waleed-12 commited on
Commit
b0c24bf
·
verified ·
1 Parent(s): 90562bc

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +54 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,55 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ import torch
4
+
5
+ # ---- Configuration ----
6
+ MODEL_NAME = "AbdullahAlnemr1/flan-t5-summarizer"
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+ # ---- Load model and tokenizer ----
10
+ @st.cache_resource
11
+ def load_model():
12
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
13
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32)
14
+ model.to(device)
15
+ return tokenizer, model
16
+
17
+ tokenizer, model = load_model()
18
+
19
+ # ---- Streamlit App ----
20
+ st.title("Text Summarizer")
21
+ st.write("Generate concise summariy.")
22
+
23
+ # ---- Input Area ----
24
+ article = st.text_area("Enter the article to summarize:", height=250)
25
+
26
+ # ---- Parameters ----
27
+ max_input_len = 512
28
+ max_output_len = 150
29
+
30
+ # ---- Generate Summary ----
31
+ if st.button("Generate Summary"):
32
+ if not article.strip():
33
+ st.warning("Please enter some text to summarize.")
34
+ else:
35
+ with st.spinner("Generating summary..."):
36
+ inputs = tokenizer(
37
+ article,
38
+ return_tensors="pt",
39
+ max_length=max_input_len,
40
+ truncation=True
41
+ ).to(device)
42
+
43
+ summary_ids = model.generate(
44
+ **inputs,
45
+ max_length=max_output_len,
46
+ num_beams=4,
47
+ length_penalty=2.0,
48
+ early_stopping=True
49
+ )
50
+
51
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
52
+
53
+ # ---- Output ----
54
+ st.subheader("Generated Summary:")
55
+ st.write(summary)