Photo-Mate-i2i / app.py
prithivMLmods's picture
update app
5d344ef verified
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser")
pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer")
pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-Warm-i2i.safetensors", adapter_name="polaroid")
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
pipe.load_lora_weights("prithivMLmods/LZO-1-Preview", weight_name="LZO-1-Preview.safetensors", adapter_name="lzo")
pipe.load_lora_weights("prithivMLmods/Kontext-Watermark-Remover", weight_name="Kontext-Watermark-Remover.safetensors", adapter_name="watermark-remover")
pipe.load_lora_weights("prithivMLmods/Kontext-Unblur-Upscale", weight_name="Kontext-Image-Upscale.safetensors", adapter_name="unblur-upscale")
@spaces.GPU
def infer(input_image, prompt, lora_adapter, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
if not input_image:
raise gr.Error("Please upload an image for editing.")
if lora_adapter == "PhotoCleanser":
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
elif lora_adapter == "PhotoRestorer":
pipe.set_adapters(["restorer"], adapter_weights=[1.0])
elif lora_adapter == "PolaroidWarm":
pipe.set_adapters(["polaroid"], adapter_weights=[1.0])
elif lora_adapter == "MonochromePencil":
pipe.set_adapters(["pencil"], adapter_weights=[1.0])
elif lora_adapter == "LZO-Zoom":
pipe.set_adapters(["lzo"], adapter_weights=[1.0])
elif lora_adapter == "Kontext-Watermark-Remover":
pipe.set_adapters(["watermark-remover"], adapter_weights=[1.0])
elif lora_adapter == "Kontext-Unblur-Upscale":
pipe.set_adapters(["unblur-upscale"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy().convert("RGB")
image = pipe(
image=original_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = original_image.size[0],
height = original_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed
@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
image, seed = infer(input_image, prompt, lora_adapter)
return image, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.2em !important;}
"""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Photo-Mate-i2i**", elem_id="main-title")
gr.Markdown("Image manipulation with FLUX.1 Kontext adapters. [How to Use](https://huggingface.co/spaces/prithivMLmods/Photo-Mate-i2i/discussions/2) [[Version 2.0]](https://huggingface.co/spaces/prithivMLmods/Kontext-Photo-Mate-v2)")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., transform into anime..",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=419)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Chosen LoRA",
choices=["PhotoCleanser", "PhotoRestorer", "PolaroidWarm", "MonochromePencil", "LZO-Zoom", "Kontext-Watermark-Remover", "Kontext-Unblur-Upscale"],
value="PhotoCleanser"
)
gr.Examples(
examples=[
["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photocleanser/1.png", "[photo content], remove the football from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["watermark/12.jpeg", "[photo content], remove any watermark text or logos from the image while preserving the background, texture, lighting, and overall realism. Ensure the edited areas blend seamlessly with surrounding details, leaving no visible traces of watermark removal.", "Kontext-Watermark-Remover"],
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["lzo/1.jpg", "[photo content], zoom in on the specified [face close-up], enhancing resolution and detail while preserving sharpness, realism, and original context. Maintain natural proportions and background continuity around the zoomed area.", "LZO-Zoom"],
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["polaroid/1.png", "[photo content], in the style of a vintage Polaroid, with warm, faded tones, and a white border.", "PolaroidWarm"],
["unblur/1.jpg", "[photo content], upscale the low-quality image to 4K resolution, enhancing sharpness, clarity, and fine details while preserving the original texture, colors, lighting, and natural appearance. Remove noise, blur, and compression artifacts without over-smoothing or distorting facial or object features. Ensure realistic depth, balanced contrast, and accurate tones, achieving a high-definition, lifelike result that maintains the integrity of the original image.", "Kontext-Unblur-Upscale"],
["pencil/1.png", "[photo content], replicate the image as a pencil illustration, black and white, with sketch-like detailing.", "MonochromePencil"],
["unblur/11.jpg", "[photo content], upscale the low-quality image to 4K resolution, enhancing sharpness, clarity, and fine details while preserving the original texture, colors, lighting, and natural appearance. Remove noise, blur, and compression artifacts without over-smoothing or distorting facial or object features. Ensure realistic depth, balanced contrast, and accurate tones, achieving a high-definition, lifelike result that maintains the integrity of the original image.", "Kontext-Unblur-Upscale"],
],
inputs=[input_image, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
demo.launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)