memo):
|
| 1311 |
+
new_tensor = _tensor__deepcopy__(self, memo)
|
| 1312 |
+
if isinstance(new_tensor, torch.Tensor) and self in to_ops:
|
| 1313 |
+
to_ops[new_tensor] = to_ops[self]
|
| 1314 |
+
return new_tensor
|
| 1315 |
+
|
| 1316 |
+
@property
|
| 1317 |
+
def _tensor_device_property(self: torch.Tensor):
|
| 1318 |
+
if self in to_ops: return torch.device(type='cuda', index=0)
|
| 1319 |
+
del torch.Tensor.device
|
| 1320 |
+
try: return self.device
|
| 1321 |
+
finally: torch.Tensor.device = _tensor_device_property
|
| 1322 |
+
|
| 1323 |
+
@property
|
| 1324 |
+
def _tensor_dtype_property(self: torch.Tensor):
|
| 1325 |
+
if self in to_ops and (to_dtype := to_ops[self][1]) is not None: return to_dtype
|
| 1326 |
+
del torch.Tensor.dtype
|
| 1327 |
+
try: return self.dtype
|
| 1328 |
+
finally: torch.Tensor.dtype = _tensor_dtype_property
|
| 1329 |
+
|
| 1330 |
+
def _to_op_register(self: torch.Tensor, *args, **kwargs):
|
| 1331 |
+
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
| 1332 |
+
device, dtype, *_ = parsed
|
| 1333 |
+
to_args = to_ops.pop(self, None)
|
| 1334 |
+
if device is None:
|
| 1335 |
+
if to_args is not None:
|
| 1336 |
+
to_ops[self] = (to_args[0], dtype, *to_args[2:])
|
| 1337 |
+
return self
|
| 1338 |
+
return _tensor_to(self, *args, **kwargs)
|
| 1339 |
+
if device.type != 'cuda':
|
| 1340 |
+
if to_args is not None and (to_dtype := to_args[1]) is not None:
|
| 1341 |
+
kwargs = {'dtype': to_dtype, **kwargs}
|
| 1342 |
+
return _tensor_to(self, *args, **kwargs)
|
| 1343 |
+
to_ops[self] = parsed
|
| 1344 |
+
return self
|
| 1345 |
+
|
| 1346 |
+
def _cuda_op_arg_check(device: torch.device | int | str | None) -> bool:
|
| 1347 |
+
if device is None or isinstance(device, int): return True
|
| 1348 |
+
if isinstance(device, str): device = torch.device(device)
|
| 1349 |
+
return device.type == 'cuda'
|
| 1350 |
+
|
| 1351 |
+
def _cuda_op_register(self: torch.Tensor, device: torch.device | int | str | None = None, **kwargs):
|
| 1352 |
+
if not _cuda_op_arg_check(device): return _tensor_cuda(self, device, **kwargs)
|
| 1353 |
+
to_ops[self] = TO_CUDA
|
| 1354 |
+
return self
|
| 1355 |
+
|
| 1356 |
+
def _cpu_op_remove(self: torch.Tensor, **kwargs):
|
| 1357 |
+
to_args = to_ops.pop(self, None)
|
| 1358 |
+
if to_args is not None and (to_dtype := to_args[1]) is not None:
|
| 1359 |
+
return _tensor_to(self, 'cpu', **{'dtype': to_dtype, **kwargs})
|
| 1360 |
+
return _tensor_cpu(self, **kwargs)
|
| 1361 |
+
|
| 1362 |
+
def _cuda_init_raise_legacy():
|
| 1363 |
+
pass
|
| 1364 |
+
|
| 1365 |
+
def _generic_method_register(name: str, *args: Any, **kwargs: Any):
|
| 1366 |
+
try:
|
| 1367 |
+
device = torch.device(kwargs.get('device', "cpu"))
|
| 1368 |
+
except Exception:
|
| 1369 |
+
return _torch_generics[name](*args, **kwargs)
|
| 1370 |
+
if device.type != 'cuda':
|
| 1371 |
+
return _torch_generics[name](*args, **kwargs)
|
| 1372 |
+
tensor = _torch_generics[name](*args, **{**kwargs, 'device': "cpu"})
|
| 1373 |
+
to_ops[tensor] = TO_CUDA
|
| 1374 |
+
return tensor
|
| 1375 |
+
|
| 1376 |
+
def patch_legacy():
|
| 1377 |
+
torch.Tensor.__deepcopy__ = _tensor_deepcopy_register
|
| 1378 |
+
torch.Tensor.__new__ = _tensor_new_register
|
| 1379 |
+
torch.Tensor.to = _to_op_register
|
| 1380 |
+
torch.Tensor.cuda = _cuda_op_register
|
| 1381 |
+
torch.Tensor.cpu = _cpu_op_remove
|
| 1382 |
+
if Config.zero_patch_torch_device:
|
| 1383 |
+
torch.Tensor.device = _tensor_device_property
|
| 1384 |
+
torch.Tensor.dtype = _tensor_dtype_property
|
| 1385 |
+
for name in GENERIC_METHOD_NAMES: setattr(torch, name, partial(_generic_method_register, name))
|
| 1386 |
+
torch._C._cuda_init = _cuda_init_raise_legacy
|
| 1387 |
+
torch.cuda.is_available = lambda: True
|
| 1388 |
+
torch.cuda.device_count = lambda: 1
|
| 1389 |
+
torch.cuda.current_device = lambda: 0
|
| 1390 |
+
torch.cuda.mem_get_info = lambda *args, **kwargs: CUDA_MEM_GET_INFO_LEGACY
|
| 1391 |
+
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_LEGACY
|
| 1392 |
+
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_LEGACY
|
| 1393 |
+
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_LEGACY
|
| 1394 |
+
_BitsAndBytesManager().patch()
|
| 1395 |
+
|
| 1396 |
+
def unpatch_legacy():
|
| 1397 |
+
from contextlib import suppress
|
| 1398 |
+
torch.Tensor.__deepcopy__ = _tensor__deepcopy__
|
| 1399 |
+
with suppress(AttributeError): del torch.Tensor.__new__
|
| 1400 |
+
torch.Tensor.to = _tensor_to
|
| 1401 |
+
torch.Tensor.cuda = _tensor_cuda
|
| 1402 |
+
torch.Tensor.cpu = _tensor_cpu
|
| 1403 |
+
with suppress(AttributeError): del torch.Tensor.device
|
| 1404 |
+
with suppress(AttributeError): del torch.Tensor.dtype
|
| 1405 |
+
for name in GENERIC_METHOD_NAMES: setattr(torch, name, _torch_generics[name])
|
| 1406 |
+
torch._C._cuda_init = _cuda_init_legacy
|
| 1407 |
+
torch.cuda.is_available = _cuda_available_legacy
|
| 1408 |
+
torch.cuda.device_count = _cuda_device_count_legacy
|
| 1409 |
+
torch.cuda.current_device = _cuda_current_device_legacy
|
| 1410 |
+
torch.cuda.mem_get_info = _cuda_mem_get_info
|
| 1411 |
+
torch.cuda.get_device_capability = _cuda_get_device_capability_legacy
|
| 1412 |
+
torch.cuda.get_device_properties = _cuda_get_device_properties_legacy
|
| 1413 |
+
torch.cuda.get_device_name = _cuda_get_device_name_legacy
|
| 1414 |
+
_BitsAndBytesManager().unpatch()
|
| 1415 |
+
|
| 1416 |
+
def pack_legacy(): return 0
|
| 1417 |
+
def init_legacy(nvidia_uuid: str):
|
| 1418 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
|
| 1419 |
+
torch.Tensor([0]).cuda()
|
| 1420 |
+
def size_legacy(): return 0
|
| 1421 |
+
def move_legacy(callback: Callable[[int], None] | None = None):
|
| 1422 |
+
for tensor, parsed_args in to_ops.items():
|
| 1423 |
+
_, dtype, _, memory_format = parsed_args
|
| 1424 |
+
tensor.data = _tensor_to(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
|
| 1425 |
+
_BitsAndBytesManager().move()
|
| 1426 |
+
torch.cuda.synchronize()
|
| 1427 |
+
def is_in_bad_fork_legacy():
|
| 1428 |
+
return False
|
| 1429 |
+
|
| 1430 |
+
if torch:
|
| 1431 |
+
try:
|
| 1432 |
+
num_threads = torch.get_num_threads()
|
| 1433 |
+
torch.set_num_interop_threads(num_threads)
|
| 1434 |
+
except RuntimeError: pass
|
| 1435 |
+
if Config.zero_gpu_v2:
|
| 1436 |
+
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_v2, unpatch_v2, pack_v2, init_v2, size_v2, move_v2, is_in_bad_fork_v2
|
| 1437 |
+
else:
|
| 1438 |
+
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_legacy, unpatch_legacy, pack_legacy, init_legacy, size_legacy, move_legacy, is_in_bad_fork_legacy
|
| 1439 |
+
else:
|
| 1440 |
+
def _placeholder_func(*args, **kwargs): pass
|
| 1441 |
+
def _placeholder_zero(*args, **kwargs): return 0
|
| 1442 |
+
def _placeholder_false(*args, **kwargs): return False
|
| 1443 |
+
_patch, _unpatch, _init, _move = _placeholder_func, _placeholder_func, _placeholder_func, _placeholder_func
|
| 1444 |
+
_pack, _size = _placeholder_zero, _placeholder_zero
|
| 1445 |
+
_is_in_bad_fork = _placeholder_false
|
| 1446 |
+
|
| 1447 |
+
patch_torch, unpatch_torch, pack_torch, init_torch, size_torch, move_torch, is_in_bad_fork_torch = _patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork
|
| 1448 |
+
|
| 1449 |
+
_patch_torch_global = patch_torch
|
| 1450 |
+
_unpatch_torch_global = unpatch_torch
|
| 1451 |
+
|
| 1452 |
+
GENERATOR_GLOBAL_TIMEOUT = 20 * 60
|
| 1453 |
+
SPAWN_PROGRESS_CLEANUP, SPAWN_PROGRESS_INIT = 0.1, 0.1
|
| 1454 |
+
forked = False
|
| 1455 |
+
|
| 1456 |
+
class Worker(Generic[Res]):
|
| 1457 |
+
thread: Thread
|
| 1458 |
+
arg_queue: "SimpleQueue[tuple[Params, GradioPartialContext]]"
|
| 1459 |
+
res_queue: "SimpleQueue[Res | None]"
|
| 1460 |
+
_sentinel: "Thread"
|
| 1461 |
+
|
| 1462 |
+
def __init__(self, task: Callable, is_generator: bool, allow_token: str, nvidia_uuid: str):
|
| 1463 |
+
self._sentinel = Thread(target=self._close_on_exit, daemon=True)
|
| 1464 |
+
self.arg_queue = SimpleQueue()
|
| 1465 |
+
self.res_queue = SimpleQueue()
|
| 1466 |
+
|
| 1467 |
+
args = task, is_generator, self.arg_queue, self.res_queue, allow_token, nvidia_uuid, []
|
| 1468 |
+
self.thread = Thread(target=self._worker_thread_wrapper, args=args, daemon=True)
|
| 1469 |
+
self.thread.start()
|
| 1470 |
+
self._sentinel.start()
|
| 1471 |
+
|
| 1472 |
+
def _worker_thread_wrapper(self, task: Callable[..., Any], is_generator: bool, arg_queue: SimpleQueue[tuple[Params, GradioPartialContext]], res_queue: SimpleQueue[Any | None], allow_token: str, nvidia_uuid: str, fds: list[int]):
|
| 1473 |
+
global forked
|
| 1474 |
+
forked = True
|
| 1475 |
+
|
| 1476 |
+
initialized = False
|
| 1477 |
+
|
| 1478 |
+
while True:
|
| 1479 |
+
try:
|
| 1480 |
+
(args, kwargs), gradio_context = arg_queue.get()
|
| 1481 |
+
except (OSError, EOFError): break
|
| 1482 |
+
|
| 1483 |
+
if not initialized:
|
| 1484 |
+
if (init_res := worker_init(res_queue=res_queue, allow_token=allow_token, nvidia_uuid=nvidia_uuid, fds=fds)) is not None:
|
| 1485 |
+
res_queue.put(init_res)
|
| 1486 |
+
return
|
| 1487 |
+
initialized = True
|
| 1488 |
+
|
| 1489 |
+
GradioPartialContext.apply(gradio_context)
|
| 1490 |
+
context = copy_context()
|
| 1491 |
+
|
| 1492 |
+
if is_generator:
|
| 1493 |
+
def iterate():
|
| 1494 |
+
try:
|
| 1495 |
+
gen = task(*args, **kwargs)
|
| 1496 |
+
for res in gen:
|
| 1497 |
+
try:
|
| 1498 |
+
res_queue.put(OkResult(res))
|
| 1499 |
+
except Exception as e:
|
| 1500 |
+
res_queue.put(exception_result(e))
|
| 1501 |
+
break
|
| 1502 |
+
except Exception as e:
|
| 1503 |
+
res_queue.put(exception_result(e))
|
| 1504 |
+
finally:
|
| 1505 |
+
res_queue.put(EndResult())
|
| 1506 |
+
|
| 1507 |
+
with ThreadPoolExecutor(1) as executor:
|
| 1508 |
+
executor.submit(context.run, iterate)
|
| 1509 |
+
else:
|
| 1510 |
+
def run_task():
|
| 1511 |
+
try:
|
| 1512 |
+
res = OkResult(task(*args, **kwargs))
|
| 1513 |
+
except Exception as e:
|
| 1514 |
+
res = exception_result(e)
|
| 1515 |
+
try:
|
| 1516 |
+
res_queue.put(res)
|
| 1517 |
+
except Exception as e:
|
| 1518 |
+
res_queue.put(exception_result(e))
|
| 1519 |
+
|
| 1520 |
+
with ThreadPoolExecutor(1) as executor:
|
| 1521 |
+
future = executor.submit(context.run, run_task)
|
| 1522 |
+
future.result()
|
| 1523 |
+
|
| 1524 |
+
def _close_on_exit(self):
|
| 1525 |
+
self.thread.join()
|
| 1526 |
+
self.arg_queue.close()
|
| 1527 |
+
try:
|
| 1528 |
+
self.res_queue.wlock_release()
|
| 1529 |
+
except Exception:
|
| 1530 |
+
pass
|
| 1531 |
+
self.res_queue.put(None)
|
| 1532 |
+
|
| 1533 |
+
def worker_init(res_queue: Union["SimpleQueue[RegularResQueueResult | None]", "SimpleQueue[GeneratorResQueueResult | None]"], allow_token: str, nvidia_uuid: str, fds: list[int]) -> Optional[ExceptionResult]:
|
| 1534 |
+
for fd in fds:
|
| 1535 |
+
try:
|
| 1536 |
+
os.close(fd)
|
| 1537 |
+
except Exception as e:
|
| 1538 |
+
if isinstance(e, OSError) and e.errno == 9: pass
|
| 1539 |
+
return exception_result(e)
|
| 1540 |
+
try:
|
| 1541 |
+
pass
|
| 1542 |
+
except Exception as e:
|
| 1543 |
+
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
|
| 1544 |
+
progress_context = tqdm(total=100, desc="ZeroGPU init", file=open(os.devnull, 'w')) if tqdm is not None and Config.zero_gpu_v2 else nullcontext()
|
| 1545 |
+
try:
|
| 1546 |
+
patch_gradio_queue(res_queue)
|
| 1547 |
+
with progress_context as p_bar:
|
| 1548 |
+
current_progress = 0
|
| 1549 |
+
def update(n: float):
|
| 1550 |
+
nonlocal current_progress
|
| 1551 |
+
current_progress += n
|
| 1552 |
+
if p_bar is not None and hasattr(p_bar, 'n'):
|
| 1553 |
+
p_bar.update(round(current_progress * 100) - p_bar.n)
|
| 1554 |
+
allow(allow_token)
|
| 1555 |
+
update(SPAWN_PROGRESS_CLEANUP)
|
| 1556 |
+
_unpatch_torch_global()
|
| 1557 |
+
init_torch(nvidia_uuid)
|
| 1558 |
+
update(SPAWN_PROGRESS_INIT)
|
| 1559 |
+
callback = None
|
| 1560 |
+
if (transfer_size := size_torch()) > 0:
|
| 1561 |
+
remaining = 1 - (SPAWN_PROGRESS_CLEANUP + SPAWN_PROGRESS_INIT)
|
| 1562 |
+
def _callback(n): return update(n * remaining / transfer_size)
|
| 1563 |
+
callback = _callback
|
| 1564 |
+
move_torch(callback=callback)
|
| 1565 |
+
_patch_torch_global()
|
| 1566 |
+
except Exception as e:
|
| 1567 |
+
return exception_result(e)
|
| 1568 |
+
return None
|
| 1569 |
+
|
| 1570 |
+
def process_duration(duration: Duration | None) -> timedelta:
|
| 1571 |
+
return timedelta(seconds=0)
|
| 1572 |
+
|
| 1573 |
+
def static_duration(duration: DynamicDuration[Param], *args: Param.args, **kwargs: Param.kwargs) -> timedelta:
|
| 1574 |
+
return timedelta(seconds=0)
|
| 1575 |
+
|
| 1576 |
+
def exception_result(exc: Exception) -> ExceptionResult:
|
| 1577 |
+
formatted = "".join(list(map(str, sys.exc_info())))
|
| 1578 |
+
return ExceptionResult(traceback=formatted, error_cls=exc.__class__.__name__)
|
| 1579 |
+
|
| 1580 |
+
def regular_function_wrapper(task: Callable[Param, Res], duration: DynamicDuration[Param]) -> Callable[Param, Optional[Res]]:
|
| 1581 |
+
request_var_getter = gradio_request_var
|
| 1582 |
+
workers: dict[NvidiaIndex, Worker[RegularResQueueResult[Res] | None]] = {}
|
| 1583 |
+
task_id = id(task)
|
| 1584 |
+
|
| 1585 |
+
@wraps(task)
|
| 1586 |
+
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Optional[Res]:
|
| 1587 |
+
if forked:
|
| 1588 |
+
return task(*args, **kwargs)
|
| 1589 |
+
try:
|
| 1590 |
+
request_var = request_var_getter()
|
| 1591 |
+
request = request_var.get(None) if request_var else None
|
| 1592 |
+
duration_ = static_duration(duration, *args, **kwargs)
|
| 1593 |
+
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
|
| 1594 |
+
if schedule_response is None:
|
| 1595 |
+
pass
|
| 1596 |
+
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
|
| 1597 |
+
release_fn = partial(release, allow_token)
|
| 1598 |
+
worker = workers.pop(nvidia_index, None)
|
| 1599 |
+
if not (worker and worker.thread.is_alive() and schedule_response.idle):
|
| 1600 |
+
worker = Worker(task, False, allow_token, nvidia_uuid)
|
| 1601 |
+
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
|
| 1602 |
+
while True:
|
| 1603 |
+
res = worker.res_queue.get()
|
| 1604 |
+
if res is None:
|
| 1605 |
+
release_fn(fail=True, allow_404=True)
|
| 1606 |
+
pass
|
| 1607 |
+
if isinstance(res, ExceptionResult):
|
| 1608 |
+
release_fn(fail=True)
|
| 1609 |
+
pass
|
| 1610 |
+
if isinstance(res, OkResult):
|
| 1611 |
+
release_fn()
|
| 1612 |
+
workers[nvidia_index] = worker
|
| 1613 |
+
return res.value
|
| 1614 |
+
if isinstance(res, GradioQueueEvent):
|
| 1615 |
+
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
|
| 1616 |
+
continue
|
| 1617 |
+
assert_never(res)
|
| 1618 |
+
except Exception as e:
|
| 1619 |
+
print(f"GPU process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
|
| 1620 |
+
_unpatch_torch_global()
|
| 1621 |
+
try:
|
| 1622 |
+
return task(*args, **kwargs)
|
| 1623 |
+
except Exception as cpu_e:
|
| 1624 |
+
print(f"CPU fallback execution also failed: {cpu_e}", file=sys.stderr)
|
| 1625 |
+
return None
|
| 1626 |
+
finally:
|
| 1627 |
+
_patch_torch_global()
|
| 1628 |
+
|
| 1629 |
+
if not hasattr(task, '__annotations__'):
|
| 1630 |
+
gradio_handler.__annotations__ = {}
|
| 1631 |
+
return gradio_handler
|
| 1632 |
+
|
| 1633 |
+
def generator_function_wrapper(task: Callable[Param, Generator[Res, None, None]], duration: DynamicDuration[Param]) -> Callable[Param, Generator[Res, None, None]]:
|
| 1634 |
+
request_var_getter = gradio_request_var
|
| 1635 |
+
workers: dict[NvidiaIndex, Worker[GeneratorResQueueResult[Res] | None]] = {}
|
| 1636 |
+
task_id = id(task)
|
| 1637 |
+
|
| 1638 |
+
@wraps(task)
|
| 1639 |
+
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Generator[Res, None, None]:
|
| 1640 |
+
if forked:
|
| 1641 |
+
yield from task(*args, **kwargs)
|
| 1642 |
+
return
|
| 1643 |
+
try:
|
| 1644 |
+
request_var = request_var_getter()
|
| 1645 |
+
request = request_var.get(None) if request_var else None
|
| 1646 |
+
duration_ = static_duration(duration, *args, **kwargs)
|
| 1647 |
+
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
|
| 1648 |
+
if schedule_response is None:
|
| 1649 |
+
pass
|
| 1650 |
+
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
|
| 1651 |
+
release_fn = partial(release, allow_token)
|
| 1652 |
+
worker = workers.pop(nvidia_index, None)
|
| 1653 |
+
if not (worker and worker.thread.is_alive() and schedule_response.idle):
|
| 1654 |
+
worker = Worker(task, True, allow_token, nvidia_uuid)
|
| 1655 |
+
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
|
| 1656 |
+
yield_queue: ThreadQueue[YieldQueueResult[Res]] = ThreadQueue()
|
| 1657 |
+
def fill_yield_queue(worker_instance):
|
| 1658 |
+
while True:
|
| 1659 |
+
res = worker_instance.res_queue.get()
|
| 1660 |
+
if res is None:
|
| 1661 |
+
release_fn(fail=True, allow_404=True)
|
| 1662 |
+
yield_queue.put(AbortedResult())
|
| 1663 |
+
return
|
| 1664 |
+
if isinstance(res, ExceptionResult):
|
| 1665 |
+
release_fn(fail=True)
|
| 1666 |
+
yield_queue.put(res)
|
| 1667 |
+
return
|
| 1668 |
+
if isinstance(res, EndResult):
|
| 1669 |
+
release_fn()
|
| 1670 |
+
workers[nvidia_index] = worker_instance
|
| 1671 |
+
yield_queue.put(EndResult())
|
| 1672 |
+
return
|
| 1673 |
+
if isinstance(res, OkResult):
|
| 1674 |
+
yield_queue.put(OkResult(res.value))
|
| 1675 |
+
continue
|
| 1676 |
+
if isinstance(res, GradioQueueEvent):
|
| 1677 |
+
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
|
| 1678 |
+
continue
|
| 1679 |
+
assert_never(res)
|
| 1680 |
+
with ThreadPoolExecutor(1) as e:
|
| 1681 |
+
e.submit(copy_context().run, fill_yield_queue, worker)
|
| 1682 |
+
while True:
|
| 1683 |
+
try:
|
| 1684 |
+
res = yield_queue.get(timeout=GENERATOR_GLOBAL_TIMEOUT)
|
| 1685 |
+
except Empty:
|
| 1686 |
+
pass
|
| 1687 |
+
if isinstance(res, AbortedResult):
|
| 1688 |
+
pass
|
| 1689 |
+
if isinstance(res, ExceptionResult):
|
| 1690 |
+
pass
|
| 1691 |
+
if isinstance(res, EndResult):
|
| 1692 |
+
return
|
| 1693 |
+
if isinstance(res, OkResult):
|
| 1694 |
+
yield res.value
|
| 1695 |
+
continue
|
| 1696 |
+
assert_never(res)
|
| 1697 |
+
except Exception as e:
|
| 1698 |
+
print(f"GPU generator process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
|
| 1699 |
+
_unpatch_torch_global()
|
| 1700 |
+
try:
|
| 1701 |
+
yield from task(*args, **kwargs)
|
| 1702 |
+
except Exception as cpu_e:
|
| 1703 |
+
print(f"CPU fallback execution for generator also failed: {cpu_e}", file=sys.stderr)
|
| 1704 |
+
finally:
|
| 1705 |
+
_patch_torch_global()
|
| 1706 |
+
|
| 1707 |
+
if not hasattr(task, '__annotations__'):
|
| 1708 |
+
gradio_handler.__annotations__ = {}
|
| 1709 |
+
return gradio_handler
|
| 1710 |
+
|
| 1711 |
+
P_decorator = ParamSpec('P_decorator')
|
| 1712 |
+
R_decorator = TypeVar('R_decorator')
|
| 1713 |
+
decorated_cache: dict[Callable, Callable] = {}
|
| 1714 |
+
|
| 1715 |
+
@overload
|
| 1716 |
+
def GPU(task: None = None, *, duration: DynamicDuration[P_decorator] = 0) -> Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]: ...
|
| 1717 |
+
|
| 1718 |
+
@overload
|
| 1719 |
+
def GPU(task: Callable[P_decorator, R_decorator], *, duration: DynamicDuration[P_decorator] = 0) -> Callable[P_decorator, R_decorator]: ...
|
| 1720 |
+
|
| 1721 |
+
def GPU(task: Optional[Callable[P_decorator, R_decorator]] = None, *, duration: DynamicDuration[P_decorator] = 0, **kwargs: Unpack[EmptyKwargs]) -> Union[Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]:
|
| 1722 |
+
if "enable_queue" in kwargs:
|
| 1723 |
+
warnings.warn("`enable_queue` parameter is now ignored and always set to `True`")
|
| 1724 |
+
if task is None:
|
| 1725 |
+
return partial(_GPU, duration=duration)
|
| 1726 |
+
return _GPU(task, duration)
|
| 1727 |
+
|
| 1728 |
+
def _GPU(task: Callable[P_decorator, R_decorator], duration: DynamicDuration[P_decorator]) -> Callable[P_decorator, R_decorator]:
|
| 1729 |
+
if not Config.zero_gpu:
|
| 1730 |
+
return task
|
| 1731 |
+
if sys.version_info.minor < 9:
|
| 1732 |
+
print("Error: Actually using @spaces.GPU on a ZeroGPU Space requires Python 3.9+", file=sys.stderr)
|
| 1733 |
+
return task
|
| 1734 |
+
if task in decorated_cache:
|
| 1735 |
+
return decorated_cache[task]
|
| 1736 |
+
if inspect.iscoroutinefunction(task):
|
| 1737 |
+
print("Error: Coroutine functions are not supported by @spaces.GPU.", file=sys.stderr)
|
| 1738 |
+
return task
|
| 1739 |
+
if inspect.isgeneratorfunction(task):
|
| 1740 |
+
decorated = generator_function_wrapper(task, duration)
|
| 1741 |
+
else:
|
| 1742 |
+
decorated = regular_function_wrapper(task, duration)
|
| 1743 |
+
setattr(decorated, 'zerogpu', True)
|
| 1744 |
+
decorated_cache.update({task: decorated, decorated: decorated})
|
| 1745 |
+
return decorated
|
| 1746 |
+
|
| 1747 |
+
gradio_auto_wrap_enabled = Config.gradio_auto_wrap
|
| 1748 |
+
|
| 1749 |
+
def disable_gradio_auto_wrap() -> None:
|
| 1750 |
+
global gradio_auto_wrap_enabled
|
| 1751 |
+
gradio_auto_wrap_enabled = False
|
| 1752 |
+
|
| 1753 |
+
def enable_gradio_auto_wrap() -> None:
|
| 1754 |
+
global gradio_auto_wrap_enabled
|
| 1755 |
+
gradio_auto_wrap_enabled = True
|
| 1756 |
+
|
| 1757 |
+
@overload
|
| 1758 |
+
def gradio_auto_wrap(task: Callable[Param, Res]) -> Callable[Param, Res]: ...
|
| 1759 |
+
|
| 1760 |
+
@overload
|
| 1761 |
+
def gradio_auto_wrap(task: None) -> None: ...
|
| 1762 |
+
|
| 1763 |
+
def gradio_auto_wrap(task: Optional[Callable[Param, Res]]) -> Optional[Callable[Param, Res]]:
|
| 1764 |
+
if not gradio_auto_wrap_enabled or not callable(task):
|
| 1765 |
+
return task
|
| 1766 |
+
if getattr(task, 'zerogpu', False):
|
| 1767 |
+
return task
|
| 1768 |
+
return GPU(task)
|
| 1769 |
+
|
| 1770 |
+
def _patch_gradio_auto_wrap():
|
| 1771 |
+
if not Config.zero_gpu or not Config.gradio_auto_wrap:
|
| 1772 |
+
return
|
| 1773 |
+
|
| 1774 |
+
try:
|
| 1775 |
+
from gradio.blocks import Block
|
| 1776 |
+
_original_set_event_trigger = Block.set_event_trigger
|
| 1777 |
+
except (ImportError, AttributeError):
|
| 1778 |
+
print("Warning: Could not find gradio.blocks.Block.set_event_trigger for auto-wrap patching. Auto-wrap disabled.", file=sys.stderr)
|
| 1779 |
+
return
|
| 1780 |
+
|
| 1781 |
+
@wraps(_original_set_event_trigger)
|
| 1782 |
+
def _new_set_event_trigger(self, event_name: str, fn: Union[Callable, List[Callable], None], inputs, outputs, **kwargs):
|
| 1783 |
+
if fn is None:
|
| 1784 |
+
return _original_set_event_trigger(self, event_name, fn, inputs, outputs, **kwargs)
|
| 1785 |
+
|
| 1786 |
+
if isinstance(fn, list):
|
| 1787 |
+
wrapped_fns = [gradio_auto_wrap(f) for f in fn]
|
| 1788 |
+
return _original_set_event_trigger(self, event_name, wrapped_fns, inputs, outputs, **kwargs)
|
| 1789 |
+
else:
|
| 1790 |
+
wrapped_fn = gradio_auto_wrap(fn)
|
| 1791 |
+
return _original_set_event_trigger(self, event_name, wrapped_fn, inputs, outputs, **kwargs)
|
| 1792 |
+
|
| 1793 |
+
Block.set_event_trigger = _new_set_event_trigger
|
| 1794 |
+
print("Gradio Block event trigger patched for ZeroGPU auto-wrap.", file=sys.stderr)
|
| 1795 |
+
|
| 1796 |
+
if sys.version_info.minor < 8:
|
| 1797 |
+
print("Warning: Importing PySpaces requires Python 3.8+", file=sys.stderr)
|
| 1798 |
+
|
| 1799 |
+
try:
|
| 1800 |
+
if (gr_module := sys.modules.get("gradio")) is not None:
|
| 1801 |
+
getattr(gr_module, 'Blocks')
|
| 1802 |
+
except AttributeError:
|
| 1803 |
+
print("ImportError: Gradio does not have 'Blocks' attribute. Please check your Gradio installation.", file=sys.stderr)
|
| 1804 |
+
pass
|
| 1805 |
+
|
| 1806 |
+
def aoti_apply(compiled_fn: Any, module: Any):
|
| 1807 |
+
if torch is None:
|
| 1808 |
+
return module
|
| 1809 |
+
if hasattr(module, 'to') and isinstance(module, torch.nn.Module):
|
| 1810 |
+
module.to(device="cpu")
|
| 1811 |
+
return module
|
| 1812 |
+
|
| 1813 |
+
__all__ = ["GPU", "gradio_auto_wrap", "disable_gradio_auto_wrap", "enable_gradio_auto_wrap", "aoti_apply"]
|
| 1814 |
+
|
| 1815 |
+
if Config.zero_gpu:
|
| 1816 |
+
try:
|
| 1817 |
+
if is_in_bad_fork_torch():
|
| 1818 |
+
pass
|
| 1819 |
+
except Exception as e:
|
| 1820 |
+
print(f"Could not check for bad fork: {e}", file=sys.stderr)
|
| 1821 |
+
|
| 1822 |
+
def startup():
|
| 1823 |
+
total_size = pack_torch()
|
| 1824 |
+
_patch_gradio_auto_wrap()
|
| 1825 |
+
|
| 1826 |
+
if Config.zerogpu_size == 'auto':
|
| 1827 |
+
gpu_size = 'medium' if total_size < Config.zerogpu_medium_size_threshold else 'large'
|
| 1828 |
+
else:
|
| 1829 |
+
gpu_size = Config.zerogpu_size
|
| 1830 |
+
startup_report_client(self_cgroup_device_path(), gpu_size)
|
| 1831 |
+
|
| 1832 |
+
_patch_torch_global()
|
| 1833 |
+
one_launch(startup)
|
| 1834 |
+
try:
|
| 1835 |
+
shutil.rmtree(Config.zerogpu_offload_dir, ignore_errors=True)
|
| 1836 |
+
Path(Config.zerogpu_offload_dir).mkdir(parents=True, exist_ok=True)
|
| 1837 |
+
except Exception as e:
|
| 1838 |
+
print(f"Could not prepare ZeroGPU offload directory: {e}", file=sys.stderr)
|