File size: 4,135 Bytes
d369415
06a30c8
d369415
06a30c8
d369415
 
06a30c8
d369415
 
06a30c8
 
 
 
 
 
d369415
06a30c8
d369415
 
 
 
06a30c8
 
 
d369415
06a30c8
d369415
 
 
 
 
 
 
 
 
 
06a30c8
d369415
 
 
 
06a30c8
 
 
d369415
06a30c8
 
 
 
d369415
06a30c8
 
d369415
 
66af3db
 
80b48ed
99d8712
 
66af3db
 
99d8712
66af3db
 
80b48ed
66af3db
d369415
 
 
 
 
 
06a30c8
d369415
06a30c8
 
d369415
 
06a30c8
 
 
d369415
 
 
 
 
 
 
 
06a30c8
d369415
 
 
06a30c8
 
d369415
06a30c8
d369415
 
 
 
06a30c8
ec5f7ac
d369415
 
06a30c8
d369415
 
06a30c8
 
 
d369415
 
 
 
 
 
 
 
 
 
 
 
66af3db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import sys

# 1. ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ € ์„ค์ •
# Hugging Face Spaces์˜ ๋ฌด๋ฃŒ CPU ํ™˜๊ฒฝ(16GB RAM)์— ๋งž์ถฐ 600M ๋ชจ๋ธ ์‚ฌ์šฉ
model_name = "facebook/nllb-200-distilled-600M"

print(f"๋ชจ๋ธ({model_name})์„ ๋กœ๋“œํ•˜๋Š” ์ค‘์ž…๋‹ˆ๋‹ค... ์ž ์‹œ๋งŒ ๊ธฐ๋‹ค๋ ค์ฃผ์„ธ์š”.")

# ์ „์—ญ ๋ณ€์ˆ˜๋กœ ์„ ์–ธ
tokenizer = None
model = None

try:
    # ํ† ํฌ๋‚˜์ด์ €์™€ ๋ชจ๋ธ ๋กœ๋“œ
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    print("๋ชจ๋ธ ๋กœ๋“œ ์™„๋ฃŒ!")
except Exception as e:
    # ๋ชจ๋ธ ๋กœ๋“œ ์‹คํŒจ ์‹œ ์•ฑ์„ ๊ฐ•์ œ๋กœ ์ข…๋ฃŒํ•˜์—ฌ Logs ํƒญ์—์„œ ์ •ํ™•ํ•œ ์›์ธ์„ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ํ•จ
    print(f"โŒ ๋ชจ๋ธ ๋กœ๋“œ ์ค‘ ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
    sys.exit(1)

# 2. ์–ธ์–ด ์ฝ”๋“œ ๋งคํ•‘
LANG_CODES = {
    "์˜์–ด (English)": "eng_Latn",
    "์ผ๋ณธ์–ด (Japanese)": "jpn_Jpan",
    "์ค‘๊ตญ์–ด (Chinese Simplified)": "zho_Hans"
}

TARGET_LANG_CODE = "kor_Hang"  # ํ•œ๊ตญ์–ด

def translate_text(text, source_lang_name):
    """
    ์ž…๋ ฅ ํ…์ŠคํŠธ๋ฅผ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญ
    """
    if not text:
        return "๋ฒˆ์—ญํ•  ๋‚ด์šฉ์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”."

    if model is None or tokenizer is None:
        return "๋ชจ๋ธ์ด ๋กœ๋“œ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์„œ๋ฒ„ ๋กœ๊ทธ๋ฅผ ํ™•์ธํ•ด์ฃผ์„ธ์š”."

    try:
        # ์ž…๋ ฅ ์–ธ์–ด ์ฝ”๋“œ ๊ฐ€์ ธ์˜ค๊ธฐ
        src_code = LANG_CODES.get(source_lang_name)
        
        # ๋ฒˆ์—ญ ์˜ต์…˜ ์„ค์ •: ์ž…๋ ฅ ์–ธ์–ด ์ง€์ •
        tokenizer.src_lang = src_code
        
        # ์ž…๋ ฅ ํ…์ŠคํŠธ ํ† ํฐํ™”
        inputs = tokenizer(text, return_tensors="pt")
        
        # [์ค‘์š”] ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด no_grad() ์‚ฌ์šฉ
        with torch.no_grad():

            target_token_id = tokenizer.convert_tokens_to_ids(TARGET_LANG_CODE)
            
            generated_tokens = model.generate(
                **inputs,
                forced_bos_token_id=target_token_id,
                max_length=500,
                # [์ค‘์š”] CPU ํ™˜๊ฒฝ ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด Beam Search ๋Œ€์‹  Greedy Search ์‚ฌ์šฉ
                num_beams=1
            )
        
        # ๊ฒฐ๊ณผ ๋””์ฝ”๋”ฉ
        result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        return result
        
    except Exception as e:
        return f"๋ฒˆ์—ญ ์—๋Ÿฌ: {str(e)}"

# 3. Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks(title="ํ•œ๊ธ€๋กœ (Hangullo) - ๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ๊ธฐ") as demo:
    gr.Markdown(
        """
        # ๐Ÿ‡ฐ๐Ÿ‡ท ํ•œ๊ธ€๋กœ (Hangullo)
        **์˜์–ด, ์ผ๋ณธ์–ด, ์ค‘๊ตญ์–ด**๋ฅผ ์ž…๋ ฅํ•˜๋ฉด ์ž์—ฐ์Šค๋Ÿฌ์šด **ํ•œ๊ตญ์–ด**๋กœ ๋ฒˆ์—ญํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
        *(Powered by Meta NLLB-200)*
        """
    )
    
    with gr.Row():
        with gr.Column():
            src_lang = gr.Dropdown(
                choices=list(LANG_CODES.keys()), 
                value="์˜์–ด (English)", 
                label="์ž…๋ ฅ ์–ธ์–ด"
            )
            input_text = gr.Textbox(
                lines=5, 
                placeholder="๋ฒˆ์—ญํ•  ๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜์„ธ์š”...", 
                label="์ž…๋ ฅ (Source)"
            )
            translate_btn = gr.Button("ํ•œ๊ตญ์–ด๋กœ ๋ณ€ํ™˜", variant="primary")
            
        with gr.Column():
            output_text = gr.Textbox(
                lines=5, 
                label="ํ•œ๊ตญ์–ด ๊ฒฐ๊ณผ (Korean)", 
                interactive=False
            )
    
    # ์˜ˆ์ œ ๋ฐ์ดํ„ฐ
    gr.Examples(
        examples=[
            ["The quick brown fox jumps over the lazy dog.", "์˜์–ด (English)"],
            ["AIใฎ็™บๅฑ•ใซใ‚ˆใฃใฆใ€็งใŸใกใฎ็”Ÿๆดปใฏๅคงใใๅค‰ๅŒ–ใ—ใฆใ„ใพใ™ใ€‚", "์ผ๋ณธ์–ด (Japanese)"],
            ["ไปŠๅคฉๅคฉๆฐ”็œŸๅฅฝ๏ผŒๆˆ‘ไปฌๅŽปๅ…ฌๅ›ญๆ•ฃๆญฅๅงใ€‚", "์ค‘๊ตญ์–ด (Chinese Simplified)"]
        ],
        inputs=[input_text, src_lang]
    )

    translate_btn.click(
        fn=translate_text, 
        inputs=[input_text, src_lang], 
        outputs=output_text
    )

# 4. ์•ฑ ์‹คํ–‰
if __name__ == "__main__":
    # [์ค‘์š”] ํ(Queue)๋ฅผ ํ™œ์„ฑํ™”ํ•˜์—ฌ ์š”์ฒญ ์ถฉ๋Œ ๋ฐฉ์ง€
    demo.queue().launch()