Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +54 -39
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,55 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
.
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# ---- Configuration ----
|
| 6 |
+
MODEL_NAME = "AbdullahAlnemr1/flan-t5-summarizer"
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
# ---- Load model and tokenizer ----
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def load_model():
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32)
|
| 14 |
+
model.to(device)
|
| 15 |
+
return tokenizer, model
|
| 16 |
+
|
| 17 |
+
tokenizer, model = load_model()
|
| 18 |
+
|
| 19 |
+
# ---- Streamlit App ----
|
| 20 |
+
st.title("Text Summarizer")
|
| 21 |
+
st.write("Generate concise summariy.")
|
| 22 |
+
|
| 23 |
+
# ---- Input Area ----
|
| 24 |
+
article = st.text_area("Enter the article to summarize:", height=250)
|
| 25 |
+
|
| 26 |
+
# ---- Parameters ----
|
| 27 |
+
max_input_len = 512
|
| 28 |
+
max_output_len = 150
|
| 29 |
+
|
| 30 |
+
# ---- Generate Summary ----
|
| 31 |
+
if st.button("Generate Summary"):
|
| 32 |
+
if not article.strip():
|
| 33 |
+
st.warning("Please enter some text to summarize.")
|
| 34 |
+
else:
|
| 35 |
+
with st.spinner("Generating summary..."):
|
| 36 |
+
inputs = tokenizer(
|
| 37 |
+
article,
|
| 38 |
+
return_tensors="pt",
|
| 39 |
+
max_length=max_input_len,
|
| 40 |
+
truncation=True
|
| 41 |
+
).to(device)
|
| 42 |
+
|
| 43 |
+
summary_ids = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
max_length=max_output_len,
|
| 46 |
+
num_beams=4,
|
| 47 |
+
length_penalty=2.0,
|
| 48 |
+
early_stopping=True
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 52 |
+
|
| 53 |
+
# ---- Output ----
|
| 54 |
+
st.subheader("Generated Summary:")
|
| 55 |
+
st.write(summary)
|