File size: 18,983 Bytes
82a49a3
406ea4d
fc67239
82a49a3
a400605
406ea4d
e454cf0
82f5f40
406ea4d
 
3f913b5
406ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f913b5
406ea4d
3f913b5
09f795e
a400605
 
 
 
406ea4d
 
a400605
 
3f913b5
 
 
 
 
 
 
82a49a3
406ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a400605
406ea4d
a400605
 
 
 
 
406ea4d
 
 
 
 
eb026de
 
 
 
 
 
 
 
 
 
 
406ea4d
eb026de
 
 
 
 
 
406ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a400605
 
82a49a3
406ea4d
fc67239
3f913b5
e454cf0
 
 
 
 
82f5f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f913b5
e454cf0
82a49a3
406ea4d
3f913b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a400605
3f913b5
 
 
a400605
406ea4d
 
a400605
 
 
 
406ea4d
a400605
 
406ea4d
 
 
 
 
 
a400605
 
406ea4d
a400605
 
 
eb026de
 
 
 
 
 
 
 
 
 
a400605
406ea4d
 
a400605
406ea4d
 
eb026de
406ea4d
eb026de
406ea4d
 
 
 
 
 
 
 
 
 
 
 
 
a400605
 
 
 
 
 
406ea4d
 
 
 
 
 
3f913b5
 
 
 
 
 
 
 
406ea4d
3f913b5
 
 
661f4f9
 
3f913b5
 
 
 
 
 
 
 
 
 
 
 
 
81d5cf7
 
3f913b5
 
 
 
 
406ea4d
3f913b5
 
eb026de
3f913b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a400605
 
eb026de
 
 
 
 
 
 
 
 
 
 
406ea4d
 
 
 
 
eb026de
a400605
 
 
3f913b5
 
 
 
 
 
 
 
 
 
 
82a49a3
406ea4d
2a84e28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import gradio as gr
import os
import spaces
import torch
from diffusers import AuraFlowPipeline, Lumina2Pipeline, NewbiePipeline
from transformers import AutoModel, AutoTokenizer
import random
import numpy as np
from PIL import Image
import copy
import warnings
import math
import time
from stablepy import SCHEDULER_CONFIG_MAP, FLUX_SCHEDULE_TYPES, scheduler_names, SCHEDULE_TYPE_OPTIONS, FLUX_SCHEDULE_TYPE_OPTIONS

from constants import BASE_PROMPT_NEWBIE, BASE_NEG_PROMPT_NEWBIE, EXAMPLES_NEWBIE, BASE_NEG_PROMPT_PONY7, BASE_PROMPT_NETA
from pipeline_newbie_img2img import NewbieImg2ImgPipeline

FLOW_MATCH_ONLY_MAP = {
    k: v for k, v in SCHEDULER_CONFIG_MAP.items() if "FlowMatch" in k
}
FLOW_MATCH_LIST = list(FLOW_MATCH_ONLY_MAP.keys())
SAMPLER_NEWBIE = [
    k for k in FLOW_MATCH_ONLY_MAP.keys()
    if k not in ["FlowMatch DPM++ SDE", "FlowMatch DPM++ 3M SDE"]
]

os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
NEWBIE_TOKEN_LIMIT = 1100

model_path = "Disty0/NewBie-image-Exp0.1-Diffusers"  # NewBie-AI/NewBie-image-Exp0.1
text_encoder_2 = AutoModel.from_pretrained(model_path, subfolder="text_encoder_2", trust_remote_code=True, torch_dtype=torch.bfloat16)
pipe_newbie = NewbiePipeline.from_pretrained(model_path, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16)
pipe_newbie.to("cuda")
del text_encoder_2
newbie_default_scheduler = copy.deepcopy(pipe_newbie.scheduler)
pipe_newbie_img2img = NewbieImg2ImgPipeline(**pipe_newbie.components).to("cuda")

pipe_pony = AuraFlowPipeline.from_pretrained("purplesmartai/pony-v7-base", torch_dtype=torch.bfloat16)
pipe_pony.to("cuda")

pipe_netayume = Lumina2Pipeline.from_pretrained(
    "duongve/NetaYume-Lumina-Image-2.0-Diffusers-v35-pretrained",
    torch_dtype=torch.bfloat16
)
pipe_netayume.to("cuda")


def set_sampler(pipe, sampler_name, schedule_type, default_config):
    if sampler_name != FLOW_MATCH_LIST[0]:
        scheduler_class, config = FLOW_MATCH_ONLY_MAP[sampler_name]
        pipe.scheduler = scheduler_class.from_config(default_config.config, **config)
    
    flux_schedule_config = FLUX_SCHEDULE_TYPES.get(schedule_type)
    
    if flux_schedule_config:
        pipe.scheduler.register_to_config(**flux_schedule_config)

    return pipe


def get_newbie_token_details(prompt, system_prompt, tokenizer):
    if prompt is None: prompt = ""
    if system_prompt is None: system_prompt = ""

    t_sys = tokenizer(str(system_prompt), add_special_tokens=False)["input_ids"]
    t_sep = tokenizer(" <Prompt Start> ", add_special_tokens=False)["input_ids"]
    t_prm = tokenizer(str(prompt), add_special_tokens=False)["input_ids"]
    
    total_tokens = len(t_sys) + len(t_sep) + len(t_prm) + 2

    if total_tokens <= 512:
        sequence_length = 512
    else:
        sequence_length = math.ceil(total_tokens / 512) * 512

    return total_tokens, sequence_length


def check_token_count(prompt, system_prompt):
    try:
        time.sleep(2)
        
        tokenizer = pipe_newbie.tokenizer_2
        total, seq_len = get_newbie_token_details(prompt, system_prompt, tokenizer)

        if total > NEWBIE_TOKEN_LIMIT:
            return gr.update(
                value=f"<div style='color: #ef4444; border: 1px solid #ef4444; background-color: #fef2f2; padding: 8px; border-radius: 5px; font-weight: bold; width: 100%; text-align: center;'>"
                      f"⚠️ Token limit exceeded! ({total}/{NEWBIE_TOKEN_LIMIT}). <br>"
                      f"Text will be truncated.</div>",
                visible=True
            )
        else:
            return gr.update(
                value=f"<div style='color: #6b7280; font-size: 0.9em; text-align: right; width: 100%;'> {total}/{min(seq_len, NEWBIE_TOKEN_LIMIT)}</div>",
                visible=True
            )
    except Exception:
        return gr.update(visible=False)


@spaces.GPU()
def generate_image_newbie(prompt, negative_prompt, system_prompt, height, width, num_inference_steps, guidance_scale, cfg_trunc_ratio, cfg_normalization, seed, sigmas_factor, sampler, schedule_type, image, strength, progress=gr.Progress(track_tqdm=True)):
    if seed < 0:
        seed = random.randint(0, 2**32 - 1)

    generator = torch.Generator("cuda").manual_seed(int(seed))

    total_tokens, seq_len = get_newbie_token_details(prompt, system_prompt, pipe_newbie.tokenizer_2)
    if total_tokens > NEWBIE_TOKEN_LIMIT:
        raise ValueError(f"The prompt is longer than the allowed limit of {NEWBIE_TOKEN_LIMIT} tokens.")
    seq_len = min(seq_len, NEWBIE_TOKEN_LIMIT)

    pipeline_args = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": int(height),
        "width": int(width),
        "num_inference_steps": int(num_inference_steps),
        "guidance_scale": guidance_scale,
        "system_prompt": system_prompt,
        "cfg_trunc_ratio": cfg_trunc_ratio,
        "cfg_normalization": cfg_normalization,
        "generator": generator,
        "max_sequence_length": int(seq_len)
    }

    if sigmas_factor != 1.0:
        steps = int(num_inference_steps)
        sigmas = np.linspace(1.0, 1 / steps, steps)
        sigmas = sigmas * sigmas_factor
        pipeline_args["sigmas"] = sigmas  # .tolist()

    if image is not None:
        pipe_task_nb = pipe_newbie_img2img
        if isinstance(image, np.ndarray):
            img_pil = Image.fromarray(image)
        else:
            img_pil = Image.open(image)
        img_pil.thumbnail((width, height), Image.Resampling.LANCZOS)
        pipeline_args["image"] = img_pil
        pipeline_args["strength"] = strength
    else:
        pipe_task_nb = pipe_newbie

    set_sampler(pipe_task_nb, sampler, schedule_type, newbie_default_scheduler)
    
    image = pipe_task_nb(**pipeline_args).images[0]
    pipe_task_nb.scheduler = newbie_default_scheduler

    return image, seed


@spaces.GPU()
def generate_image_pony(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, sigmas_factor, seed, progress=gr.Progress(track_tqdm=True)):
    if seed < 0:
        seed = random.randint(0, 2**32 - 1)

    generator = torch.Generator("cuda").manual_seed(int(seed))

    pipeline_args = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": int(height),
        "width": int(width),
        "num_inference_steps": int(num_inference_steps),
        "guidance_scale": guidance_scale,
        "generator": generator,
    }

    if sigmas_factor != 1.0:
        steps = int(num_inference_steps)
        sigmas = np.linspace(1.0, 1 / steps, steps)
        sigmas = sigmas * sigmas_factor
        pipeline_args["sigmas"] = sigmas.tolist()

    image = pipe_pony(**pipeline_args).images[0]
    return image, seed


@spaces.GPU()
def generate_image_netayume(prompt, negative_prompt, system_prompt, height, width, guidance_scale, num_inference_steps, cfg_trunc_ratio, cfg_normalization, seed, sigmas_factor, progress=gr.Progress(track_tqdm=True)):
    if seed < 0:
        seed = random.randint(0, 2**32 - 1)

    generator = torch.Generator("cuda").manual_seed(int(seed))

    pipeline_args = {
        "prompt": prompt,
        "negative_prompt": negative_prompt if negative_prompt and negative_prompt.strip() else None,
        "system_prompt": system_prompt,
        "height": int(height),
        "width": int(width),
        "guidance_scale": guidance_scale,
        "num_inference_steps": int(num_inference_steps),
        "cfg_trunc_ratio": cfg_trunc_ratio,
        "cfg_normalization": cfg_normalization,
        "generator": generator,
    }

    if sigmas_factor != 1.0:
        steps = int(num_inference_steps)
        sigmas = np.linspace(1.0, 1 / steps, steps)
        sigmas = sigmas * sigmas_factor
        pipeline_args["sigmas"] = sigmas.tolist()

    image = pipe_netayume(**pipeline_args).images[0]

    return image, seed


with gr.Blocks(theme=gr.themes.Soft(), title="Image Generation Playground") as demo:
    gr.Markdown("# Image Generation Playground")
    with gr.Tabs():
        with gr.Tab(label="NewBie Image"):
            gr.Markdown("## 🐣 NewBie Image Exp0.1")
            gr.Markdown("A 3.5B parameter experimental DiT model built on Next-DiT and Lumina insights")
            with gr.Row(variant="panel"):
                with gr.Column(scale=2):
                    prompt_newbie = gr.Textbox(
                        label="Prompt",
                        value=BASE_PROMPT_NEWBIE,
                        lines=3
                    )

                    token_counter_display = gr.HTML(
                        value="<div style='color: #6b7280; font-size: 0.9em; text-align: right;'>Token usage: Calculating...</div>",
                        visible=True
                    )

                    negative_prompt_newbie = gr.Textbox(
                        label="Negative Prompt",
                        value=BASE_NEG_PROMPT_NEWBIE,
                        lines=2
                    )
                    
                    system_prompt_newbie = gr.Dropdown(
                        label="System Prompt",
                        choices=[
                            "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
                            "You are an advanced assistant designed to generate high-quality images from user prompts, utilizing danbooru tags to accurately guide the image creation process.",
                        ],
                        allow_custom_value=True,
                        value="You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts."
                    )

                    with gr.Row():
                        height_newbie = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1264)
                        width_newbie = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=832)
                    with gr.Row():
                        steps_newbie = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=30)
                        guidance_scale_newbie = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=6.5)
                    with gr.Row():
                        sigmas_newbie = gr.Slider(label="Sigmas Factor", info="Lower values increase detail and complexity. Higher values simplify and clean the image.", minimum=0.9, maximum=1.1, step=0.001, value=0.99)
                        seed_newbie = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)

                    with gr.Accordion("More settings", open=False):    
                        with gr.Row():
                            sampler_newbie = gr.Dropdown(label="Sampler", choices=SAMPLER_NEWBIE, value="FlowMatch DPM++ 2M SDE")
                            schedule_type_newbie = gr.Dropdown(label="Schedule Type", choices=FLUX_SCHEDULE_TYPE_OPTIONS, value=FLUX_SCHEDULE_TYPE_OPTIONS[0])
                        with gr.Row():
                            cfg_norm_newbie = gr.Checkbox(label="CFG Normalization", value=True)
                            cfg_trunc_newbie = gr.Slider(label="CFG Truncation Ratio", minimum=0.0, maximum=1.0, step=0.05, value=1.0)

                        with gr.Row():
                            image_newbie = gr.Image(label="Reference image", interactive=True)
                            strength_newbie = gr.Slider(label="Reference Image Adherence", info="Lower values = strong adherence; higher values = weak adherence.", minimum=0.1, maximum=1., step=0.01, value=0.65)

                    generate_btn_newbie = gr.Button("Generate", variant="primary")

                with gr.Column(scale=1):
                    image_output_newbie = gr.Image(label="Generated Image", format="png", interactive=False)
                    used_seed_newbie = gr.Number(label="Used Seed", interactive=False)

            gr.Examples(
                examples=EXAMPLES_NEWBIE,
                inputs=[prompt_newbie],
                label="Example Prompts"
            )

        with gr.Tab(label="Pony v7"):
            gr.Markdown("## ✨ Pony v7 AuraFlow")
            gr.Markdown("Generate images from text prompts using the AuraFlow model.")
            with gr.Row(variant="panel"):
                with gr.Column(scale=2):
                    prompt_pony = gr.Textbox(label="Prompt", value="Score_9, ", lines=3)
                    neg_prompt_pony = gr.Textbox(
                        label="Negative Prompt",
                        value=BASE_NEG_PROMPT_PONY7,
                        lines=3
                    )
                    with gr.Row():
                        height_pony = gr.Slider(label="Height", minimum=512, maximum=1536, step=64, value=1024)
                        width_pony = gr.Slider(label="Width", minimum=512, maximum=1536, step=64, value=1024)
                    with gr.Row():
                        steps_pony = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=30)
                        cfg_pony = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.5)
                    with gr.Row():
                        sigmas_pony = gr.Slider(label="Sigmas Factor", minimum=0.95, maximum=1.05, step=0.01, value=.99)
                        seed_pony = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
                    
                    generate_btn_pony = gr.Button("Generate", variant="primary")

                with gr.Column(scale=1):
                    image_output_pony = gr.Image(label="Generated Image", format="png", interactive=False)
                    used_seed_pony = gr.Number(label="Used Seed", interactive=False)
        
        with gr.Tab(label="NetaYume v3.5"):
            gr.Markdown("## 🌌 NetaYume v3.5 Lumina")
            gr.Markdown("Generate images from text prompts using the Lumina 2 model with a focus on anime aesthetics.")
            with gr.Row(variant="panel"):
                with gr.Column(scale=2):
                    prompt_neta = gr.Textbox(
                        label="Prompt",
                        value=BASE_PROMPT_NETA,
                        lines=5
                    )
                    neg_prompt_neta = gr.Textbox(label="Negative Prompt", value="low quality, bad quality, blurry, low resolution, deformed, ugly, bad anatomy", placeholder="Enter concepts to avoid...", lines=2)
                    system_prompt_neta = gr.Dropdown(
                        label="System Prompt",
                        choices=[
                            "You are an advanced assistant designed to generate high-quality images from user prompts, utilizing danbooru tags to accurately guide the image creation process.",
                            "You are an assistant designed to generate high-quality images based on user prompts and danbooru tags.",
                            "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
                            "You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts."
                        ],
                        value="You are an advanced assistant designed to generate high-quality images from user prompts, utilizing danbooru tags to accurately guide the image creation process."
                    )
                    with gr.Row():
                        height_neta = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1536)
                        width_neta = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
                    with gr.Row():
                        cfg_neta = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0)
                        steps_neta = gr.Slider(label="Sampling Steps", minimum=10, maximum=100, step=1, value=50)
                    with gr.Row():
                        cfg_trunc_neta = gr.Slider(label="CFG Truncation Ratio", minimum=0.0, maximum=10.0, step=0.1, value=6.0)
                        sigmas_neta = gr.Slider(label="Sigmas Factor", minimum=0.9, maximum=1.1, step=0.01, value=1.0)
                    with gr.Row():
                        cfg_norm_neta = gr.Checkbox(label="CFG Normalization", value=False)
                        seed_neta = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
                    
                    generate_btn_neta = gr.Button("Generate", variant="primary")

                with gr.Column(scale=1):
                    image_output_neta = gr.Image(label="Generated Image", format="png", interactive=False)
                    used_seed_neta = gr.Number(label="Used Seed", interactive=False)

    prompt_newbie.change(
        fn=check_token_count,
        inputs=[prompt_newbie, system_prompt_newbie],
        outputs=token_counter_display,
        show_progress="hidden",
        queue=False,
        trigger_mode="always_last",
        api_name=False
    )
    system_prompt_newbie.change(
        fn=check_token_count,
        inputs=[prompt_newbie, system_prompt_newbie],
        outputs=token_counter_display,
        show_progress="hidden",
        queue=False,
        trigger_mode="always_last",
        api_name=False
    )
    # Initialize the counter on load
    demo.load(
        fn=check_token_count,
        inputs=[prompt_newbie, system_prompt_newbie],
        outputs=token_counter_display,
        queue=False,
        trigger_mode="always_last",
        api_name=False
    )

    generate_btn_newbie.click(
        fn=generate_image_newbie,
        inputs=[
            prompt_newbie, 
            negative_prompt_newbie, 
            system_prompt_newbie, 
            height_newbie, 
            width_newbie, 
            steps_newbie, 
            guidance_scale_newbie, 
            cfg_trunc_newbie, 
            cfg_norm_newbie, 
            seed_newbie, 
            sigmas_newbie,
            sampler_newbie,
            schedule_type_newbie,
            image_newbie,
            strength_newbie,
        ],
        outputs=[image_output_newbie, used_seed_newbie]
    )

    generate_btn_pony.click(
        fn=generate_image_pony,
        inputs=[prompt_pony, neg_prompt_pony, height_pony, width_pony, steps_pony, cfg_pony, sigmas_pony, seed_pony],
        outputs=[image_output_pony, used_seed_pony]
    )

    generate_btn_neta.click(
        fn=generate_image_netayume,
        inputs=[prompt_neta, neg_prompt_neta, system_prompt_neta, height_neta, width_neta, cfg_neta, steps_neta, cfg_trunc_neta, cfg_norm_neta, seed_neta, sigmas_neta],
        outputs=[image_output_neta, used_seed_neta]
    )

if __name__ == "__main__":
    demo.launch(show_error=True)