Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,30 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
|
| 6 |
+
# Load the model and processor
|
| 7 |
+
model = CLIPModel.from_pretrained("geolocal/StreetCLIP")
|
| 8 |
+
processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
|
| 9 |
+
|
| 10 |
+
def classify_image(image):
|
| 11 |
+
# Preprocess the image
|
| 12 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 13 |
+
# Perform the inference
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
# Postprocess the outputs
|
| 16 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 17 |
+
probs = logits_per_image.softmax(dim=1) # we can use softmax to get probabilities
|
| 18 |
+
return probs
|
| 19 |
+
|
| 20 |
+
# Define Gradio interface
|
| 21 |
+
iface = gr.Interface(
|
| 22 |
+
fn=classify_image,
|
| 23 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 24 |
+
outputs="text",
|
| 25 |
+
title="Geolocal StreetCLIP Classification",
|
| 26 |
+
description="Upload an image to classify using Geolocal StreetCLIP"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Launch the interface
|
| 30 |
+
iface.launch()
|