sanatan_ai / db.py
vikramvasudevan's picture
Upload folder using huggingface_hub
c3c8276 verified
raw
history blame
25.1 kB
import pandas as pd
import numpy as np
import random
from typing import Literal
import chromadb
import re, unicodedata
from config import SanatanConfig
from embeddings import get_embedding
import logging
from pydantic import BaseModel
from metadata import MetadataFilter, MetadataWhereClause
from modules.db.relevance import validate_relevance_queryresult
from tqdm import tqdm
import nalayiram_helper
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class SanatanDatabase:
def __init__(self) -> None:
self.chroma_client = chromadb.PersistentClient(path=SanatanConfig.dbStorePath)
def does_data_exist(self, collection_name: str) -> bool:
collection = self.chroma_client.get_or_create_collection(name=collection_name)
num_rows = collection.count()
logger.info("num_rows in %s = %d", collection_name, num_rows)
return num_rows > 0
def load(self, collection_name: str, ids, documents, embeddings, metadatas):
collection = self.chroma_client.get_or_create_collection(name=collection_name)
collection.add(
ids=ids,
documents=documents,
embeddings=embeddings,
metadatas=metadatas,
)
def fetch_random_data(
self,
collection_name: str,
metadata_where_clause: MetadataWhereClause = None,
n_results=1,
):
# fetch all documents once
logger.info(
"getting %d random verses from [%s] | metadata_where_clause = %s",
n_results,
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
data = collection.get(
include=["metadatas", "documents"],
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
)
)
docs = data["documents"] # list of all verse texts
ids = data["ids"]
metas = data["metadatas"]
if not docs:
logger.warning("No data found! - data=%s", data)
return chromadb.QueryResult(ids=[], documents=[], metadatas=[])
# pick k random indices
indices = random.sample(range(len(docs)), k=min(n_results, len(docs)))
return chromadb.QueryResult(
ids=[ids[i] for i in indices],
documents=[docs[i] for i in indices],
metadatas=[metas[i] for i in indices],
)
def fetch_first_match(
self,
collection_name: str,
metadata_where_clause: MetadataWhereClause = None
):
"""This version is created to support the browse module"""
logger.info(
"getting first matching verses from [%s] | metadata_where_clause = %s",
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
data = collection.get(
include=["metadatas", "documents"],
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
)
)
if data["metadatas"]:
# find index of record with lowest _global_index
min_index = min(
range(len(data["metadatas"])),
key=lambda i: data["metadatas"][i].get("_global_index", float("inf"))
)
# shrink data to keep same structure but only one record
data = {
"ids": [data["ids"][min_index]],
"documents": [data["documents"][min_index]],
"metadatas": [data["metadatas"][min_index]],
}
else:
logger.warning("No data found! - data=%s", data)
return chromadb.GetResult(ids=[], documents=[], metadatas=[])
return data
def search(
self,
collection_name: str,
query: str = None,
metadata_where_clause: MetadataWhereClause = None,
n_results=2,
search_type: Literal["semantic", "literal", "random"] = "semantic",
):
logger.info(
"Search for [%s] in [%s]| metadata_where_clause=%s | search_type=%s | n_results=%d",
query,
collection_name,
metadata_where_clause,
search_type,
n_results,
)
if search_type == "semantic":
return self.search_semantic(
collection_name=collection_name,
query=query,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
elif search_type == "literal":
return self.search_for_literal(
collection_name=collection_name,
literal_to_search_for=query,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
else:
# random
return self.fetch_random_data(
collection_name=collection_name,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
def fetch_document_by_index(self, collection_name: str, index: int):
"""
Fetch one document at a time from a ChromaDB collection using pagination (index = 0-based).
Args:
collection_name: Name of the ChromaDB collection.
index: Zero-based index of the document to fetch.
Returns:
dict: {
"document": <document_text>,
<metadata_key_1>: <value>,
<metadata_key_2>: <value>,
...
}
Or a dict with "error" key if something went wrong.
"""
logger.info("fetching index %d from [%s]", index, collection_name)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
try:
response = collection.get(
limit=1,
# offset=index, # pagination via offset
include=["metadatas", "documents"],
where={"_global_index": index},
)
except Exception as e:
logger.error("Error fetching document: %s", e, exc_info=True)
return {"error": f"There was an error fetching the document: {str(e)}"}
documents = response.get("documents", [])
metadatas = response.get("metadatas", [])
ids = response.get("ids", [])
if documents:
# merge document text with metadata
result = {"document": documents[0]}
if metadatas:
result.update(metadatas[0])
if ids:
result["id"] = ids[0]
print("raw data = ", result)
return result
else:
print("No data available")
# show a sample data record
response1 = collection.get(
limit=2,
# offset=index, # pagination via offset
include=["metadatas", "documents"],
)
print("sample data : ", response1)
return {"error": "No data available."}
def search_semantic(
self,
collection_name: str,
query: str | None = None,
metadata_where_clause: MetadataWhereClause | None = None,
n_results=2,
):
logger.info(
"Vector Semantic Search for [%s] in [%s] | metadata_where_clause = %s",
query,
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
try:
q = query.strip() if query is not None else ""
if not q:
# fallback: fetch random verse
return self.fetch_random_data(
collection_name=collection_name,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
else:
response = collection.query(
query_embeddings=get_embedding(
[query],
SanatanConfig().get_embedding_for_collection(collection_name),
),
# query_texts=[query],
n_results=n_results,
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
include=["metadatas", "documents", "distances"],
)
except Exception as e:
logger.error("Error in search: %s", e, exc_info=True)
return chromadb.QueryResult(
documents=[],
ids=[],
metadatas=[],
distances=[],
)
validated_response = validate_relevance_queryresult(query, response)
logger.info(
"status = %s | reason= %s",
validated_response.status,
validated_response.reason,
)
return validated_response.result
def search_for_literal(
self,
collection_name: str,
literal_to_search_for: str | None = None,
metadata_where_clause: MetadataWhereClause | None = None,
n_results=2,
):
logger.info(
"Searching literally for [%s] in [%s] | metadata_where_clause = %s",
literal_to_search_for,
collection_name,
metadata_where_clause,
)
if literal_to_search_for is None or literal_to_search_for.strip() == "":
logger.warning("Nothing to search literally.")
raise Exception("query cannot be None or empty for a literal search!")
# return self.fetch_random_data(
# collection_name=collection_name,
# )
collection = self.chroma_client.get_or_create_collection(name=collection_name)
def normalize(text):
return unicodedata.normalize("NFKC", text).lower()
# 1. Try native contains
response = collection.get(
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
where_document={"$contains": literal_to_search_for},
limit=n_results,
)
if response["documents"] and any(response["documents"]):
return chromadb.QueryResult(
ids=response["ids"],
documents=response["documents"],
metadatas=response["metadatas"],
)
# 2. Regex fallback (normalized)
logger.info("⚠ No luck. Falling back to regex for %s", literal_to_search_for)
regex = re.compile(re.escape(normalize(literal_to_search_for)))
logger.info("regex = %s", regex)
all_docs = collection.get(
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
)
matched_docs = []
for doc_list, metadata_list, doc_id_list in zip(
all_docs["documents"], all_docs["metadatas"], all_docs["ids"]
):
# Ensure all are lists
if isinstance(doc_list, str):
doc_list = [doc_list]
if isinstance(metadata_list, dict):
metadata_list = [metadata_list]
if isinstance(doc_id_list, str):
doc_id_list = [doc_id_list]
for i in range(len(doc_list)):
d = doc_list[i]
current_metadata = metadata_list[i]
current_id = doc_id_list[i]
doc_match = regex.search(normalize(d))
metadata_match = False
for key, value in current_metadata.items():
if isinstance(value, str) and regex.search(normalize(value)):
metadata_match = True
break
elif isinstance(value, list):
if any(
isinstance(v, str) and regex.search(normalize(v))
for v in value
):
metadata_match = True
break
if doc_match or metadata_match:
matched_docs.append(
{
"id": current_id,
"document": d,
"metadata": current_metadata,
}
)
if len(matched_docs) >= n_results:
break
if len(matched_docs) >= n_results:
break
return chromadb.QueryResult(
{
"documents": [[d["document"] for d in matched_docs]],
"ids": [[d["id"] for d in matched_docs]],
"metadatas": [[d["metadata"] for d in matched_docs]],
}
)
def count(self, collection_name: str):
collection = self.chroma_client.get_or_create_collection(name=collection_name)
total_count = collection.count()
logger.info("Total records in [%s] = %d", collection_name, total_count)
return total_count
def test_sanity(self):
for scripture in SanatanConfig().scriptures:
count = self.count(collection_name=scripture["collection_name"])
if count == 0:
raise Exception(f"No data in collection {scripture["collection_name"]}")
def reembed_collection_openai(self, collection_name: str, batch_size: int = 50):
"""
Deletes and recreates a Chroma collection with OpenAI text-embedding-3-large embeddings.
All existing documents are re-embedded and inserted into the new collection.
Args:
collection_name: The name of the collection to delete/recreate.
batch_size: Number of documents to process per batch.
"""
# Step 1: Fetch old collection data (if exists)
try:
old_collection = self.chroma_client.get_collection(name=collection_name)
old_data = old_collection.get(include=["documents", "metadatas"])
documents = old_data["documents"]
metadatas = old_data["metadatas"]
ids = old_data["ids"]
print(f"Fetched {len(documents)} documents from old collection.")
# Step 2: Delete old collection
# self.chroma_client.delete_collection(collection_name)
# print(f"Deleted old collection '{collection_name}'.")
except chromadb.errors.NotFoundError:
print(f"No existing collection named '{collection_name}', starting fresh.")
documents, metadatas, ids = [], [], []
# Step 3: Create new collection with correct embedding dimension
new_collection = self.chroma_client.create_collection(
name=f"{collection_name}_openai",
embedding_function=None, # embeddings will be provided manually
)
print(
f"Created new collection '{collection_name}_openai' with embedding_dim=3072."
)
# Step 4: Re-embed and insert documents in batches
for i in tqdm(
range(0, len(documents), batch_size), desc="Re-embedding batches"
):
batch_docs = documents[i : i + batch_size]
batch_metadatas = metadatas[i : i + batch_size]
batch_ids = ids[i : i + batch_size]
embeddings = get_embedding(batch_docs, backend="openai")
new_collection.add(
ids=batch_ids,
documents=batch_docs,
metadatas=batch_metadatas,
embeddings=embeddings,
)
print("All documents re-embedded and added to new collection successfully!")
def add_unit_index_to_collection(self, collection_name: str, unit_field: str):
if collection_name != "yt_metadata":
# safeguard just incase
return
collection = self.chroma_client.get_collection(name=collection_name)
# fetch everything in batches (in case your collection is large)
batch_size = 100
offset = 0
unit_counter = 1
while True:
result = collection.get(
limit=batch_size,
offset=offset,
include=["documents", "metadatas", "embeddings"],
)
ids = result["ids"]
if not ids:
break # no more docs
docs = result["documents"]
metas = result["metadatas"]
embeddings = result["embeddings"]
# add unit_index to metadata
updated_metas = []
for meta in metas:
# ensure meta is not None
m = meta.copy() if meta else {}
m[unit_field] = unit_counter
updated_metas.append(m)
unit_counter += 1
# upsert with same IDs (will overwrite metadata but keep same id+doc)
collection.upsert(
ids=ids,
documents=docs,
metadatas=updated_metas,
embeddings=embeddings,
)
offset += batch_size
print(
f"✅ Finished adding {unit_field} to {unit_counter-1} documents in {collection_name}."
)
def get_list_of_values(
self, collection_name: str, metadata_field_name: str
) -> list:
"""
Returns the unique values for a given metadata field in a collection.
"""
# Get the collection
collection = self.chroma_client.get_or_create_collection(name=collection_name)
# Fetch all metadata from the collection
query_result = collection.get(include=["metadatas"])
values = set() # use a set to automatically deduplicate
metadatas = query_result.get("metadatas", [])
if metadatas:
# Handle both flat list and nested list formats
if isinstance(metadatas[0], dict):
# flat list of dicts
for md in metadatas:
if metadata_field_name in md:
values.add(md[metadata_field_name])
elif isinstance(metadatas[0], list):
# nested list
for md_list in metadatas:
for md in md_list:
if metadata_field_name in md:
values.add(md[metadata_field_name])
return sorted(list(values))
def build_global_index_for_all_scriptures(self, force: bool = False):
import pandas as pd
import numpy as np
logger.info("build_global_index_for_all_scriptures: started")
config = SanatanConfig()
for scripture in config.scriptures:
scripture_name = scripture["name"]
chapter_order = scripture.get("chapter_order", None)
# if scripture_name != "vishnu_sahasranamam":
# continue
logger.info(
"build_global_index_for_all_scriptures:%s: Processing", scripture_name
)
collection_name = scripture["collection_name"]
collection = self.chroma_client.get_or_create_collection(
name=collection_name
)
metadata_fields = scripture.get("metadata_fields", [])
# Get metadata field names marked as unique
unique_fields = [f["name"] for f in metadata_fields if f.get("is_unique")]
if not unique_fields:
if metadata_fields:
unique_fields = [metadata_fields[0]["name"]]
else:
logger.warning(
f"No metadata fields defined for {collection_name}, skipping"
)
continue
logger.info(
"build_global_index_for_all_scriptures:%s:unique fields: %s",
scripture_name,
unique_fields,
)
# Build chapter_order mapping if defined
chapter_order_mapping = {}
for field in metadata_fields:
if callable(chapter_order):
chapter_order_mapping = chapter_order()
logger.info(
"build_global_index_for_all_scriptures:%s:chapter_order_mapping: %s",
scripture_name,
chapter_order_mapping,
)
# Fetch all records (keep embeddings for upsert)
try:
results = collection.get(
include=["metadatas", "documents", "embeddings"]
)
except Exception as e:
logger.error(
"build_global_index_for_all_scriptures:%s Error getting data from chromadb",
scripture_name,
exc_info=True,
)
continue
ids = results["ids"]
metadatas = results["metadatas"]
documents = results["documents"]
embeddings = results.get("embeddings", [None] * len(ids))
if not force and metadatas and "_global_index" in metadatas[0]:
logger.warning(
"build_global_index_for_all_scriptures:%s: global index already available. skipping collection",
scripture_name,
)
continue
# Create a DataFrame for metadata sorting
df = pd.DataFrame(metadatas)
df["_id"] = ids
df["_doc"] = documents
# Add sortable columns for each unique field
for field_name in unique_fields:
if field_name.lower() == "chapter" and chapter_order_mapping:
# Map chapter names to their defined order
df["_sort_" + field_name] = (
df[field_name].map(chapter_order_mapping).fillna(np.inf)
)
else:
# Try numeric, fallback to string lowercase
def parse_val(v):
if v is None:
return float("inf")
if isinstance(v, int):
return v
if isinstance(v, str):
v = v.strip()
return int(v) if v.isdigit() else v.lower()
return str(v)
df["_sort_" + field_name] = df[field_name].apply(parse_val)
sort_cols = ["_sort_" + f for f in unique_fields]
df = df.sort_values(by=sort_cols, kind="stable").reset_index(drop=True)
# Assign global index
df["_global_index"] = range(1, len(df) + 1)
logger.info(
"build_global_index_for_all_scriptures:%s: updating database",
scripture_name,
)
# Batch upsert
BATCH_SIZE = 5000 # safely below max batch size
for i in range(0, len(df), BATCH_SIZE):
batch_df = df.iloc[i : i + BATCH_SIZE]
batch_ids = batch_df["_id"].tolist()
batch_docs = batch_df["_doc"].tolist()
batch_metas = [
{k: record[k] for k in metadatas[0].keys() if k in record}
| {"_global_index": record["_global_index"]}
for record in batch_df.to_dict(orient="records")
]
# Use original metadata keys for upsert
batch_metas = [
{k: record[k] for k in metadatas[0].keys() if k in record}
| {"_global_index": record["_global_index"]}
for record in batch_df.to_dict(orient="records")
]
batch_embeds = [embeddings[idx] for idx in batch_df.index]
collection.update(
ids=batch_ids,
# documents=batch_docs,
metadatas=batch_metas,
# embeddings=batch_embeds,
)
logger.info(
"build_global_index_for_all_scriptures:%s: ✅ Updated with %d records",
scripture_name,
len(df),
)
def fix_taniyans_in_divya_prabandham(self):
nalayiram_helper.reorder_taniyan(self.chroma_client.get_collection("divya_prabandham"))
def delete_taniyans_in_divya_prabandham(self):
nalayiram_helper.delete_taniyan(self.chroma_client.get_collection("divya_prabandham"))