Spaces:
Running
Running
ggml : remove old kompute, cann (skip) (#3349)
Browse files- ggml/include/ggml-kompute.h +0 -50
- ggml/src/ggml-cann/kernels/CMakeLists.txt +0 -30
- ggml/src/ggml-cann/kernels/ascendc_kernels.h +0 -19
- ggml/src/ggml-cann/kernels/dup.cpp +0 -234
- ggml/src/ggml-cann/kernels/get_row_f16.cpp +0 -197
- ggml/src/ggml-cann/kernels/get_row_f32.cpp +0 -190
- ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +0 -204
- ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +0 -191
- ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +0 -218
- ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +0 -216
- ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +0 -295
- ggml/src/ggml-kompute/CMakeLists.txt +0 -166
- ggml/src/ggml-kompute/ggml-kompute.cpp +0 -2251
- ggml/src/ggml-kompute/kompute-shaders/common.comp +0 -112
- ggml/src/ggml-kompute/kompute-shaders/op_add.comp +0 -58
- ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp +0 -25
- ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp +0 -30
- ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp +0 -22
- ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp +0 -17
- ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp +0 -31
- ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp +0 -31
- ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp +0 -38
- ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp +0 -39
- ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp +0 -44
- ggml/src/ggml-kompute/kompute-shaders/op_mul.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp +0 -69
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_mat_f32.comp +0 -51
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp +0 -33
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp +0 -35
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp +0 -140
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp +0 -106
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp +0 -73
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp +0 -28
- ggml/src/ggml-kompute/kompute-shaders/op_norm.comp +0 -84
- ggml/src/ggml-kompute/kompute-shaders/op_relu.comp +0 -21
- ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp +0 -53
- ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f32.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f16.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f32.comp +0 -52
- ggml/src/ggml-kompute/kompute-shaders/op_scale.comp +0 -19
- ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp +0 -23
- ggml/src/ggml-kompute/kompute-shaders/op_silu.comp +0 -22
- ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp +0 -72
- ggml/src/ggml-kompute/kompute-shaders/rope_common.comp +0 -71
ggml/include/ggml-kompute.h
DELETED
|
@@ -1,50 +0,0 @@
|
|
| 1 |
-
#pragma once
|
| 2 |
-
|
| 3 |
-
#include "ggml.h"
|
| 4 |
-
#include "ggml-backend.h"
|
| 5 |
-
|
| 6 |
-
#include <stdbool.h>
|
| 7 |
-
#include <stddef.h>
|
| 8 |
-
#include <stdint.h>
|
| 9 |
-
|
| 10 |
-
#ifdef __cplusplus
|
| 11 |
-
extern "C" {
|
| 12 |
-
#endif
|
| 13 |
-
|
| 14 |
-
#define GGML_KOMPUTE_MAX_DEVICES 16
|
| 15 |
-
|
| 16 |
-
struct ggml_vk_device {
|
| 17 |
-
int index;
|
| 18 |
-
int type; // same as VkPhysicalDeviceType
|
| 19 |
-
size_t heapSize;
|
| 20 |
-
const char * name;
|
| 21 |
-
const char * vendor;
|
| 22 |
-
int subgroupSize;
|
| 23 |
-
uint64_t bufferAlignment;
|
| 24 |
-
uint64_t maxAlloc;
|
| 25 |
-
};
|
| 26 |
-
|
| 27 |
-
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
| 28 |
-
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
| 29 |
-
bool ggml_vk_has_vulkan(void);
|
| 30 |
-
bool ggml_vk_has_device(void);
|
| 31 |
-
struct ggml_vk_device ggml_vk_current_device(void);
|
| 32 |
-
|
| 33 |
-
//
|
| 34 |
-
// backend API
|
| 35 |
-
//
|
| 36 |
-
|
| 37 |
-
// forward declaration
|
| 38 |
-
typedef struct ggml_backend * ggml_backend_t;
|
| 39 |
-
|
| 40 |
-
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
|
| 41 |
-
|
| 42 |
-
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
| 43 |
-
|
| 44 |
-
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
| 45 |
-
|
| 46 |
-
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
| 47 |
-
|
| 48 |
-
#ifdef __cplusplus
|
| 49 |
-
}
|
| 50 |
-
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/CMakeLists.txt
DELETED
|
@@ -1,30 +0,0 @@
|
|
| 1 |
-
file(GLOB SRC_FILES
|
| 2 |
-
get_row_f32.cpp
|
| 3 |
-
get_row_f16.cpp
|
| 4 |
-
get_row_q4_0.cpp
|
| 5 |
-
get_row_q8_0.cpp
|
| 6 |
-
quantize_f32_q8_0.cpp
|
| 7 |
-
quantize_f16_q8_0.cpp
|
| 8 |
-
quantize_float_to_q4_0.cpp
|
| 9 |
-
dup.cpp
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
| 13 |
-
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
| 14 |
-
|
| 15 |
-
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
| 16 |
-
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
| 17 |
-
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
| 18 |
-
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
| 19 |
-
else()
|
| 20 |
-
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
|
| 21 |
-
endif()
|
| 22 |
-
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
|
| 23 |
-
|
| 24 |
-
ascendc_library(ascendc_kernels STATIC
|
| 25 |
-
${SRC_FILES}
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
|
| 29 |
-
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
| 30 |
-
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/ascendc_kernels.h
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
#ifndef ASCENDC_KERNELS_H
|
| 2 |
-
#define ASCENDC_KERNELS_H
|
| 3 |
-
|
| 4 |
-
#include "aclrtlaunch_ascendc_get_row_f32.h"
|
| 5 |
-
#include "aclrtlaunch_ascendc_get_row_f16.h"
|
| 6 |
-
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
|
| 7 |
-
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
|
| 8 |
-
|
| 9 |
-
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
|
| 10 |
-
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
|
| 11 |
-
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
|
| 12 |
-
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
|
| 13 |
-
|
| 14 |
-
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
|
| 15 |
-
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
|
| 16 |
-
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
|
| 17 |
-
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
|
| 18 |
-
|
| 19 |
-
#endif // ASCENDC_KERNELS_H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/dup.cpp
DELETED
|
@@ -1,234 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
using namespace AscendC;
|
| 4 |
-
|
| 5 |
-
#define BUFFER_NUM 2
|
| 6 |
-
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
| 7 |
-
|
| 8 |
-
template <typename SRC_T, typename DST_T>
|
| 9 |
-
class DupByRows {
|
| 10 |
-
public:
|
| 11 |
-
__aicore__ inline DupByRows() {}
|
| 12 |
-
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
|
| 13 |
-
size_t *input_nb_ub) {
|
| 14 |
-
/* Dup by rows when src is contigous on first dimension and dst is
|
| 15 |
-
contiguous, each kernel process one row.
|
| 16 |
-
*/
|
| 17 |
-
|
| 18 |
-
// Input has four dims.
|
| 19 |
-
int64_t op_block_num = GetBlockNum();
|
| 20 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 21 |
-
|
| 22 |
-
// param
|
| 23 |
-
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
| 24 |
-
num_elem = input_ne_ub[0];
|
| 25 |
-
|
| 26 |
-
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
|
| 27 |
-
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
|
| 28 |
-
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
|
| 29 |
-
/ (input_ne_ub[1]);
|
| 30 |
-
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
|
| 31 |
-
- idx_ne2 * input_ne_ub[1];
|
| 32 |
-
|
| 33 |
-
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
|
| 34 |
-
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
|
| 35 |
-
+ input_nb_ub[1] * idx_ne1;
|
| 36 |
-
|
| 37 |
-
// dst is contiguous
|
| 38 |
-
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
|
| 39 |
-
|
| 40 |
-
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
|
| 41 |
-
src_stride));
|
| 42 |
-
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
|
| 43 |
-
dst_stride));
|
| 44 |
-
|
| 45 |
-
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
|
| 46 |
-
32 - 1) / 32 * 32);
|
| 47 |
-
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
|
| 48 |
-
32 - 1) / 32 * 32);
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
__aicore__ inline void copy_in() {
|
| 52 |
-
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
| 53 |
-
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
| 54 |
-
size_t tail = num_elem % elem_per_block;
|
| 55 |
-
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
| 56 |
-
DataCopy(src_local, src_gm, cpy_elements_len);
|
| 57 |
-
src_queue.EnQue(src_local);
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
__aicore__ inline void copy_out() {
|
| 61 |
-
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
| 62 |
-
#ifdef ASCEND_310P
|
| 63 |
-
const size_t elem_per_block = 32 / sizeof(DST_T);
|
| 64 |
-
size_t tail = num_elem % elem_per_block;
|
| 65 |
-
size_t len = num_elem & ~(elem_per_block - 1);
|
| 66 |
-
if (len > 0) {
|
| 67 |
-
DataCopy(dst_gm, dst_local, len);
|
| 68 |
-
}
|
| 69 |
-
if(tail != 0) {
|
| 70 |
-
for (size_t i = tail; i < elem_per_block; i++) {
|
| 71 |
-
dst_local[len + i].SetValue(0, 0);
|
| 72 |
-
}
|
| 73 |
-
SetAtomicAdd<float>();
|
| 74 |
-
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
| 75 |
-
SetAtomicNone();
|
| 76 |
-
}
|
| 77 |
-
#else
|
| 78 |
-
DataCopyExtParams dataCopyParams;
|
| 79 |
-
dataCopyParams.blockCount = 1;
|
| 80 |
-
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
| 81 |
-
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
| 82 |
-
#endif
|
| 83 |
-
dst_queue.FreeTensor(dst_local);
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
__aicore__ inline void dup() {
|
| 87 |
-
// main process, copy one row data from src to dst.
|
| 88 |
-
copy_in();
|
| 89 |
-
|
| 90 |
-
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
| 91 |
-
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
| 92 |
-
|
| 93 |
-
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
|
| 94 |
-
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
|
| 95 |
-
/ BLOCK_NUM * BLOCK_NUM);
|
| 96 |
-
dst_queue.EnQue<DST_T>(dst_local);
|
| 97 |
-
|
| 98 |
-
src_queue.FreeTensor(src_local);
|
| 99 |
-
copy_out();
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
__aicore__ inline void dup_with_cast() {
|
| 103 |
-
// main process, copy one row data from src to dst.
|
| 104 |
-
// cast dtype from src to dst.
|
| 105 |
-
copy_in();
|
| 106 |
-
|
| 107 |
-
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
| 108 |
-
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
| 109 |
-
|
| 110 |
-
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
|
| 111 |
-
dst_queue.EnQue<DST_T>(dst_local);
|
| 112 |
-
|
| 113 |
-
src_queue.FreeTensor(src_local);
|
| 114 |
-
copy_out();
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
private:
|
| 118 |
-
|
| 119 |
-
TPipe pipe;
|
| 120 |
-
GlobalTensor<SRC_T> src_gm;
|
| 121 |
-
GlobalTensor<DST_T> dst_gm;
|
| 122 |
-
|
| 123 |
-
int64_t num_rows;
|
| 124 |
-
int64_t num_elem;
|
| 125 |
-
int64_t idx_ne3;
|
| 126 |
-
int64_t idx_ne2;
|
| 127 |
-
int64_t idx_ne1;
|
| 128 |
-
int64_t src_stride;
|
| 129 |
-
int64_t dst_stride;
|
| 130 |
-
|
| 131 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
|
| 132 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
|
| 133 |
-
};
|
| 134 |
-
|
| 135 |
-
template <typename T>
|
| 136 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 137 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 138 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 139 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 140 |
-
*ub_ptr = *gm_ptr;
|
| 141 |
-
}
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
|
| 145 |
-
GM_ADDR src_gm,
|
| 146 |
-
GM_ADDR dst_gm,
|
| 147 |
-
GM_ADDR input_ne_gm,
|
| 148 |
-
GM_ADDR input_nb_gm,
|
| 149 |
-
GM_ADDR output_ne_gm,
|
| 150 |
-
GM_ADDR output_nb_gm) {
|
| 151 |
-
|
| 152 |
-
int64_t input_ne_ub[4];
|
| 153 |
-
size_t input_nb_ub[4];
|
| 154 |
-
int64_t output_ne_ub[4];
|
| 155 |
-
size_t output_nb_ub[4];
|
| 156 |
-
|
| 157 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 158 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 159 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 160 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 161 |
-
|
| 162 |
-
DupByRows<half, half> op;
|
| 163 |
-
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
| 164 |
-
op.dup();
|
| 165 |
-
}
|
| 166 |
-
|
| 167 |
-
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
| 168 |
-
GM_ADDR src_gm,
|
| 169 |
-
GM_ADDR dst_gm,
|
| 170 |
-
GM_ADDR input_ne_gm,
|
| 171 |
-
GM_ADDR input_nb_gm,
|
| 172 |
-
GM_ADDR output_ne_gm,
|
| 173 |
-
GM_ADDR output_nb_gm) {
|
| 174 |
-
int64_t input_ne_ub[4];
|
| 175 |
-
size_t input_nb_ub[4];
|
| 176 |
-
int64_t output_ne_ub[4];
|
| 177 |
-
size_t output_nb_ub[4];
|
| 178 |
-
|
| 179 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 180 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 181 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 182 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 183 |
-
|
| 184 |
-
DupByRows<float, float> op;
|
| 185 |
-
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
| 186 |
-
op.dup();
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
| 190 |
-
GM_ADDR src_gm,
|
| 191 |
-
GM_ADDR dst_gm,
|
| 192 |
-
GM_ADDR input_ne_gm,
|
| 193 |
-
GM_ADDR input_nb_gm,
|
| 194 |
-
GM_ADDR output_ne_gm,
|
| 195 |
-
GM_ADDR output_nb_gm) {
|
| 196 |
-
|
| 197 |
-
int64_t input_ne_ub[4];
|
| 198 |
-
size_t input_nb_ub[4];
|
| 199 |
-
int64_t output_ne_ub[4];
|
| 200 |
-
size_t output_nb_ub[4];
|
| 201 |
-
|
| 202 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 203 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 204 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 205 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 206 |
-
|
| 207 |
-
DupByRows<float, half> op;
|
| 208 |
-
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
| 209 |
-
op.dup_with_cast();
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
| 213 |
-
GM_ADDR src_gm,
|
| 214 |
-
GM_ADDR dst_gm,
|
| 215 |
-
GM_ADDR input_ne_gm,
|
| 216 |
-
GM_ADDR input_nb_gm,
|
| 217 |
-
GM_ADDR output_ne_gm,
|
| 218 |
-
GM_ADDR output_nb_gm) {
|
| 219 |
-
|
| 220 |
-
// copy params from gm to ub.
|
| 221 |
-
int64_t input_ne_ub[4];
|
| 222 |
-
size_t input_nb_ub[4];
|
| 223 |
-
int64_t output_ne_ub[4];
|
| 224 |
-
size_t output_nb_ub[4];
|
| 225 |
-
|
| 226 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 227 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 228 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 229 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 230 |
-
|
| 231 |
-
DupByRows<half, float> op;
|
| 232 |
-
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
| 233 |
-
op.dup_with_cast();
|
| 234 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/get_row_f16.cpp
DELETED
|
@@ -1,197 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
// optimize me. Use template to avoid copy code.
|
| 4 |
-
using namespace AscendC;
|
| 5 |
-
|
| 6 |
-
#define BUFFER_NUM 2
|
| 7 |
-
|
| 8 |
-
class GET_ROW_F16 {
|
| 9 |
-
public:
|
| 10 |
-
__aicore__ inline GET_ROW_F16() {}
|
| 11 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
| 12 |
-
int64_t *input_ne_ub, size_t *input_nb_ub,
|
| 13 |
-
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
| 14 |
-
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
| 15 |
-
// TODO, use template for F16/f32
|
| 16 |
-
int64_t op_block_num = GetBlockNum();
|
| 17 |
-
op_block_idx = GetBlockIdx();
|
| 18 |
-
|
| 19 |
-
for (int i = 0; i < 4; i++) {
|
| 20 |
-
input_ne[i] = input_ne_ub[i];
|
| 21 |
-
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
| 22 |
-
|
| 23 |
-
indices_ne[i] = indices_ne_ub[i];
|
| 24 |
-
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
| 25 |
-
|
| 26 |
-
output_ne[i] = output_ne_ub[i];
|
| 27 |
-
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
// Indices has two dims. n_elements = all rows should get.
|
| 31 |
-
// dr, all rows should this thread get.
|
| 32 |
-
uint64_t n_elements =
|
| 33 |
-
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
| 34 |
-
dr = n_elements / op_block_num;
|
| 35 |
-
|
| 36 |
-
uint64_t tails = n_elements % op_block_num;
|
| 37 |
-
if (op_block_idx < tails) {
|
| 38 |
-
dr += 1;
|
| 39 |
-
ir = dr * op_block_idx;
|
| 40 |
-
} else {
|
| 41 |
-
ir = dr * op_block_idx + tails;
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
| 45 |
-
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
| 46 |
-
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
| 47 |
-
|
| 48 |
-
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
| 49 |
-
& ~31);
|
| 50 |
-
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
| 51 |
-
& ~31);
|
| 52 |
-
|
| 53 |
-
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
| 54 |
-
|
| 55 |
-
// TODO, consider long row that can't put in UB.
|
| 56 |
-
// All data should asign to 32. It's ok because all data is align to 32.
|
| 57 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
| 58 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
| 62 |
-
size_t origin_len = len;
|
| 63 |
-
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
| 64 |
-
const size_t elem_per_block = 32 / sizeof(half);
|
| 65 |
-
size_t tail = len % elem_per_block;
|
| 66 |
-
len = len & ~(elem_per_block - 1);
|
| 67 |
-
if(tail != 0) {
|
| 68 |
-
len += elem_per_block;
|
| 69 |
-
}
|
| 70 |
-
DataCopy(input_local, input_gm[offset], len);
|
| 71 |
-
input_queue.EnQue(input_local);
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
| 75 |
-
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
| 76 |
-
const size_t elem_per_block = 32 / sizeof(float);
|
| 77 |
-
size_t tail = len % elem_per_block;
|
| 78 |
-
len = len & ~(elem_per_block - 1);
|
| 79 |
-
if (len > 0) {
|
| 80 |
-
DataCopy(output_gm[offset], output_local, len);
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
if(tail != 0) {
|
| 84 |
-
#ifdef ASCEND_310P
|
| 85 |
-
for (size_t i = tail; i < elem_per_block; i++) {
|
| 86 |
-
output_local[len + i].SetValue(0, 0);
|
| 87 |
-
}
|
| 88 |
-
SetAtomicAdd<float>();
|
| 89 |
-
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
| 90 |
-
SetAtomicNone();
|
| 91 |
-
#else
|
| 92 |
-
DataCopyExtParams dataCopyParams;
|
| 93 |
-
dataCopyParams.blockCount = 1;
|
| 94 |
-
dataCopyParams.blockLen = tail * sizeof(float);
|
| 95 |
-
DataCopyPad(output_gm[offset + len], output_local[len],
|
| 96 |
-
dataCopyParams);
|
| 97 |
-
#endif
|
| 98 |
-
}
|
| 99 |
-
output_queue.FreeTensor(output_local);
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
__aicore__ inline void calculate_row(int64_t idx) {
|
| 103 |
-
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
| 104 |
-
const int64_t indices_ne1_idx =
|
| 105 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
| 106 |
-
indices_ne[0];
|
| 107 |
-
const int64_t indices_ne0_idx =
|
| 108 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
| 109 |
-
indices_ne1_idx * indices_ne[0]);
|
| 110 |
-
|
| 111 |
-
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
| 112 |
-
indices_ne1_idx * indices_stride[1] +
|
| 113 |
-
indices_ne2_idx * indices_stride[2];
|
| 114 |
-
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
| 115 |
-
|
| 116 |
-
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
| 117 |
-
indices_ne1_idx * input_stride[2] +
|
| 118 |
-
indices_ne2_idx * input_stride[3];
|
| 119 |
-
|
| 120 |
-
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
| 121 |
-
indices_ne1_idx * output_stride[2] +
|
| 122 |
-
indices_ne2_idx * output_stride[3];
|
| 123 |
-
|
| 124 |
-
copy_in(input_offset, input_ne[0]);
|
| 125 |
-
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
| 126 |
-
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
| 127 |
-
|
| 128 |
-
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
| 129 |
-
local_buffer_elems);
|
| 130 |
-
output_queue.EnQue(output_local);
|
| 131 |
-
copy_out(output_offset, input_ne[0]);
|
| 132 |
-
|
| 133 |
-
input_queue.FreeTensor(input_local);
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
__aicore__ inline void calculate() {
|
| 137 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 138 |
-
calculate_row(i);
|
| 139 |
-
}
|
| 140 |
-
}
|
| 141 |
-
|
| 142 |
-
private:
|
| 143 |
-
int64_t input_ne[4];
|
| 144 |
-
size_t input_stride[4];
|
| 145 |
-
|
| 146 |
-
int64_t indices_ne[4];
|
| 147 |
-
size_t indices_stride[4];
|
| 148 |
-
|
| 149 |
-
int64_t output_ne[4];
|
| 150 |
-
size_t output_stride[4];
|
| 151 |
-
|
| 152 |
-
size_t local_buffer_elems;
|
| 153 |
-
|
| 154 |
-
int64_t ir;
|
| 155 |
-
int64_t dr;
|
| 156 |
-
|
| 157 |
-
TPipe pipe;
|
| 158 |
-
GlobalTensor<half> input_gm;
|
| 159 |
-
GlobalTensor<int32_t> indices_gm;
|
| 160 |
-
GlobalTensor<float> output_gm;
|
| 161 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 162 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 163 |
-
int64_t op_block_idx;
|
| 164 |
-
};
|
| 165 |
-
|
| 166 |
-
template <typename T>
|
| 167 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 168 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 169 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 170 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 171 |
-
*ub_ptr = *gm_ptr;
|
| 172 |
-
}
|
| 173 |
-
}
|
| 174 |
-
|
| 175 |
-
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
| 176 |
-
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
| 177 |
-
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
| 178 |
-
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
| 179 |
-
int64_t input_ne_ub[4];
|
| 180 |
-
size_t input_nb_ub[4];
|
| 181 |
-
int64_t indices_ne_ub[4];
|
| 182 |
-
size_t indices_nb_ub[4];
|
| 183 |
-
int64_t output_ne_ub[4];
|
| 184 |
-
size_t output_nb_ub[4];
|
| 185 |
-
|
| 186 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 187 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 188 |
-
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
| 189 |
-
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
| 190 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 191 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 192 |
-
|
| 193 |
-
GET_ROW_F16 op;
|
| 194 |
-
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
| 195 |
-
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
| 196 |
-
op.calculate();
|
| 197 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/get_row_f32.cpp
DELETED
|
@@ -1,190 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
// optimize me. Use template to avoid copy code.
|
| 4 |
-
using namespace AscendC;
|
| 5 |
-
|
| 6 |
-
#define BUFFER_NUM 2
|
| 7 |
-
|
| 8 |
-
class GET_ROW_F32 {
|
| 9 |
-
public:
|
| 10 |
-
__aicore__ inline GET_ROW_F32() {}
|
| 11 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
| 12 |
-
int64_t *input_ne_ub, size_t *input_nb_ub,
|
| 13 |
-
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
| 14 |
-
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
| 15 |
-
int64_t op_block_num = GetBlockNum();
|
| 16 |
-
op_block_idx = GetBlockIdx();
|
| 17 |
-
|
| 18 |
-
for (int i = 0; i < 4; i++) {
|
| 19 |
-
input_ne[i] = input_ne_ub[i];
|
| 20 |
-
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
| 21 |
-
|
| 22 |
-
indices_ne[i] = indices_ne_ub[i];
|
| 23 |
-
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
| 24 |
-
|
| 25 |
-
output_ne[i] = output_ne_ub[i];
|
| 26 |
-
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
// Indices has two dims. n_elements = all rows should get.
|
| 30 |
-
// dr, all rows should this thread get.
|
| 31 |
-
uint64_t n_elements =
|
| 32 |
-
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
| 33 |
-
dr = n_elements / op_block_num;
|
| 34 |
-
|
| 35 |
-
uint64_t tails = n_elements % op_block_num;
|
| 36 |
-
if (op_block_idx < tails) {
|
| 37 |
-
dr += 1;
|
| 38 |
-
ir = dr * op_block_idx;
|
| 39 |
-
} else {
|
| 40 |
-
ir = dr * op_block_idx + tails;
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
| 44 |
-
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
| 45 |
-
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
| 46 |
-
|
| 47 |
-
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
|
| 48 |
-
local_buffer_elems = local_buffer_size / sizeof(float);
|
| 49 |
-
|
| 50 |
-
// TODO, consider long row that can't put in UB.
|
| 51 |
-
// All data should asign to 32. It's ok because all data is align to 32.
|
| 52 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
|
| 53 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
| 57 |
-
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
| 58 |
-
const size_t elem_per_block = 32 / sizeof(float);
|
| 59 |
-
size_t tail = len % elem_per_block;
|
| 60 |
-
len = len & ~(elem_per_block - 1);
|
| 61 |
-
if(tail != 0) {
|
| 62 |
-
len += elem_per_block;
|
| 63 |
-
}
|
| 64 |
-
DataCopy(input_local, input_gm[offset], len);
|
| 65 |
-
input_queue.EnQue(input_local);
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
| 69 |
-
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
| 70 |
-
const size_t elem_per_block = 32 / sizeof(float);
|
| 71 |
-
size_t tail = len % elem_per_block;
|
| 72 |
-
len = len & ~(elem_per_block - 1);
|
| 73 |
-
if (len > 0) {
|
| 74 |
-
DataCopy(output_gm[offset], output_local, len);
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
if(tail != 0) {
|
| 78 |
-
#ifdef ASCEND_310P
|
| 79 |
-
for (size_t i = tail; i < elem_per_block; i++) {
|
| 80 |
-
output_local[len + i].SetValue(0, 0);
|
| 81 |
-
}
|
| 82 |
-
SetAtomicAdd<float>();
|
| 83 |
-
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
| 84 |
-
SetAtomicNone();
|
| 85 |
-
#else
|
| 86 |
-
DataCopyExtParams dataCopyParams;
|
| 87 |
-
dataCopyParams.blockCount = 1;
|
| 88 |
-
dataCopyParams.blockLen = tail * sizeof(float);
|
| 89 |
-
DataCopyPad(output_gm[offset + len], output_local[len],
|
| 90 |
-
dataCopyParams);
|
| 91 |
-
#endif
|
| 92 |
-
}
|
| 93 |
-
output_queue.FreeTensor(output_local);
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
__aicore__ inline void calculate_row(int64_t idx) {
|
| 97 |
-
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
| 98 |
-
const int64_t indices_ne1_idx =
|
| 99 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
| 100 |
-
indices_ne[0];
|
| 101 |
-
const int64_t indices_ne0_idx =
|
| 102 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
| 103 |
-
indices_ne1_idx * indices_ne[0]);
|
| 104 |
-
|
| 105 |
-
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
| 106 |
-
indices_ne1_idx * indices_stride[1] +
|
| 107 |
-
indices_ne2_idx * indices_stride[2];
|
| 108 |
-
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
| 109 |
-
|
| 110 |
-
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
| 111 |
-
indices_ne1_idx * input_stride[2] +
|
| 112 |
-
indices_ne2_idx * input_stride[3];
|
| 113 |
-
|
| 114 |
-
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
| 115 |
-
indices_ne1_idx * output_stride[2] +
|
| 116 |
-
indices_ne2_idx * output_stride[3];
|
| 117 |
-
|
| 118 |
-
copy_in(input_offset, input_ne[0]);
|
| 119 |
-
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
| 120 |
-
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
| 121 |
-
|
| 122 |
-
DataCopy(output_local, input_local, local_buffer_elems);
|
| 123 |
-
output_queue.EnQue(output_local);
|
| 124 |
-
copy_out(output_offset, input_ne[0]);
|
| 125 |
-
|
| 126 |
-
input_queue.FreeTensor(input_local);
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
__aicore__ inline void calculate() {
|
| 130 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 131 |
-
calculate_row(i);
|
| 132 |
-
}
|
| 133 |
-
}
|
| 134 |
-
|
| 135 |
-
private:
|
| 136 |
-
int64_t input_ne[4];
|
| 137 |
-
size_t input_stride[4];
|
| 138 |
-
|
| 139 |
-
int64_t indices_ne[4];
|
| 140 |
-
size_t indices_stride[4];
|
| 141 |
-
|
| 142 |
-
int64_t output_ne[4];
|
| 143 |
-
size_t output_stride[4];
|
| 144 |
-
|
| 145 |
-
size_t local_buffer_elems;
|
| 146 |
-
|
| 147 |
-
int64_t ir;
|
| 148 |
-
int64_t dr;
|
| 149 |
-
|
| 150 |
-
TPipe pipe;
|
| 151 |
-
GlobalTensor<float> input_gm;
|
| 152 |
-
GlobalTensor<int32_t> indices_gm;
|
| 153 |
-
GlobalTensor<float> output_gm;
|
| 154 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 155 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 156 |
-
int64_t op_block_idx;
|
| 157 |
-
};
|
| 158 |
-
|
| 159 |
-
template <typename T>
|
| 160 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 161 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 162 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 163 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 164 |
-
*ub_ptr = *gm_ptr;
|
| 165 |
-
}
|
| 166 |
-
}
|
| 167 |
-
|
| 168 |
-
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
|
| 169 |
-
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
| 170 |
-
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
| 171 |
-
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
| 172 |
-
int64_t input_ne_ub[4];
|
| 173 |
-
size_t input_nb_ub[4];
|
| 174 |
-
int64_t indices_ne_ub[4];
|
| 175 |
-
size_t indices_nb_ub[4];
|
| 176 |
-
int64_t output_ne_ub[4];
|
| 177 |
-
size_t output_nb_ub[4];
|
| 178 |
-
|
| 179 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 180 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 181 |
-
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
| 182 |
-
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
| 183 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 184 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 185 |
-
|
| 186 |
-
GET_ROW_F32 op;
|
| 187 |
-
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
| 188 |
-
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
| 189 |
-
op.calculate();
|
| 190 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/get_row_q4_0.cpp
DELETED
|
@@ -1,204 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
// optimize me. Use template to avoid copy code.
|
| 4 |
-
using namespace AscendC;
|
| 5 |
-
#ifdef ASCEND_310P // 310P not support 4bit get row
|
| 6 |
-
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
| 7 |
-
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
| 8 |
-
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
| 9 |
-
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
| 10 |
-
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
| 11 |
-
printf("Ascend310P not support 4bit get row.\n");
|
| 12 |
-
}
|
| 13 |
-
#else
|
| 14 |
-
|
| 15 |
-
#define BUFFER_NUM 2
|
| 16 |
-
|
| 17 |
-
#define QK4_0 32
|
| 18 |
-
|
| 19 |
-
class GET_ROW_Q4_0 {
|
| 20 |
-
public:
|
| 21 |
-
__aicore__ inline GET_ROW_Q4_0() {}
|
| 22 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
| 23 |
-
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
| 24 |
-
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
| 25 |
-
size_t *output_nb_ub) {
|
| 26 |
-
int64_t op_block_num = GetBlockNum();
|
| 27 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 28 |
-
|
| 29 |
-
for (int i = 0; i < 4; i++) {
|
| 30 |
-
input_ne[i] = input_ne_ub[i];
|
| 31 |
-
indices_ne[i] = indices_ne_ub[i];
|
| 32 |
-
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
| 33 |
-
scale_ne[i] = input_ne_ub[i];
|
| 34 |
-
output_ne[i] = output_ne_ub[i];
|
| 35 |
-
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
// one scale for a group.
|
| 39 |
-
scale_ne[0] /= QK4_0;
|
| 40 |
-
|
| 41 |
-
input_stride[0] = 1;
|
| 42 |
-
scale_stride[0] = 1;
|
| 43 |
-
output_stride[0] = 1;
|
| 44 |
-
for (int i = 1; i < 4; i++) {
|
| 45 |
-
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
| 46 |
-
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
group_size_in_row = input_ne[0] / QK4_0;
|
| 50 |
-
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
| 51 |
-
input_ne[3] / 2;
|
| 52 |
-
|
| 53 |
-
// Indices has two dims. n_elements = all rows should get.
|
| 54 |
-
// dr, all rows should this thread get.
|
| 55 |
-
uint64_t n_elements =
|
| 56 |
-
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
| 57 |
-
dr = n_elements / op_block_num;
|
| 58 |
-
|
| 59 |
-
uint64_t tails = n_elements % op_block_num;
|
| 60 |
-
if (op_block_idx < tails) {
|
| 61 |
-
dr += 1;
|
| 62 |
-
ir = dr * op_block_idx;
|
| 63 |
-
} else {
|
| 64 |
-
ir = dr * op_block_idx + tails;
|
| 65 |
-
}
|
| 66 |
-
|
| 67 |
-
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
|
| 68 |
-
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
| 69 |
-
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
| 70 |
-
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
| 71 |
-
|
| 72 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
|
| 73 |
-
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
|
| 74 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
__aicore__ inline void copy_in(uint32_t offset) {
|
| 78 |
-
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
|
| 79 |
-
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
|
| 80 |
-
DataCopy(input_local, input_gm[offset], QK4_0);
|
| 81 |
-
input_queue.EnQue(input_local);
|
| 82 |
-
}
|
| 83 |
-
|
| 84 |
-
__aicore__ inline void copy_out(uint32_t offset) {
|
| 85 |
-
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
| 86 |
-
DataCopy(output_gm[offset], output_local, QK4_0);
|
| 87 |
-
output_queue.FreeTensor(output_local);
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
| 91 |
-
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
| 92 |
-
const int64_t indices_ne1_idx =
|
| 93 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
| 94 |
-
indices_ne[0];
|
| 95 |
-
const int64_t indices_ne0_idx =
|
| 96 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
| 97 |
-
indices_ne1_idx * indices_ne[0]);
|
| 98 |
-
|
| 99 |
-
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
| 100 |
-
indices_ne1_idx * indices_stride[1] +
|
| 101 |
-
indices_ne2_idx * indices_stride[2];
|
| 102 |
-
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
| 103 |
-
|
| 104 |
-
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
| 105 |
-
indices_ne1_idx * input_stride[2] +
|
| 106 |
-
indices_ne2_idx * input_stride[3] +
|
| 107 |
-
group * QK4_0;
|
| 108 |
-
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
| 109 |
-
indices_ne1_idx * scale_stride[2] +
|
| 110 |
-
indices_ne2_idx * scale_stride[3] + group;
|
| 111 |
-
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
| 112 |
-
indices_ne1_idx * output_stride[2] +
|
| 113 |
-
indices_ne2_idx * output_stride[3] +
|
| 114 |
-
group * QK4_0;
|
| 115 |
-
|
| 116 |
-
copy_in(input_offset);
|
| 117 |
-
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
|
| 118 |
-
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
| 119 |
-
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
| 120 |
-
|
| 121 |
-
// TODO: cast more data to speed up.
|
| 122 |
-
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
|
| 123 |
-
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
|
| 124 |
-
|
| 125 |
-
// Only mul need compile by group.
|
| 126 |
-
half scale = scale_gm.GetValue(scale_offset);
|
| 127 |
-
|
| 128 |
-
Muls(output_local, output_local, (float)scale, QK4_0);
|
| 129 |
-
|
| 130 |
-
input_queue.FreeTensor(input_local);
|
| 131 |
-
cast_queue.FreeTensor(cast_local);
|
| 132 |
-
output_queue.EnQue(output_local);
|
| 133 |
-
|
| 134 |
-
copy_out(output_offset);
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
__aicore__ inline void calculate() {
|
| 138 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 139 |
-
for (int64_t j = 0; j < group_size_in_row; j++) {
|
| 140 |
-
calculate_group(i, j);
|
| 141 |
-
}
|
| 142 |
-
}
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
private:
|
| 146 |
-
int64_t input_ne[4];
|
| 147 |
-
size_t input_stride[4];
|
| 148 |
-
|
| 149 |
-
int64_t scale_ne[4];
|
| 150 |
-
size_t scale_stride[4];
|
| 151 |
-
|
| 152 |
-
int64_t indices_ne[4];
|
| 153 |
-
size_t indices_stride[4];
|
| 154 |
-
|
| 155 |
-
int64_t output_ne[4];
|
| 156 |
-
size_t output_stride[4];
|
| 157 |
-
|
| 158 |
-
int64_t ir;
|
| 159 |
-
int64_t dr;
|
| 160 |
-
|
| 161 |
-
int64_t group_size_in_row;
|
| 162 |
-
|
| 163 |
-
TPipe pipe;
|
| 164 |
-
GlobalTensor<int4b_t> input_gm;
|
| 165 |
-
GlobalTensor<half> scale_gm;
|
| 166 |
-
GlobalTensor<int32_t> indices_gm;
|
| 167 |
-
GlobalTensor<float> output_gm;
|
| 168 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 169 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 170 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
| 171 |
-
};
|
| 172 |
-
|
| 173 |
-
template <typename T>
|
| 174 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 175 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 176 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 177 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 178 |
-
*ub_ptr = *gm_ptr;
|
| 179 |
-
}
|
| 180 |
-
}
|
| 181 |
-
|
| 182 |
-
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
| 183 |
-
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
| 184 |
-
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
| 185 |
-
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
| 186 |
-
int64_t input_ne_ub[4];
|
| 187 |
-
int64_t indices_ne_ub[4];
|
| 188 |
-
size_t indices_nb_ub[4];
|
| 189 |
-
int64_t output_ne_ub[4];
|
| 190 |
-
size_t output_nb_ub[4];
|
| 191 |
-
|
| 192 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 193 |
-
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
| 194 |
-
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
| 195 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 196 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 197 |
-
|
| 198 |
-
GET_ROW_Q4_0 op;
|
| 199 |
-
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
| 200 |
-
indices_nb_ub, output_ne_ub, output_nb_ub);
|
| 201 |
-
op.calculate();
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
-
#endif // #ifdef ASCEND_310P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/get_row_q8_0.cpp
DELETED
|
@@ -1,191 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
// optimize me. Use template to avoid copy code.
|
| 4 |
-
using namespace AscendC;
|
| 5 |
-
|
| 6 |
-
#define BUFFER_NUM 2
|
| 7 |
-
|
| 8 |
-
#define QK8_0 32
|
| 9 |
-
|
| 10 |
-
class GET_ROW_Q8_0 {
|
| 11 |
-
public:
|
| 12 |
-
__aicore__ inline GET_ROW_Q8_0() {}
|
| 13 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
| 14 |
-
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
| 15 |
-
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
| 16 |
-
size_t *output_nb_ub) {
|
| 17 |
-
int64_t op_block_num = GetBlockNum();
|
| 18 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 19 |
-
|
| 20 |
-
for (int i = 0; i < 4; i++) {
|
| 21 |
-
input_ne[i] = input_ne_ub[i];
|
| 22 |
-
indices_ne[i] = indices_ne_ub[i];
|
| 23 |
-
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
| 24 |
-
scale_ne[i] = input_ne_ub[i];
|
| 25 |
-
output_ne[i] = output_ne_ub[i];
|
| 26 |
-
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
// one scale for a group.
|
| 30 |
-
scale_ne[0] /= QK8_0;
|
| 31 |
-
|
| 32 |
-
input_stride[0] = 1;
|
| 33 |
-
scale_stride[0] = 1;
|
| 34 |
-
output_stride[0] = 1;
|
| 35 |
-
for (int i = 1; i < 4; i++) {
|
| 36 |
-
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
| 37 |
-
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
group_size_in_row = input_ne[0] / QK8_0;
|
| 41 |
-
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
| 42 |
-
input_ne[3] * sizeof(int8_t);
|
| 43 |
-
|
| 44 |
-
// Indices has two dims. n_elements = all rows should get.
|
| 45 |
-
// dr, all rows should this thread get.
|
| 46 |
-
uint64_t n_elements =
|
| 47 |
-
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
| 48 |
-
dr = n_elements / op_block_num;
|
| 49 |
-
|
| 50 |
-
uint64_t tails = n_elements % op_block_num;
|
| 51 |
-
if (op_block_idx < tails) {
|
| 52 |
-
dr += 1;
|
| 53 |
-
ir = dr * op_block_idx;
|
| 54 |
-
} else {
|
| 55 |
-
ir = dr * op_block_idx + tails;
|
| 56 |
-
}
|
| 57 |
-
|
| 58 |
-
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
|
| 59 |
-
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
| 60 |
-
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
| 61 |
-
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
| 62 |
-
|
| 63 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
| 64 |
-
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
| 65 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
__aicore__ inline void copy_in(uint32_t offset) {
|
| 69 |
-
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
|
| 70 |
-
DataCopy(input_local, input_gm[offset], QK8_0);
|
| 71 |
-
input_queue.EnQue(input_local);
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
__aicore__ inline void copy_out(uint32_t offset) {
|
| 75 |
-
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
| 76 |
-
DataCopy(output_gm[offset], output_local, QK8_0);
|
| 77 |
-
output_queue.FreeTensor(output_local);
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
| 81 |
-
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
| 82 |
-
const int64_t indices_ne1_idx =
|
| 83 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
| 84 |
-
indices_ne[0];
|
| 85 |
-
const int64_t indices_ne0_idx =
|
| 86 |
-
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
| 87 |
-
indices_ne1_idx * indices_ne[0]);
|
| 88 |
-
|
| 89 |
-
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
| 90 |
-
indices_ne1_idx * indices_stride[1] +
|
| 91 |
-
indices_ne2_idx * indices_stride[2];
|
| 92 |
-
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
| 93 |
-
|
| 94 |
-
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
| 95 |
-
indices_ne1_idx * input_stride[2] +
|
| 96 |
-
indices_ne2_idx * input_stride[3] +
|
| 97 |
-
group * QK8_0;
|
| 98 |
-
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
| 99 |
-
indices_ne1_idx * scale_stride[2] +
|
| 100 |
-
indices_ne2_idx * scale_stride[3] + group;
|
| 101 |
-
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
| 102 |
-
indices_ne1_idx * output_stride[2] +
|
| 103 |
-
indices_ne2_idx * output_stride[3] +
|
| 104 |
-
group * QK8_0;
|
| 105 |
-
|
| 106 |
-
copy_in(input_offset);
|
| 107 |
-
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
|
| 108 |
-
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
| 109 |
-
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
| 110 |
-
|
| 111 |
-
// TODO: cast more data to speed up.
|
| 112 |
-
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
| 113 |
-
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
|
| 114 |
-
|
| 115 |
-
// Only mul need compile by group.
|
| 116 |
-
half scale = scale_gm.GetValue(scale_offset);
|
| 117 |
-
Muls(output_local, output_local, (float)scale, QK8_0);
|
| 118 |
-
|
| 119 |
-
input_queue.FreeTensor(input_local);
|
| 120 |
-
cast_queue.FreeTensor(cast_local);
|
| 121 |
-
output_queue.EnQue(output_local);
|
| 122 |
-
|
| 123 |
-
copy_out(output_offset);
|
| 124 |
-
}
|
| 125 |
-
|
| 126 |
-
__aicore__ inline void calculate() {
|
| 127 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 128 |
-
for (int64_t j = 0; j < group_size_in_row; j++) {
|
| 129 |
-
calculate_group(i, j);
|
| 130 |
-
}
|
| 131 |
-
}
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
private:
|
| 135 |
-
int64_t input_ne[4];
|
| 136 |
-
size_t input_stride[4];
|
| 137 |
-
|
| 138 |
-
int64_t scale_ne[4];
|
| 139 |
-
size_t scale_stride[4];
|
| 140 |
-
|
| 141 |
-
int64_t indices_ne[4];
|
| 142 |
-
size_t indices_stride[4];
|
| 143 |
-
|
| 144 |
-
int64_t output_ne[4];
|
| 145 |
-
size_t output_stride[4];
|
| 146 |
-
|
| 147 |
-
int64_t ir;
|
| 148 |
-
int64_t dr;
|
| 149 |
-
|
| 150 |
-
int64_t group_size_in_row;
|
| 151 |
-
|
| 152 |
-
TPipe pipe;
|
| 153 |
-
GlobalTensor<int8_t> input_gm;
|
| 154 |
-
GlobalTensor<half> scale_gm;
|
| 155 |
-
GlobalTensor<int32_t> indices_gm;
|
| 156 |
-
GlobalTensor<float> output_gm;
|
| 157 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 158 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 159 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
| 160 |
-
};
|
| 161 |
-
|
| 162 |
-
template <typename T>
|
| 163 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 164 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 165 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 166 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 167 |
-
*ub_ptr = *gm_ptr;
|
| 168 |
-
}
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
|
| 172 |
-
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
| 173 |
-
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
| 174 |
-
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
| 175 |
-
int64_t input_ne_ub[4];
|
| 176 |
-
int64_t indices_ne_ub[4];
|
| 177 |
-
size_t indices_nb_ub[4];
|
| 178 |
-
int64_t output_ne_ub[4];
|
| 179 |
-
size_t output_nb_ub[4];
|
| 180 |
-
|
| 181 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 182 |
-
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
| 183 |
-
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
| 184 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 185 |
-
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
| 186 |
-
|
| 187 |
-
GET_ROW_Q8_0 op;
|
| 188 |
-
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
| 189 |
-
indices_nb_ub, output_ne_ub, output_nb_ub);
|
| 190 |
-
op.calculate();
|
| 191 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp
DELETED
|
@@ -1,218 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
using namespace AscendC;
|
| 4 |
-
#ifdef ASCEND_310P
|
| 5 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
| 6 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 7 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 8 |
-
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
| 9 |
-
printf("Ascend310P not support f16->8bit quantization.\n");
|
| 10 |
-
}
|
| 11 |
-
#else
|
| 12 |
-
|
| 13 |
-
#define BUFFER_NUM 2
|
| 14 |
-
#define QK8_0 32
|
| 15 |
-
|
| 16 |
-
class QUANTIZE_F16_Q8_0 {
|
| 17 |
-
public:
|
| 18 |
-
__aicore__ inline QUANTIZE_F16_Q8_0() {}
|
| 19 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
| 20 |
-
int64_t *input_ne_ub, size_t *input_nb_ub,
|
| 21 |
-
int64_t *output_ne_ub) {
|
| 22 |
-
int64_t op_block_num = GetBlockNum();
|
| 23 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 24 |
-
|
| 25 |
-
for (int i = 0; i < 4; i++) {
|
| 26 |
-
input_ne[i] = input_ne_ub[i];
|
| 27 |
-
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
| 28 |
-
|
| 29 |
-
output_ne[i] = output_ne_ub[i];
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
output_stride[0] = 1;
|
| 33 |
-
for (int i = 1; i < 4; i++) {
|
| 34 |
-
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
scale_ne = input_ne;
|
| 38 |
-
scale_stride[0] = 1;
|
| 39 |
-
scale_stride[1] = input_ne[0] / QK8_0;
|
| 40 |
-
for (int i = 2; i < 4; i++) {
|
| 41 |
-
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
// split input tensor by rows.
|
| 45 |
-
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
| 46 |
-
dr = nr / op_block_num;
|
| 47 |
-
|
| 48 |
-
uint64_t tails = nr % op_block_num;
|
| 49 |
-
if (op_block_idx < tails) {
|
| 50 |
-
dr += 1;
|
| 51 |
-
ir = dr * op_block_idx;
|
| 52 |
-
} else {
|
| 53 |
-
ir = dr * op_block_idx + tails;
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
group_size_in_row = scale_stride[1];
|
| 57 |
-
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
| 58 |
-
output_ne[3] * sizeof(uint8_t);
|
| 59 |
-
|
| 60 |
-
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
| 61 |
-
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
| 62 |
-
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
|
| 63 |
-
group_size_in_row *
|
| 64 |
-
sizeof(half)));
|
| 65 |
-
|
| 66 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
| 67 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
| 68 |
-
pipe.InitBuffer(work_queue, 1, 32);
|
| 69 |
-
pipe.InitBuffer(max_queue, 1, 32);
|
| 70 |
-
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
| 71 |
-
pipe.InitBuffer(scale_queue, 1, 32);
|
| 72 |
-
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
__aicore__ inline void copy_in(uint32_t offset) {
|
| 76 |
-
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
| 77 |
-
DataCopy(input_local, input_gm[offset], QK8_0);
|
| 78 |
-
input_queue.EnQue(input_local);
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
__aicore__ inline void copy_out(uint32_t offset) {
|
| 82 |
-
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
| 83 |
-
DataCopy(output_gm[offset], output_local, QK8_0);
|
| 84 |
-
output_queue.FreeTensor(output_local);
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
| 88 |
-
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
| 89 |
-
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
| 90 |
-
const int64_t i1 =
|
| 91 |
-
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
| 92 |
-
|
| 93 |
-
const int64_t input_offset = i1 * input_stride[1] +
|
| 94 |
-
i2 * input_stride[2] +
|
| 95 |
-
i3 * input_stride[3] + QK8_0 * group;
|
| 96 |
-
|
| 97 |
-
const int64_t output_offset = i1 * output_stride[1] +
|
| 98 |
-
i2 * output_stride[2] +
|
| 99 |
-
i3 * output_stride[3] + QK8_0 * group;
|
| 100 |
-
|
| 101 |
-
copy_in(input_offset);
|
| 102 |
-
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
| 103 |
-
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
| 104 |
-
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
| 105 |
-
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
| 106 |
-
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
| 107 |
-
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
| 108 |
-
|
| 109 |
-
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
| 110 |
-
Abs(abs_local, cast_local, QK8_0);
|
| 111 |
-
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
| 112 |
-
|
| 113 |
-
pipe_barrier(PIPE_ALL);
|
| 114 |
-
float d = max_local.GetValue(0);
|
| 115 |
-
d = d / ((1 << 7) - 1);
|
| 116 |
-
if (d != 0) {
|
| 117 |
-
Muls(cast_local, cast_local, 1.0f / d, QK8_0);
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
| 121 |
-
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
| 122 |
-
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
| 123 |
-
output_queue.EnQue(output_local);
|
| 124 |
-
copy_out(output_offset);
|
| 125 |
-
|
| 126 |
-
input_queue.FreeTensor(input_local);
|
| 127 |
-
work_queue.FreeTensor(work_local);
|
| 128 |
-
abs_queue.FreeTensor(abs_local);
|
| 129 |
-
max_queue.FreeTensor(max_local);
|
| 130 |
-
cast_queue.FreeTensor(cast_local);
|
| 131 |
-
return (half)d;
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
__aicore__ inline void calculate() {
|
| 135 |
-
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
| 136 |
-
uint32_t scale_local_offset = 0;
|
| 137 |
-
uint32_t scale_global_offset = 0;
|
| 138 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 139 |
-
for (int64_t j = 0; j < group_size_in_row; j++) {
|
| 140 |
-
half scale = calculate_group(i, j);
|
| 141 |
-
scale_local.SetValue(scale_local_offset++, scale);
|
| 142 |
-
if (scale_local_offset == 16) {
|
| 143 |
-
scale_local_offset = 0;
|
| 144 |
-
// TODO: OPTIMIZE ME
|
| 145 |
-
pipe_barrier(PIPE_ALL);
|
| 146 |
-
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
| 147 |
-
pipe_barrier(PIPE_ALL);
|
| 148 |
-
scale_global_offset += 16;
|
| 149 |
-
}
|
| 150 |
-
}
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
if (scale_local_offset != 0) {
|
| 154 |
-
pipe_barrier(PIPE_ALL);
|
| 155 |
-
DataCopyExtParams dataCopyParams;
|
| 156 |
-
dataCopyParams.blockCount = 1;
|
| 157 |
-
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
| 158 |
-
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
| 159 |
-
dataCopyParams);
|
| 160 |
-
pipe_barrier(PIPE_ALL);
|
| 161 |
-
}
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
private:
|
| 165 |
-
int64_t input_ne[4];
|
| 166 |
-
size_t input_stride[4];
|
| 167 |
-
|
| 168 |
-
int64_t *scale_ne;
|
| 169 |
-
size_t scale_stride[4];
|
| 170 |
-
|
| 171 |
-
int64_t output_ne[4];
|
| 172 |
-
size_t output_stride[4];
|
| 173 |
-
|
| 174 |
-
int64_t group_size_in_row;
|
| 175 |
-
|
| 176 |
-
int64_t ir;
|
| 177 |
-
int64_t dr;
|
| 178 |
-
|
| 179 |
-
TPipe pipe;
|
| 180 |
-
GlobalTensor<half> input_gm;
|
| 181 |
-
GlobalTensor<half> scale_gm;
|
| 182 |
-
GlobalTensor<int8_t> output_gm;
|
| 183 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 184 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 185 |
-
TQue<QuePosition::VECIN, 1> work_queue;
|
| 186 |
-
TQue<QuePosition::VECOUT, 1> max_queue;
|
| 187 |
-
TQue<QuePosition::VECIN, 1> abs_queue;
|
| 188 |
-
TQue<QuePosition::VECOUT, 1> scale_queue;
|
| 189 |
-
TQue<QuePosition::VECOUT, 1> cast_queue;
|
| 190 |
-
|
| 191 |
-
};
|
| 192 |
-
|
| 193 |
-
template <typename T>
|
| 194 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 195 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 196 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 197 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 198 |
-
*ub_ptr = *gm_ptr;
|
| 199 |
-
}
|
| 200 |
-
}
|
| 201 |
-
|
| 202 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
| 203 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 204 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 205 |
-
int64_t input_ne_ub[4];
|
| 206 |
-
size_t input_nb_ub[4];
|
| 207 |
-
int64_t output_ne_ub[4];
|
| 208 |
-
|
| 209 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 210 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 211 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 212 |
-
|
| 213 |
-
QUANTIZE_F16_Q8_0 op;
|
| 214 |
-
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
| 215 |
-
op.calculate();
|
| 216 |
-
}
|
| 217 |
-
|
| 218 |
-
#endif // #ifdef ASCEND_310P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp
DELETED
|
@@ -1,216 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
using namespace AscendC;
|
| 4 |
-
#ifdef ASCEND_310P // 310P not support f32->8bit quantization
|
| 5 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
| 6 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 7 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 8 |
-
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
| 9 |
-
printf("Ascend310P not support f32->8bit quantization.\n");
|
| 10 |
-
}
|
| 11 |
-
#else
|
| 12 |
-
|
| 13 |
-
#define BUFFER_NUM 2
|
| 14 |
-
#define QK8_0 32
|
| 15 |
-
|
| 16 |
-
class QUANTIZE_F32_Q8_0 {
|
| 17 |
-
public:
|
| 18 |
-
__aicore__ inline QUANTIZE_F32_Q8_0() {}
|
| 19 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
| 20 |
-
int64_t *input_ne_ub, size_t *input_nb_ub,
|
| 21 |
-
int64_t *output_ne_ub) {
|
| 22 |
-
int64_t op_block_num = GetBlockNum();
|
| 23 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 24 |
-
|
| 25 |
-
for (int i = 0; i < 4; i++) {
|
| 26 |
-
input_ne[i] = input_ne_ub[i];
|
| 27 |
-
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
| 28 |
-
|
| 29 |
-
output_ne[i] = output_ne_ub[i];
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
output_stride[0] = 1;
|
| 33 |
-
for (int i = 1; i < 4; i++) {
|
| 34 |
-
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
scale_ne = input_ne;
|
| 38 |
-
scale_stride[0] = 1;
|
| 39 |
-
scale_stride[1] = input_ne[0] / QK8_0;
|
| 40 |
-
for (int i = 2; i < 4; i++) {
|
| 41 |
-
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
// split input tensor by rows.
|
| 45 |
-
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
| 46 |
-
dr = nr / op_block_num;
|
| 47 |
-
|
| 48 |
-
uint64_t tails = nr % op_block_num;
|
| 49 |
-
if (op_block_idx < tails) {
|
| 50 |
-
dr += 1;
|
| 51 |
-
ir = dr * op_block_idx;
|
| 52 |
-
} else {
|
| 53 |
-
ir = dr * op_block_idx + tails;
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
group_size_in_row = scale_stride[1];
|
| 57 |
-
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
| 58 |
-
output_ne[3] * sizeof(uint8_t);
|
| 59 |
-
|
| 60 |
-
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
| 61 |
-
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
| 62 |
-
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
|
| 63 |
-
ir * group_size_in_row *
|
| 64 |
-
sizeof(half)));
|
| 65 |
-
|
| 66 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
| 67 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
| 68 |
-
pipe.InitBuffer(work_queue, 1, 32);
|
| 69 |
-
pipe.InitBuffer(max_queue, 1, 32);
|
| 70 |
-
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
| 71 |
-
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
|
| 72 |
-
pipe.InitBuffer(scale_queue, 1, 32);
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
__aicore__ inline void copy_in(uint32_t offset) {
|
| 76 |
-
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
| 77 |
-
DataCopy(input_local, input_gm[offset], QK8_0);
|
| 78 |
-
input_queue.EnQue(input_local);
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
__aicore__ inline void copy_out(uint32_t offset) {
|
| 82 |
-
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
| 83 |
-
DataCopy(output_gm[offset], output_local, QK8_0);
|
| 84 |
-
output_queue.FreeTensor(output_local);
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
| 88 |
-
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
| 89 |
-
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
| 90 |
-
const int64_t i1 =
|
| 91 |
-
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
| 92 |
-
|
| 93 |
-
const int64_t input_offset = i1 * input_stride[1] +
|
| 94 |
-
i2 * input_stride[2] +
|
| 95 |
-
i3 * input_stride[3] + QK8_0 * group;
|
| 96 |
-
|
| 97 |
-
const int64_t output_offset = i1 * output_stride[1] +
|
| 98 |
-
i2 * output_stride[2] +
|
| 99 |
-
i3 * output_stride[3] + QK8_0 * group;
|
| 100 |
-
|
| 101 |
-
copy_in(input_offset);
|
| 102 |
-
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
| 103 |
-
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
| 104 |
-
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
| 105 |
-
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
| 106 |
-
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
| 107 |
-
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
| 108 |
-
|
| 109 |
-
Abs(abs_local, input_local, QK8_0);
|
| 110 |
-
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
| 111 |
-
pipe_barrier(PIPE_ALL);
|
| 112 |
-
float d = max_local.GetValue(0);
|
| 113 |
-
d = d / ((1 << 7) - 1);
|
| 114 |
-
if (d != 0) {
|
| 115 |
-
Muls(input_local, input_local, 1.0f / d, QK8_0);
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
| 119 |
-
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
| 120 |
-
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
| 121 |
-
output_queue.EnQue(output_local);
|
| 122 |
-
copy_out(output_offset);
|
| 123 |
-
|
| 124 |
-
input_queue.FreeTensor(input_local);
|
| 125 |
-
work_queue.FreeTensor(work_local);
|
| 126 |
-
abs_queue.FreeTensor(abs_local);
|
| 127 |
-
max_queue.FreeTensor(max_local);
|
| 128 |
-
cast_queue.FreeTensor(cast_local);
|
| 129 |
-
|
| 130 |
-
return (half)d;
|
| 131 |
-
}
|
| 132 |
-
|
| 133 |
-
__aicore__ inline void calculate() {
|
| 134 |
-
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
| 135 |
-
uint32_t scale_local_offset = 0;
|
| 136 |
-
uint32_t scale_global_offset = 0;
|
| 137 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 138 |
-
for (int64_t j = 0; j < group_size_in_row; j++) {
|
| 139 |
-
half scale = calculate_group(i, j);
|
| 140 |
-
scale_local.SetValue(scale_local_offset++, scale);
|
| 141 |
-
if (scale_local_offset == 16) {
|
| 142 |
-
scale_local_offset = 0;
|
| 143 |
-
// TODO: OPTIMIZE ME
|
| 144 |
-
pipe_barrier(PIPE_ALL);
|
| 145 |
-
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
| 146 |
-
pipe_barrier(PIPE_ALL);
|
| 147 |
-
scale_global_offset += 16;
|
| 148 |
-
}
|
| 149 |
-
}
|
| 150 |
-
}
|
| 151 |
-
|
| 152 |
-
if (scale_local_offset != 0) {
|
| 153 |
-
pipe_barrier(PIPE_ALL);
|
| 154 |
-
DataCopyExtParams dataCopyParams;
|
| 155 |
-
dataCopyParams.blockCount = 1;
|
| 156 |
-
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
| 157 |
-
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
| 158 |
-
dataCopyParams);
|
| 159 |
-
pipe_barrier(PIPE_ALL);
|
| 160 |
-
}
|
| 161 |
-
}
|
| 162 |
-
|
| 163 |
-
private:
|
| 164 |
-
int64_t input_ne[4];
|
| 165 |
-
size_t input_stride[4];
|
| 166 |
-
|
| 167 |
-
int64_t *scale_ne;
|
| 168 |
-
size_t scale_stride[4];
|
| 169 |
-
|
| 170 |
-
int64_t output_ne[4];
|
| 171 |
-
size_t output_stride[4];
|
| 172 |
-
|
| 173 |
-
int64_t group_size_in_row;
|
| 174 |
-
|
| 175 |
-
int64_t ir;
|
| 176 |
-
int64_t dr;
|
| 177 |
-
|
| 178 |
-
TPipe pipe;
|
| 179 |
-
GlobalTensor<float> input_gm;
|
| 180 |
-
GlobalTensor<half> scale_gm;
|
| 181 |
-
GlobalTensor<int8_t> output_gm;
|
| 182 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 183 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 184 |
-
TQue<QuePosition::VECIN, 1> work_queue;
|
| 185 |
-
TQue<QuePosition::VECOUT, 1> max_queue;
|
| 186 |
-
TQue<QuePosition::VECIN, 1> abs_queue;
|
| 187 |
-
TQue<QuePosition::VECIN, 1> cast_queue;
|
| 188 |
-
TQue<QuePosition::VECOUT, 1> scale_queue;
|
| 189 |
-
};
|
| 190 |
-
|
| 191 |
-
template <typename T>
|
| 192 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 193 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 194 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 195 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 196 |
-
*ub_ptr = *gm_ptr;
|
| 197 |
-
}
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
| 201 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 202 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 203 |
-
int64_t input_ne_ub[4];
|
| 204 |
-
size_t input_nb_ub[4];
|
| 205 |
-
int64_t output_ne_ub[4];
|
| 206 |
-
|
| 207 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 208 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 209 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 210 |
-
|
| 211 |
-
QUANTIZE_F32_Q8_0 op;
|
| 212 |
-
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
| 213 |
-
op.calculate();
|
| 214 |
-
}
|
| 215 |
-
|
| 216 |
-
#endif // #ifdef ASCEND_310P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp
DELETED
|
@@ -1,295 +0,0 @@
|
|
| 1 |
-
#include "kernel_operator.h"
|
| 2 |
-
|
| 3 |
-
using namespace AscendC;
|
| 4 |
-
#ifdef ASCEND_310P // 310P not support float->4bit quantization
|
| 5 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
| 6 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 7 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 8 |
-
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
| 9 |
-
printf("Ascend310P not support f32->4bit quantization.\n");
|
| 10 |
-
}
|
| 11 |
-
|
| 12 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
| 13 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 14 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 15 |
-
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
| 16 |
-
printf("Ascend310P not support f16->4bit quantization.\n");
|
| 17 |
-
}
|
| 18 |
-
#else
|
| 19 |
-
|
| 20 |
-
#define BUFFER_NUM 2
|
| 21 |
-
#define Group_Size 32
|
| 22 |
-
|
| 23 |
-
template <typename SRC_T>
|
| 24 |
-
class QUANTIZE_FLOAT_TO_Q4_0 {
|
| 25 |
-
public:
|
| 26 |
-
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
|
| 27 |
-
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
| 28 |
-
int64_t *input_ne_ub, size_t *input_nb_ub,
|
| 29 |
-
int64_t *output_ne_ub) {
|
| 30 |
-
// TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
|
| 31 |
-
// permute=[0,0,0,0]):
|
| 32 |
-
// [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
|
| 33 |
-
int64_t op_block_num = GetBlockNum();
|
| 34 |
-
int64_t op_block_idx = GetBlockIdx();
|
| 35 |
-
|
| 36 |
-
// input stride of data elements
|
| 37 |
-
for (int i = 0; i < 4; i++) {
|
| 38 |
-
input_ne[i] = input_ne_ub[i];
|
| 39 |
-
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
| 40 |
-
output_ne[i] = output_ne_ub[i];
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
// output stride of data elements
|
| 44 |
-
output_stride[0] = 1;
|
| 45 |
-
for (int i = 1; i < 4; i++) {
|
| 46 |
-
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
|
| 50 |
-
scale_ne = input_ne;
|
| 51 |
-
scale_stride[0] = 1;
|
| 52 |
-
scale_stride[1] = input_ne[0] / Group_Size;
|
| 53 |
-
for (int i = 2; i < 4; i++) {
|
| 54 |
-
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
// split input tensor by rows.
|
| 58 |
-
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
| 59 |
-
dr = nr / op_block_num;
|
| 60 |
-
|
| 61 |
-
uint64_t tails = nr % op_block_num;
|
| 62 |
-
if (op_block_idx < tails) {
|
| 63 |
-
dr += 1;
|
| 64 |
-
ir = dr * op_block_idx;
|
| 65 |
-
} else {
|
| 66 |
-
ir = dr * op_block_idx + tails;
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
group_size_in_row = scale_stride[1];
|
| 70 |
-
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
|
| 71 |
-
output_ne[3] * sizeof(uint8_t) / 2;
|
| 72 |
-
|
| 73 |
-
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
|
| 74 |
-
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
| 75 |
-
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
|
| 76 |
-
group_size_in_row *
|
| 77 |
-
sizeof(half)));
|
| 78 |
-
|
| 79 |
-
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
|
| 80 |
-
pipe.InitBuffer(output_queue, BUFFER_NUM,
|
| 81 |
-
Group_Size * sizeof(int8_t) / 2);
|
| 82 |
-
pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
|
| 83 |
-
pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
|
| 84 |
-
pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
|
| 85 |
-
pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
|
| 86 |
-
pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
|
| 87 |
-
pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
|
| 88 |
-
pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
|
| 89 |
-
}
|
| 90 |
-
|
| 91 |
-
__aicore__ inline void copy_in(uint32_t offset) {
|
| 92 |
-
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
|
| 93 |
-
DataCopy(input_local, input_gm[offset], Group_Size);
|
| 94 |
-
input_queue.EnQue(input_local);
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
__aicore__ inline void copy_out(uint32_t offset) {
|
| 98 |
-
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
|
| 99 |
-
// and using DataCopyPad to avoid 32 bits align.
|
| 100 |
-
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
|
| 101 |
-
LocalTensor<int8_t> output_int8_local =
|
| 102 |
-
output_local.ReinterpretCast<int8_t>();
|
| 103 |
-
|
| 104 |
-
DataCopyExtParams dataCopyParams;
|
| 105 |
-
dataCopyParams.blockCount = 1;
|
| 106 |
-
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
|
| 107 |
-
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
|
| 108 |
-
|
| 109 |
-
output_queue.FreeTensor(output_local);
|
| 110 |
-
}
|
| 111 |
-
|
| 112 |
-
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
| 113 |
-
LocalTensor<float> input_local) {
|
| 114 |
-
DataCopy(cast_local, input_local, Group_Size);
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
| 118 |
-
LocalTensor<half> input_local) {
|
| 119 |
-
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
|
| 120 |
-
}
|
| 121 |
-
|
| 122 |
-
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
| 123 |
-
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
| 124 |
-
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
| 125 |
-
const int64_t i1 =
|
| 126 |
-
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
| 127 |
-
|
| 128 |
-
const int64_t input_offset = i1 * input_stride[1] +
|
| 129 |
-
i2 * input_stride[2] +
|
| 130 |
-
i3 * input_stride[3] + Group_Size * group;
|
| 131 |
-
|
| 132 |
-
// output_offset is stride for output_gm which datatype is int8_t and
|
| 133 |
-
// divided by 2 is needed for int4b_t.
|
| 134 |
-
const int64_t output_offset = (i1 * output_stride[1] +
|
| 135 |
-
i2 * output_stride[2] +
|
| 136 |
-
i3 * output_stride[3] +
|
| 137 |
-
Group_Size * group) / 2;
|
| 138 |
-
copy_in(input_offset);
|
| 139 |
-
|
| 140 |
-
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
|
| 141 |
-
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
|
| 142 |
-
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
| 143 |
-
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
| 144 |
-
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
| 145 |
-
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
|
| 146 |
-
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
|
| 147 |
-
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
|
| 148 |
-
|
| 149 |
-
input_to_cast(cast_local, input_local);
|
| 150 |
-
|
| 151 |
-
ReduceMax(max_local, cast_local, work_local, Group_Size);
|
| 152 |
-
ReduceMin(min_local, cast_local, work_local, Group_Size);
|
| 153 |
-
const float max_value = max_local.GetValue(0);
|
| 154 |
-
const float min_value = min_local.GetValue(0);
|
| 155 |
-
float d = max_value;
|
| 156 |
-
if (min_value < 0 && (-1 * min_value) > max_value) {
|
| 157 |
-
d = min_value;
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
d = d / (-8);
|
| 161 |
-
if (d != 0) {
|
| 162 |
-
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
|
| 166 |
-
float scalar = 8.5f;
|
| 167 |
-
Adds(cast_local, cast_local, scalar, Group_Size);
|
| 168 |
-
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
|
| 169 |
-
scalar = 15.0f;
|
| 170 |
-
Mins(cast_local, cast_local, scalar, Group_Size);
|
| 171 |
-
scalar = -8.0f;
|
| 172 |
-
Adds(cast_local, cast_local, scalar, Group_Size);
|
| 173 |
-
|
| 174 |
-
// float->half->int4b
|
| 175 |
-
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
|
| 176 |
-
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
|
| 177 |
-
|
| 178 |
-
output_queue.EnQue(output_local);
|
| 179 |
-
copy_out(output_offset);
|
| 180 |
-
|
| 181 |
-
input_queue.FreeTensor(input_local);
|
| 182 |
-
work_queue.FreeTensor(work_local);
|
| 183 |
-
max_queue.FreeTensor(max_local);
|
| 184 |
-
min_queue.FreeTensor(min_local);
|
| 185 |
-
int8_queue.FreeTensor(int8_local);
|
| 186 |
-
half_queue.FreeTensor(half_local);
|
| 187 |
-
cast_queue.FreeTensor(cast_local);
|
| 188 |
-
return (half)d;
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
__aicore__ inline void calculate() {
|
| 192 |
-
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
| 193 |
-
uint32_t scale_local_offset = 0;
|
| 194 |
-
uint32_t scale_global_offset = 0;
|
| 195 |
-
for (int64_t i = ir; i < ir + dr; i++) {
|
| 196 |
-
for (int64_t j = 0; j < group_size_in_row; j++) {
|
| 197 |
-
half scale = calculate_group(i, j);
|
| 198 |
-
scale_local.SetValue(scale_local_offset++, scale);
|
| 199 |
-
// Copy Group_Size/2 length data each time.
|
| 200 |
-
if (scale_local_offset == Group_Size / 2) {
|
| 201 |
-
scale_local_offset = 0;
|
| 202 |
-
// TODO: OPTIMIZE ME
|
| 203 |
-
pipe_barrier(PIPE_ALL);
|
| 204 |
-
DataCopy(scale_gm[scale_global_offset], scale_local,
|
| 205 |
-
Group_Size / 2);
|
| 206 |
-
pipe_barrier(PIPE_ALL);
|
| 207 |
-
scale_global_offset += Group_Size / 2;
|
| 208 |
-
}
|
| 209 |
-
}
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
if (scale_local_offset != 0) {
|
| 213 |
-
pipe_barrier(PIPE_ALL);
|
| 214 |
-
DataCopyExtParams dataCopyParams;
|
| 215 |
-
dataCopyParams.blockCount = 1;
|
| 216 |
-
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
| 217 |
-
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
| 218 |
-
dataCopyParams);
|
| 219 |
-
pipe_barrier(PIPE_ALL);
|
| 220 |
-
}
|
| 221 |
-
scale_queue.FreeTensor(scale_local);
|
| 222 |
-
}
|
| 223 |
-
|
| 224 |
-
private:
|
| 225 |
-
int64_t input_ne[4];
|
| 226 |
-
size_t input_stride[4];
|
| 227 |
-
|
| 228 |
-
int64_t *scale_ne;
|
| 229 |
-
size_t scale_stride[4];
|
| 230 |
-
|
| 231 |
-
int64_t output_ne[4];
|
| 232 |
-
size_t output_stride[4];
|
| 233 |
-
|
| 234 |
-
int64_t group_size_in_row;
|
| 235 |
-
|
| 236 |
-
int64_t ir;
|
| 237 |
-
int64_t dr;
|
| 238 |
-
|
| 239 |
-
TPipe pipe;
|
| 240 |
-
GlobalTensor<SRC_T> input_gm;
|
| 241 |
-
GlobalTensor<half> scale_gm;
|
| 242 |
-
GlobalTensor<int8_t> output_gm;
|
| 243 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
| 244 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
| 245 |
-
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
|
| 246 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
|
| 247 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
|
| 248 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
|
| 249 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
|
| 250 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
|
| 251 |
-
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
|
| 252 |
-
};
|
| 253 |
-
|
| 254 |
-
template <typename T>
|
| 255 |
-
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
| 256 |
-
auto gm_ptr = (__gm__ uint8_t *)gm;
|
| 257 |
-
auto ub_ptr = (uint8_t *)(ub);
|
| 258 |
-
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
| 259 |
-
*ub_ptr = *gm_ptr;
|
| 260 |
-
}
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
| 264 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 265 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 266 |
-
int64_t input_ne_ub[4];
|
| 267 |
-
size_t input_nb_ub[4];
|
| 268 |
-
int64_t output_ne_ub[4];
|
| 269 |
-
|
| 270 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 271 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 272 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 273 |
-
|
| 274 |
-
QUANTIZE_FLOAT_TO_Q4_0<half> op;
|
| 275 |
-
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
| 276 |
-
op.calculate();
|
| 277 |
-
}
|
| 278 |
-
|
| 279 |
-
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
| 280 |
-
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
| 281 |
-
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
| 282 |
-
int64_t input_ne_ub[4];
|
| 283 |
-
size_t input_nb_ub[4];
|
| 284 |
-
int64_t output_ne_ub[4];
|
| 285 |
-
|
| 286 |
-
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
| 287 |
-
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
| 288 |
-
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
| 289 |
-
|
| 290 |
-
QUANTIZE_FLOAT_TO_Q4_0<float> op;
|
| 291 |
-
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
| 292 |
-
op.calculate();
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
#endif // #ifdef ASCEND_310P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/CMakeLists.txt
DELETED
|
@@ -1,166 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
| 3 |
-
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
|
| 4 |
-
|
| 5 |
-
if (NOT glslc_executable)
|
| 6 |
-
message(FATAL_ERROR "glslc not found")
|
| 7 |
-
endif()
|
| 8 |
-
|
| 9 |
-
ggml_add_backend_library(ggml-kompute
|
| 10 |
-
ggml-kompute.cpp
|
| 11 |
-
../../include/ggml-kompute.h
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
target_link_libraries(ggml-kompute PRIVATE ggml-base kompute)
|
| 15 |
-
target_include_directories(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
|
| 16 |
-
|
| 17 |
-
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
| 18 |
-
|
| 19 |
-
function(compile_shader)
|
| 20 |
-
set(options)
|
| 21 |
-
set(oneValueArgs)
|
| 22 |
-
set(multiValueArgs SOURCES)
|
| 23 |
-
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
| 24 |
-
foreach(source ${compile_shader_SOURCES})
|
| 25 |
-
get_filename_component(filename ${source} NAME)
|
| 26 |
-
set(spv_file ${filename}.spv)
|
| 27 |
-
add_custom_command(
|
| 28 |
-
OUTPUT ${spv_file}
|
| 29 |
-
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
| 30 |
-
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
|
| 31 |
-
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
|
| 32 |
-
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
|
| 33 |
-
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
|
| 34 |
-
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
| 35 |
-
COMMENT "Compiling ${source} to ${spv_file}"
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
|
| 39 |
-
set(FILE_NAME "shader${RAW_FILE_NAME}")
|
| 40 |
-
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
|
| 41 |
-
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
|
| 42 |
-
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
|
| 43 |
-
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
|
| 44 |
-
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
|
| 45 |
-
if(CMAKE_GENERATOR MATCHES "Visual Studio")
|
| 46 |
-
add_custom_command(
|
| 47 |
-
OUTPUT ${OUTPUT_HEADER_FILE}
|
| 48 |
-
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
| 49 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 50 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 51 |
-
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
| 52 |
-
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
| 53 |
-
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
| 54 |
-
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
| 55 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 56 |
-
DEPENDS ${spv_file} xxd
|
| 57 |
-
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
|
| 58 |
-
)
|
| 59 |
-
else()
|
| 60 |
-
add_custom_command(
|
| 61 |
-
OUTPUT ${OUTPUT_HEADER_FILE}
|
| 62 |
-
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
| 63 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 64 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 65 |
-
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
| 66 |
-
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
| 67 |
-
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
| 68 |
-
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
| 69 |
-
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
| 70 |
-
DEPENDS ${spv_file} xxd
|
| 71 |
-
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
|
| 72 |
-
)
|
| 73 |
-
endif()
|
| 74 |
-
endforeach()
|
| 75 |
-
endfunction()
|
| 76 |
-
|
| 77 |
-
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
| 78 |
-
message(STATUS "Kompute found")
|
| 79 |
-
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
|
| 80 |
-
add_subdirectory(kompute)
|
| 81 |
-
|
| 82 |
-
# Compile our shaders
|
| 83 |
-
compile_shader(SOURCES
|
| 84 |
-
kompute-shaders/op_scale.comp
|
| 85 |
-
kompute-shaders/op_scale_8.comp
|
| 86 |
-
kompute-shaders/op_add.comp
|
| 87 |
-
kompute-shaders/op_addrow.comp
|
| 88 |
-
kompute-shaders/op_mul.comp
|
| 89 |
-
kompute-shaders/op_silu.comp
|
| 90 |
-
kompute-shaders/op_relu.comp
|
| 91 |
-
kompute-shaders/op_gelu.comp
|
| 92 |
-
kompute-shaders/op_softmax.comp
|
| 93 |
-
kompute-shaders/op_norm.comp
|
| 94 |
-
kompute-shaders/op_rmsnorm.comp
|
| 95 |
-
kompute-shaders/op_diagmask.comp
|
| 96 |
-
kompute-shaders/op_mul_mat_mat_f32.comp
|
| 97 |
-
kompute-shaders/op_mul_mat_f16.comp
|
| 98 |
-
kompute-shaders/op_mul_mat_q8_0.comp
|
| 99 |
-
kompute-shaders/op_mul_mat_q4_0.comp
|
| 100 |
-
kompute-shaders/op_mul_mat_q4_1.comp
|
| 101 |
-
kompute-shaders/op_mul_mat_q4_k.comp
|
| 102 |
-
kompute-shaders/op_mul_mat_q6_k.comp
|
| 103 |
-
kompute-shaders/op_getrows_f32.comp
|
| 104 |
-
kompute-shaders/op_getrows_f16.comp
|
| 105 |
-
kompute-shaders/op_getrows_q4_0.comp
|
| 106 |
-
kompute-shaders/op_getrows_q4_1.comp
|
| 107 |
-
kompute-shaders/op_getrows_q6_k.comp
|
| 108 |
-
kompute-shaders/op_rope_norm_f16.comp
|
| 109 |
-
kompute-shaders/op_rope_norm_f32.comp
|
| 110 |
-
kompute-shaders/op_rope_neox_f16.comp
|
| 111 |
-
kompute-shaders/op_rope_neox_f32.comp
|
| 112 |
-
kompute-shaders/op_cpy_f16_f16.comp
|
| 113 |
-
kompute-shaders/op_cpy_f16_f32.comp
|
| 114 |
-
kompute-shaders/op_cpy_f32_f16.comp
|
| 115 |
-
kompute-shaders/op_cpy_f32_f32.comp
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# Create a custom target for our generated shaders
|
| 119 |
-
add_custom_target(generated_shaders DEPENDS
|
| 120 |
-
shaderop_scale.h
|
| 121 |
-
shaderop_scale_8.h
|
| 122 |
-
shaderop_add.h
|
| 123 |
-
shaderop_addrow.h
|
| 124 |
-
shaderop_mul.h
|
| 125 |
-
shaderop_silu.h
|
| 126 |
-
shaderop_relu.h
|
| 127 |
-
shaderop_gelu.h
|
| 128 |
-
shaderop_softmax.h
|
| 129 |
-
shaderop_norm.h
|
| 130 |
-
shaderop_rmsnorm.h
|
| 131 |
-
shaderop_diagmask.h
|
| 132 |
-
shaderop_mul_mat_mat_f32.h
|
| 133 |
-
shaderop_mul_mat_f16.h
|
| 134 |
-
shaderop_mul_mat_q8_0.h
|
| 135 |
-
shaderop_mul_mat_q4_0.h
|
| 136 |
-
shaderop_mul_mat_q4_1.h
|
| 137 |
-
shaderop_mul_mat_q4_k.h
|
| 138 |
-
shaderop_mul_mat_q6_k.h
|
| 139 |
-
shaderop_getrows_f32.h
|
| 140 |
-
shaderop_getrows_f16.h
|
| 141 |
-
shaderop_getrows_q4_0.h
|
| 142 |
-
shaderop_getrows_q4_1.h
|
| 143 |
-
shaderop_getrows_q6_k.h
|
| 144 |
-
shaderop_rope_norm_f16.h
|
| 145 |
-
shaderop_rope_norm_f32.h
|
| 146 |
-
shaderop_rope_neox_f16.h
|
| 147 |
-
shaderop_rope_neox_f32.h
|
| 148 |
-
shaderop_cpy_f16_f16.h
|
| 149 |
-
shaderop_cpy_f16_f32.h
|
| 150 |
-
shaderop_cpy_f32_f16.h
|
| 151 |
-
shaderop_cpy_f32_f32.h
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
# Create a custom command that depends on the generated_shaders
|
| 155 |
-
add_custom_command(
|
| 156 |
-
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
| 157 |
-
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
| 158 |
-
DEPENDS generated_shaders
|
| 159 |
-
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
# Add the stamp to the main sources to ensure dependency tracking
|
| 163 |
-
target_sources(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
| 164 |
-
else()
|
| 165 |
-
message(WARNING "Kompute not found")
|
| 166 |
-
endif()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/ggml-kompute.cpp
DELETED
|
@@ -1,2251 +0,0 @@
|
|
| 1 |
-
#include "ggml-impl.h"
|
| 2 |
-
#include "ggml-backend.h"
|
| 3 |
-
#include "ggml-backend-impl.h"
|
| 4 |
-
#include "ggml-kompute.h"
|
| 5 |
-
|
| 6 |
-
// These are generated at build time by cmake custom command
|
| 7 |
-
#include "shaderop_scale.h"
|
| 8 |
-
#include "shaderop_scale_8.h"
|
| 9 |
-
#include "shaderop_add.h"
|
| 10 |
-
#include "shaderop_addrow.h"
|
| 11 |
-
#include "shaderop_mul.h"
|
| 12 |
-
#include "shaderop_silu.h"
|
| 13 |
-
#include "shaderop_relu.h"
|
| 14 |
-
#include "shaderop_gelu.h"
|
| 15 |
-
#include "shaderop_softmax.h"
|
| 16 |
-
#include "shaderop_norm.h"
|
| 17 |
-
#include "shaderop_rmsnorm.h"
|
| 18 |
-
#include "shaderop_diagmask.h"
|
| 19 |
-
#include "shaderop_mul_mat_f16.h"
|
| 20 |
-
#include "shaderop_mul_mat_q8_0.h"
|
| 21 |
-
#include "shaderop_mul_mat_q4_0.h"
|
| 22 |
-
#include "shaderop_mul_mat_q4_1.h"
|
| 23 |
-
#include "shaderop_mul_mat_q4_k.h"
|
| 24 |
-
#include "shaderop_mul_mat_q6_k.h"
|
| 25 |
-
#include "shaderop_mul_mat_mat_f32.h"
|
| 26 |
-
#include "shaderop_getrows_f32.h"
|
| 27 |
-
#include "shaderop_getrows_f16.h"
|
| 28 |
-
#include "shaderop_getrows_q4_0.h"
|
| 29 |
-
#include "shaderop_getrows_q4_1.h"
|
| 30 |
-
#include "shaderop_getrows_q6_k.h"
|
| 31 |
-
#include "shaderop_rope_norm_f16.h"
|
| 32 |
-
#include "shaderop_rope_norm_f32.h"
|
| 33 |
-
#include "shaderop_rope_neox_f16.h"
|
| 34 |
-
#include "shaderop_rope_neox_f32.h"
|
| 35 |
-
#include "shaderop_cpy_f16_f16.h"
|
| 36 |
-
#include "shaderop_cpy_f16_f32.h"
|
| 37 |
-
#include "shaderop_cpy_f32_f16.h"
|
| 38 |
-
#include "shaderop_cpy_f32_f32.h"
|
| 39 |
-
|
| 40 |
-
#include <algorithm>
|
| 41 |
-
#include <array>
|
| 42 |
-
#include <cassert>
|
| 43 |
-
#include <cstdint>
|
| 44 |
-
#include <cstdio>
|
| 45 |
-
#include <cstring>
|
| 46 |
-
#include <iostream>
|
| 47 |
-
#include <memory>
|
| 48 |
-
#include <mutex>
|
| 49 |
-
#include <stdexcept>
|
| 50 |
-
#include <string>
|
| 51 |
-
#include <unordered_map>
|
| 52 |
-
#include <utility>
|
| 53 |
-
#include <vector>
|
| 54 |
-
|
| 55 |
-
#include <kompute/Kompute.hpp>
|
| 56 |
-
#include <vulkan/vulkan.hpp>
|
| 57 |
-
|
| 58 |
-
#ifdef __linux__
|
| 59 |
-
#include <cstdlib> // for setenv
|
| 60 |
-
#endif
|
| 61 |
-
|
| 62 |
-
#define QK4_0 32
|
| 63 |
-
#define QR4_0 2
|
| 64 |
-
#define QK4_1 32
|
| 65 |
-
#define QK_NL 16
|
| 66 |
-
|
| 67 |
-
typedef ggml_fp16_t half;
|
| 68 |
-
|
| 69 |
-
static std::string ggml_kompute_format_name(int device) {
|
| 70 |
-
return "Kompute" + std::to_string(device);
|
| 71 |
-
}
|
| 72 |
-
|
| 73 |
-
struct ggml_kompute_context {
|
| 74 |
-
int device;
|
| 75 |
-
std::string name;
|
| 76 |
-
std::shared_ptr<vk::DescriptorPool> pool;
|
| 77 |
-
|
| 78 |
-
ggml_kompute_context(int device)
|
| 79 |
-
: device(device), name(ggml_kompute_format_name(device)) {}
|
| 80 |
-
};
|
| 81 |
-
|
| 82 |
-
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
|
| 83 |
-
// and consolidate the init functions and simplify object lifetime management. As it currently stands,
|
| 84 |
-
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
|
| 85 |
-
// is only created when a device is set and vulkan is explicitly turned on.
|
| 86 |
-
static ggml_kompute_context *s_kompute_context = nullptr;
|
| 87 |
-
|
| 88 |
-
class kompute_manager {
|
| 89 |
-
kp::Manager *s_mgr = nullptr;
|
| 90 |
-
|
| 91 |
-
public:
|
| 92 |
-
kp::Manager *operator()() {
|
| 93 |
-
if (s_mgr && !s_mgr->hasInstance()) {
|
| 94 |
-
destroy();
|
| 95 |
-
}
|
| 96 |
-
if (!s_mgr) {
|
| 97 |
-
s_mgr = new kp::Manager;
|
| 98 |
-
}
|
| 99 |
-
return s_mgr;
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
void destroy() {
|
| 103 |
-
delete s_mgr;
|
| 104 |
-
s_mgr = nullptr;
|
| 105 |
-
}
|
| 106 |
-
};
|
| 107 |
-
|
| 108 |
-
static kompute_manager komputeManager;
|
| 109 |
-
|
| 110 |
-
struct ggml_vk_memory {
|
| 111 |
-
void *data = nullptr;
|
| 112 |
-
size_t size = 0;
|
| 113 |
-
vk::DeviceMemory *primaryMemory = nullptr;
|
| 114 |
-
vk::Buffer *primaryBuffer = nullptr;
|
| 115 |
-
vk::DeviceMemory *stagingMemory = nullptr;
|
| 116 |
-
vk::Buffer *stagingBuffer = nullptr;
|
| 117 |
-
};
|
| 118 |
-
|
| 119 |
-
#ifdef __linux__
|
| 120 |
-
__attribute__((constructor))
|
| 121 |
-
static void enable_sam() {
|
| 122 |
-
setenv("RADV_PERFTEST", "sam", false);
|
| 123 |
-
}
|
| 124 |
-
#endif
|
| 125 |
-
|
| 126 |
-
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
|
| 127 |
-
vk::PhysicalDeviceFeatures availableFeatures;
|
| 128 |
-
physical_device.getFeatures(&availableFeatures);
|
| 129 |
-
|
| 130 |
-
if (!availableFeatures.shaderInt16)
|
| 131 |
-
return false;
|
| 132 |
-
|
| 133 |
-
vk::PhysicalDeviceVulkan11Features availableFeatures11;
|
| 134 |
-
vk::PhysicalDeviceVulkan12Features availableFeatures12;
|
| 135 |
-
|
| 136 |
-
availableFeatures11.pNext = &availableFeatures12;
|
| 137 |
-
availableFeatures12.pNext = nullptr;
|
| 138 |
-
|
| 139 |
-
vk::PhysicalDeviceFeatures2 features2;
|
| 140 |
-
features2.pNext = &availableFeatures11;
|
| 141 |
-
|
| 142 |
-
physical_device.getFeatures2(&features2);
|
| 143 |
-
|
| 144 |
-
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
|
| 145 |
-
!availableFeatures11.storageBuffer16BitAccess) {
|
| 146 |
-
return false;
|
| 147 |
-
}
|
| 148 |
-
|
| 149 |
-
if (!availableFeatures12.storageBuffer8BitAccess ||
|
| 150 |
-
!availableFeatures12.uniformAndStorageBuffer8BitAccess ||
|
| 151 |
-
!availableFeatures12.shaderFloat16 ||
|
| 152 |
-
!availableFeatures12.shaderInt8) {
|
| 153 |
-
return false;
|
| 154 |
-
}
|
| 155 |
-
|
| 156 |
-
return true;
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
-
static const char * ggml_vk_getVendorName(uint32_t vendorID) {
|
| 160 |
-
switch (vendorID) {
|
| 161 |
-
case 0x10DE:
|
| 162 |
-
return "nvidia";
|
| 163 |
-
case 0x1002:
|
| 164 |
-
return "amd";
|
| 165 |
-
case 0x8086:
|
| 166 |
-
return "intel";
|
| 167 |
-
default:
|
| 168 |
-
return "unknown";
|
| 169 |
-
}
|
| 170 |
-
}
|
| 171 |
-
|
| 172 |
-
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
|
| 173 |
-
std::vector<ggml_vk_device> results;
|
| 174 |
-
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
|
| 175 |
-
return results;
|
| 176 |
-
|
| 177 |
-
std::vector<vk::PhysicalDevice> physical_devices;
|
| 178 |
-
try {
|
| 179 |
-
physical_devices = komputeManager()->listDevices();
|
| 180 |
-
} catch (vk::SystemError & err) {
|
| 181 |
-
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
|
| 182 |
-
return results;
|
| 183 |
-
}
|
| 184 |
-
|
| 185 |
-
uint32_t deviceCount = physical_devices.size();
|
| 186 |
-
if (deviceCount == 0)
|
| 187 |
-
return results;
|
| 188 |
-
|
| 189 |
-
std::unordered_map<std::string, size_t> count_by_name;
|
| 190 |
-
|
| 191 |
-
for (uint32_t i = 0; i < deviceCount; i++) {
|
| 192 |
-
const auto & physical_device = physical_devices[i];
|
| 193 |
-
|
| 194 |
-
VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
|
| 195 |
-
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
|
| 196 |
-
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
|
| 197 |
-
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
|
| 198 |
-
if (major < 1 || minor < 2)
|
| 199 |
-
continue;
|
| 200 |
-
|
| 201 |
-
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
|
| 202 |
-
continue;
|
| 203 |
-
|
| 204 |
-
size_t heapSize = 0;
|
| 205 |
-
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
|
| 206 |
-
VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
|
| 207 |
-
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
|
| 208 |
-
heapSize = heap.size;
|
| 209 |
-
break;
|
| 210 |
-
}
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
if (heapSize < memoryRequired)
|
| 214 |
-
continue;
|
| 215 |
-
|
| 216 |
-
auto ext_props = physical_device.enumerateDeviceExtensionProperties();
|
| 217 |
-
bool has_maintenance4 = false;
|
| 218 |
-
|
| 219 |
-
// Check if maintenance4 is supported
|
| 220 |
-
for (const auto & properties : ext_props) {
|
| 221 |
-
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
| 222 |
-
has_maintenance4 = true;
|
| 223 |
-
}
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
-
vk::PhysicalDeviceSubgroupProperties subgroup_props;
|
| 227 |
-
vk::PhysicalDeviceProperties2 dev_props2;
|
| 228 |
-
vk::PhysicalDeviceMaintenance3Properties dev_props3;
|
| 229 |
-
vk::PhysicalDeviceMaintenance4Properties dev_props4;
|
| 230 |
-
dev_props2.pNext = &dev_props3;
|
| 231 |
-
dev_props3.pNext = &subgroup_props;
|
| 232 |
-
if (has_maintenance4) {
|
| 233 |
-
subgroup_props.pNext = &dev_props4;
|
| 234 |
-
}
|
| 235 |
-
physical_device.getProperties2(&dev_props2);
|
| 236 |
-
|
| 237 |
-
if (subgroup_props.subgroupSize < 32)
|
| 238 |
-
continue;
|
| 239 |
-
|
| 240 |
-
ggml_vk_device d;
|
| 241 |
-
d.index = i;
|
| 242 |
-
d.type = dev_props.deviceType;
|
| 243 |
-
d.heapSize = heapSize;
|
| 244 |
-
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
|
| 245 |
-
d.subgroupSize = subgroup_props.subgroupSize;
|
| 246 |
-
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
|
| 247 |
-
|
| 248 |
-
if (has_maintenance4) {
|
| 249 |
-
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
|
| 250 |
-
} else {
|
| 251 |
-
d.maxAlloc = dev_props3.maxMemoryAllocationSize;
|
| 252 |
-
}
|
| 253 |
-
|
| 254 |
-
std::string name(dev_props.deviceName);
|
| 255 |
-
size_t n_idx = ++count_by_name[name];
|
| 256 |
-
if (n_idx > 1) {
|
| 257 |
-
name += " (" + std::to_string(n_idx) + ")";
|
| 258 |
-
}
|
| 259 |
-
d.name = strdup(name.c_str());
|
| 260 |
-
|
| 261 |
-
results.push_back(d);
|
| 262 |
-
}
|
| 263 |
-
|
| 264 |
-
std::stable_sort(results.begin(), results.end(),
|
| 265 |
-
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
|
| 266 |
-
if (lhs.type != rhs.type) {
|
| 267 |
-
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
|
| 268 |
-
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
|
| 269 |
-
|
| 270 |
-
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
|
| 271 |
-
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
|
| 272 |
-
}
|
| 273 |
-
return lhs.heapSize < rhs.heapSize;
|
| 274 |
-
}
|
| 275 |
-
);
|
| 276 |
-
|
| 277 |
-
return results;
|
| 278 |
-
}
|
| 279 |
-
|
| 280 |
-
static std::vector<ggml_vk_device>& ggml_vk_available_devices() {
|
| 281 |
-
static std::vector<ggml_vk_device> devices = ggml_vk_available_devices_internal(0);
|
| 282 |
-
return devices;
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
-
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
|
| 286 |
-
devices.erase(
|
| 287 |
-
std::remove_if(devices.begin(), devices.end(),
|
| 288 |
-
[&targetVendor](const ggml_vk_device& device) {
|
| 289 |
-
return device.vendor != targetVendor;
|
| 290 |
-
}),
|
| 291 |
-
devices.end()
|
| 292 |
-
);
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
|
| 296 |
-
devices.erase(
|
| 297 |
-
std::remove_if(devices.begin(), devices.end(),
|
| 298 |
-
[&targetName](const ggml_vk_device& device) {
|
| 299 |
-
return device.name != targetName;
|
| 300 |
-
}),
|
| 301 |
-
devices.end()
|
| 302 |
-
);
|
| 303 |
-
}
|
| 304 |
-
|
| 305 |
-
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
|
| 306 |
-
if (name.empty())
|
| 307 |
-
return false;
|
| 308 |
-
|
| 309 |
-
auto devices = ggml_vk_available_devices_internal(memoryRequired);
|
| 310 |
-
if (name == "amd" || name == "nvidia" || name == "intel") {
|
| 311 |
-
ggml_vk_filterByVendor(devices, name);
|
| 312 |
-
} else if (name != "gpu") {
|
| 313 |
-
ggml_vk_filterByName(devices, name);
|
| 314 |
-
}
|
| 315 |
-
|
| 316 |
-
if (devices.empty())
|
| 317 |
-
return false;
|
| 318 |
-
|
| 319 |
-
*device = devices.front();
|
| 320 |
-
return true;
|
| 321 |
-
}
|
| 322 |
-
|
| 323 |
-
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
|
| 324 |
-
return ggml_vk_get_device(device, memoryRequired, std::string(name));
|
| 325 |
-
}
|
| 326 |
-
|
| 327 |
-
bool ggml_vk_has_vulkan() {
|
| 328 |
-
return komputeManager()->hasVulkan();
|
| 329 |
-
}
|
| 330 |
-
|
| 331 |
-
bool ggml_vk_has_device() {
|
| 332 |
-
return komputeManager()->hasDevice();
|
| 333 |
-
}
|
| 334 |
-
|
| 335 |
-
ggml_vk_device ggml_vk_current_device() {
|
| 336 |
-
if (!komputeManager()->hasDevice())
|
| 337 |
-
return ggml_vk_device();
|
| 338 |
-
|
| 339 |
-
auto devices = ggml_vk_available_devices();
|
| 340 |
-
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
|
| 341 |
-
GGML_ASSERT(!devices.empty());
|
| 342 |
-
return devices.front();
|
| 343 |
-
}
|
| 344 |
-
|
| 345 |
-
static
|
| 346 |
-
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
|
| 347 |
-
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
|
| 348 |
-
vk::DescriptorPoolSize(
|
| 349 |
-
vk::DescriptorType::eStorageBuffer,
|
| 350 |
-
4 * size // Descriptor count is number of possible tensors to pass into an algorithm
|
| 351 |
-
)
|
| 352 |
-
};
|
| 353 |
-
|
| 354 |
-
vk::DescriptorPoolCreateInfo descriptorPoolInfo(
|
| 355 |
-
vk::DescriptorPoolCreateFlags(),
|
| 356 |
-
size, // Max sets
|
| 357 |
-
static_cast<uint32_t>(descriptorPoolSizes.size()),
|
| 358 |
-
descriptorPoolSizes.data());
|
| 359 |
-
|
| 360 |
-
ctx->pool = std::make_shared<vk::DescriptorPool>();
|
| 361 |
-
vk::Result r = komputeManager()->device()->createDescriptorPool(
|
| 362 |
-
&descriptorPoolInfo, nullptr, ctx->pool.get());
|
| 363 |
-
if (r != vk::Result::eSuccess)
|
| 364 |
-
std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
|
| 365 |
-
}
|
| 366 |
-
|
| 367 |
-
static
|
| 368 |
-
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
|
| 369 |
-
if (ctx->pool) {
|
| 370 |
-
komputeManager()->device()->destroy(
|
| 371 |
-
*ctx->pool,
|
| 372 |
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
| 373 |
-
ctx->pool = nullptr;
|
| 374 |
-
}
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
static
|
| 378 |
-
vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
|
| 379 |
-
vk::BufferCreateInfo bufferCreateInfo;
|
| 380 |
-
bufferCreateInfo.size = size;
|
| 381 |
-
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
|
| 382 |
-
vk::BufferUsageFlagBits::eTransferSrc |
|
| 383 |
-
vk::BufferUsageFlagBits::eTransferDst;
|
| 384 |
-
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
|
| 385 |
-
|
| 386 |
-
vk::Buffer *vkBuffer = new vk::Buffer;
|
| 387 |
-
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
|
| 388 |
-
if (r != vk::Result::eSuccess)
|
| 389 |
-
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
|
| 390 |
-
return vkBuffer;
|
| 391 |
-
}
|
| 392 |
-
|
| 393 |
-
static
|
| 394 |
-
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
|
| 395 |
-
|
| 396 |
-
uint32_t memoryTypeIndex = -1;
|
| 397 |
-
bool memoryTypeIndexFound = false;
|
| 398 |
-
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
|
| 399 |
-
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
|
| 400 |
-
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
|
| 401 |
-
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
|
| 402 |
-
if (memoryHeap.size < size) {
|
| 403 |
-
continue;
|
| 404 |
-
}
|
| 405 |
-
|
| 406 |
-
if (requirements.memoryTypeBits & (1 << i)) {
|
| 407 |
-
if (((memoryProperties.memoryTypes[i]).propertyFlags &
|
| 408 |
-
flags) == flags) {
|
| 409 |
-
memoryTypeIndex = i;
|
| 410 |
-
memoryTypeIndexFound = true;
|
| 411 |
-
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
| 412 |
-
*isHostVisible = true;
|
| 413 |
-
}
|
| 414 |
-
break;
|
| 415 |
-
}
|
| 416 |
-
}
|
| 417 |
-
}
|
| 418 |
-
if (!memoryTypeIndexFound) {
|
| 419 |
-
throw std::runtime_error(
|
| 420 |
-
"Memory type index for buffer creation not found");
|
| 421 |
-
}
|
| 422 |
-
|
| 423 |
-
vk::MemoryAllocateInfo allocInfo;
|
| 424 |
-
allocInfo.allocationSize = size;
|
| 425 |
-
allocInfo.memoryTypeIndex = memoryTypeIndex;
|
| 426 |
-
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
|
| 427 |
-
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
|
| 428 |
-
if (r != vk::Result::eSuccess) {
|
| 429 |
-
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
|
| 430 |
-
throw std::runtime_error("Error allocating vulkan memory.");
|
| 431 |
-
}
|
| 432 |
-
return vkDeviceMemory;
|
| 433 |
-
}
|
| 434 |
-
|
| 435 |
-
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
|
| 436 |
-
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
|
| 437 |
-
|
| 438 |
-
// If offset is already aligned, return it directly
|
| 439 |
-
if (offset % minStorageBufferOffsetAlignment == 0) {
|
| 440 |
-
return offset;
|
| 441 |
-
}
|
| 442 |
-
|
| 443 |
-
// Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
|
| 444 |
-
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
|
| 445 |
-
}
|
| 446 |
-
|
| 447 |
-
static ggml_vk_memory ggml_vk_allocate(size_t size) {
|
| 448 |
-
ggml_vk_memory memory;
|
| 449 |
-
bool isHostVisible = false;
|
| 450 |
-
{
|
| 451 |
-
memory.primaryBuffer = ggml_vk_allocate_buffer(size);
|
| 452 |
-
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
|
| 453 |
-
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
|
| 454 |
-
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
| 455 |
-
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
|
| 456 |
-
if (isHostVisible) {
|
| 457 |
-
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
| 458 |
-
if (r != vk::Result::eSuccess)
|
| 459 |
-
std::cerr << "Error mapping memory" << vk::to_string(r);
|
| 460 |
-
}
|
| 461 |
-
}
|
| 462 |
-
|
| 463 |
-
if (!isHostVisible) {
|
| 464 |
-
memory.stagingBuffer = ggml_vk_allocate_buffer(size);
|
| 465 |
-
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
|
| 466 |
-
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
|
| 467 |
-
vk::MemoryPropertyFlagBits::eHostCoherent |
|
| 468 |
-
vk::MemoryPropertyFlagBits::eHostCached;
|
| 469 |
-
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
| 470 |
-
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
|
| 471 |
-
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
| 472 |
-
if (r != vk::Result::eSuccess)
|
| 473 |
-
std::cerr << "Error mapping memory" << vk::to_string(r);
|
| 474 |
-
}
|
| 475 |
-
|
| 476 |
-
memory.size = size;
|
| 477 |
-
return memory;
|
| 478 |
-
}
|
| 479 |
-
|
| 480 |
-
static void ggml_vk_free_memory(ggml_vk_memory &memory)
|
| 481 |
-
{
|
| 482 |
-
komputeManager()->device()->destroy(
|
| 483 |
-
*memory.primaryBuffer,
|
| 484 |
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
| 485 |
-
if (memory.stagingBuffer) {
|
| 486 |
-
komputeManager()->device()->destroy(
|
| 487 |
-
*memory.stagingBuffer,
|
| 488 |
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
| 489 |
-
}
|
| 490 |
-
komputeManager()->device()->freeMemory(
|
| 491 |
-
*memory.primaryMemory,
|
| 492 |
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
| 493 |
-
if (memory.stagingMemory) {
|
| 494 |
-
komputeManager()->device()->freeMemory(
|
| 495 |
-
*memory.stagingMemory,
|
| 496 |
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
| 497 |
-
}
|
| 498 |
-
}
|
| 499 |
-
|
| 500 |
-
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
|
| 501 |
-
|
| 502 |
-
static
|
| 503 |
-
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
|
| 504 |
-
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
| 505 |
-
|
| 506 |
-
// compatibility with ggml-backend
|
| 507 |
-
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
|
| 508 |
-
|
| 509 |
-
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
|
| 510 |
-
|
| 511 |
-
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
|
| 512 |
-
|
| 513 |
-
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
|
| 514 |
-
|
| 515 |
-
offset = uint64_t(ioffs);
|
| 516 |
-
return buf_ctx;
|
| 517 |
-
}
|
| 518 |
-
|
| 519 |
-
static
|
| 520 |
-
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
|
| 521 |
-
uint64_t originalOffset = 0;
|
| 522 |
-
auto * res = ggml_vk_find_tensor(t, originalOffset);
|
| 523 |
-
if (!res) {
|
| 524 |
-
static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
| 525 |
-
return nullTensor;
|
| 526 |
-
}
|
| 527 |
-
|
| 528 |
-
// Create a tensor whose memory will be composed of our buffers at the correct offset
|
| 529 |
-
const size_t nelements = ggml_nelements(t);
|
| 530 |
-
size_t nbytes = ggml_nbytes(t);
|
| 531 |
-
|
| 532 |
-
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
|
| 533 |
-
if (alignedOffset) {
|
| 534 |
-
*alignedOffset = originalOffset - vulkanOffset;
|
| 535 |
-
nbytes += *alignedOffset;
|
| 536 |
-
}
|
| 537 |
-
|
| 538 |
-
return komputeManager()->tensor(
|
| 539 |
-
t->data,
|
| 540 |
-
nelements,
|
| 541 |
-
nbytes, kp::Tensor::TensorDataTypes::eFloat,
|
| 542 |
-
res->primaryMemory, res->primaryBuffer,
|
| 543 |
-
res->stagingMemory, res->stagingBuffer,
|
| 544 |
-
vulkanOffset);
|
| 545 |
-
}
|
| 546 |
-
|
| 547 |
-
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
|
| 548 |
-
if (size % sizeof(uint32_t) != 0) {
|
| 549 |
-
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
|
| 550 |
-
}
|
| 551 |
-
|
| 552 |
-
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
|
| 553 |
-
size_t count = size / sizeof(uint32_t);
|
| 554 |
-
return std::vector<uint32_t>(data_ptr, data_ptr + count);
|
| 555 |
-
}
|
| 556 |
-
|
| 557 |
-
inline static
|
| 558 |
-
uint32_t safe_divide(uint32_t a, uint32_t b) {
|
| 559 |
-
if (b <= 1) {
|
| 560 |
-
return a;
|
| 561 |
-
}
|
| 562 |
-
if ((a % b) != 0) {
|
| 563 |
-
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
|
| 564 |
-
GGML_ABORT("safe_divide result would've had remainder");
|
| 565 |
-
}
|
| 566 |
-
return a / b;
|
| 567 |
-
}
|
| 568 |
-
|
| 569 |
-
static void ggml_vk_add(
|
| 570 |
-
kp::Sequence& seq,
|
| 571 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 572 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 573 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 574 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 575 |
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
| 576 |
-
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
| 577 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 578 |
-
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
| 579 |
-
int32_t ne0,
|
| 580 |
-
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
| 581 |
-
) {
|
| 582 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
|
| 583 |
-
kp::shader_data::op_add_comp_spv_len);
|
| 584 |
-
|
| 585 |
-
struct PushConstants {
|
| 586 |
-
uint32_t inAOff, inBOff, outOff;
|
| 587 |
-
int32_t ne00;
|
| 588 |
-
int32_t nb00, nb01, nb02, nb03;
|
| 589 |
-
int32_t ne10, ne11, ne12, ne13;
|
| 590 |
-
int32_t nb10, nb11, nb12, nb13;
|
| 591 |
-
int32_t ne0;
|
| 592 |
-
int32_t nb0, nb1, nb2, nb3;
|
| 593 |
-
} const pushConsts {
|
| 594 |
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 595 |
-
ne00,
|
| 596 |
-
nb00, nb01, nb02, nb03,
|
| 597 |
-
ne10, ne11, ne12, ne13,
|
| 598 |
-
nb10, nb11, nb12, nb13,
|
| 599 |
-
ne0,
|
| 600 |
-
nb0, nb1, nb2, nb3
|
| 601 |
-
};
|
| 602 |
-
|
| 603 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 604 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 605 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
| 606 |
-
} else {
|
| 607 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 608 |
-
s_algo->setTensors({inA, inB, out});
|
| 609 |
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
| 610 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 611 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 612 |
-
}
|
| 613 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 614 |
-
}
|
| 615 |
-
|
| 616 |
-
static void ggml_vk_addrow(kp::Sequence& seq,
|
| 617 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 618 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 619 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 620 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 621 |
-
uint32_t size, uint32_t row = 0) {
|
| 622 |
-
|
| 623 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
|
| 624 |
-
kp::shader_data::op_addrow_comp_spv_len);
|
| 625 |
-
|
| 626 |
-
struct PushConstants {
|
| 627 |
-
uint32_t inAOff, inBOff, outOff;
|
| 628 |
-
uint32_t row;
|
| 629 |
-
} const pushConsts {
|
| 630 |
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 631 |
-
row
|
| 632 |
-
};
|
| 633 |
-
|
| 634 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 635 |
-
if (!komputeManager()->hasAlgorithm(__func__))
|
| 636 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
| 637 |
-
else {
|
| 638 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 639 |
-
s_algo->setTensors({inA, inB, out});
|
| 640 |
-
s_algo->setWorkgroup({size});
|
| 641 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 642 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 643 |
-
}
|
| 644 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
static void ggml_vk_mul(
|
| 648 |
-
kp::Sequence& seq,
|
| 649 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 650 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 651 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 652 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 653 |
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
| 654 |
-
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
| 655 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 656 |
-
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
| 657 |
-
int32_t ne0,
|
| 658 |
-
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
| 659 |
-
) {
|
| 660 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
|
| 661 |
-
kp::shader_data::op_mul_comp_spv_len);
|
| 662 |
-
|
| 663 |
-
struct PushConstants {
|
| 664 |
-
uint32_t inAOff, inBOff, outOff;
|
| 665 |
-
int32_t ne00;
|
| 666 |
-
int32_t nb00, nb01, nb02, nb03;
|
| 667 |
-
int32_t ne10, ne11, ne12, ne13;
|
| 668 |
-
int32_t nb10, nb11, nb12, nb13;
|
| 669 |
-
int32_t ne0;
|
| 670 |
-
int32_t nb0, nb1, nb2, nb3;
|
| 671 |
-
} const pushConsts {
|
| 672 |
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 673 |
-
ne00,
|
| 674 |
-
nb00, nb01, nb02, nb03,
|
| 675 |
-
ne10, ne11, ne12, ne13,
|
| 676 |
-
nb10, nb11, nb12, nb13,
|
| 677 |
-
ne0,
|
| 678 |
-
nb0, nb1, nb2, nb3
|
| 679 |
-
};
|
| 680 |
-
|
| 681 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 682 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 683 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
| 684 |
-
} else {
|
| 685 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 686 |
-
s_algo->setTensors({inA, inB, out});
|
| 687 |
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
| 688 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 689 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 690 |
-
}
|
| 691 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 692 |
-
}
|
| 693 |
-
|
| 694 |
-
static void ggml_vk_scale(kp::Sequence& seq,
|
| 695 |
-
const std::shared_ptr<kp::Tensor>& in,
|
| 696 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 697 |
-
uint32_t inOff, uint32_t outOff,
|
| 698 |
-
uint32_t size, float scale) {
|
| 699 |
-
const static auto spirv_1 = getSpirvShader(
|
| 700 |
-
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
|
| 701 |
-
);
|
| 702 |
-
const static auto spirv_8 = getSpirvShader(
|
| 703 |
-
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
|
| 704 |
-
);
|
| 705 |
-
|
| 706 |
-
struct PushConstants {
|
| 707 |
-
uint32_t inOff, outOff;
|
| 708 |
-
float scale;
|
| 709 |
-
} const pushConsts {
|
| 710 |
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
| 711 |
-
scale
|
| 712 |
-
};
|
| 713 |
-
|
| 714 |
-
const auto * spirv = &spirv_1;
|
| 715 |
-
std::string name(__func__);
|
| 716 |
-
if (size % 8 == 0) {
|
| 717 |
-
size /= 8;
|
| 718 |
-
name += "_8";
|
| 719 |
-
spirv = &spirv_8;
|
| 720 |
-
}
|
| 721 |
-
|
| 722 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 723 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 724 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
|
| 725 |
-
} else {
|
| 726 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 727 |
-
s_algo->setTensors({in, out});
|
| 728 |
-
s_algo->setWorkgroup({size});
|
| 729 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 730 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 731 |
-
}
|
| 732 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 733 |
-
}
|
| 734 |
-
|
| 735 |
-
static void ggml_vk_xxlu(
|
| 736 |
-
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
| 737 |
-
const std::shared_ptr<kp::Tensor>& in,
|
| 738 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 739 |
-
uint32_t inOff, uint32_t outOff,
|
| 740 |
-
uint32_t size
|
| 741 |
-
) {
|
| 742 |
-
struct PushConstants {
|
| 743 |
-
uint32_t inOff, outOff;
|
| 744 |
-
} const pushConsts {
|
| 745 |
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
| 746 |
-
};
|
| 747 |
-
|
| 748 |
-
auto name = std::string(__func__) + "_" + suffix;
|
| 749 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 750 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 751 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
|
| 752 |
-
} else {
|
| 753 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 754 |
-
s_algo->setTensors({in, out});
|
| 755 |
-
s_algo->setWorkgroup({size});
|
| 756 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 757 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 758 |
-
}
|
| 759 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 760 |
-
}
|
| 761 |
-
|
| 762 |
-
template <typename... Args>
|
| 763 |
-
static void ggml_vk_silu(Args&&... args) {
|
| 764 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
|
| 765 |
-
kp::shader_data::op_silu_comp_spv_len);
|
| 766 |
-
|
| 767 |
-
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
|
| 768 |
-
}
|
| 769 |
-
|
| 770 |
-
template <typename... Args>
|
| 771 |
-
static void ggml_vk_relu(Args&&... args) {
|
| 772 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
|
| 773 |
-
kp::shader_data::op_relu_comp_spv_len);
|
| 774 |
-
|
| 775 |
-
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
|
| 776 |
-
}
|
| 777 |
-
|
| 778 |
-
template <typename... Args>
|
| 779 |
-
static void ggml_vk_gelu(Args&&... args) {
|
| 780 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
|
| 781 |
-
kp::shader_data::op_gelu_comp_spv_len);
|
| 782 |
-
|
| 783 |
-
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
|
| 784 |
-
}
|
| 785 |
-
|
| 786 |
-
static void ggml_vk_soft_max(
|
| 787 |
-
kp::Sequence& seq,
|
| 788 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 789 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 790 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 791 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 792 |
-
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
|
| 793 |
-
float scale, float max_bias, float m0, float m1,
|
| 794 |
-
uint32_t n_head_log2
|
| 795 |
-
) {
|
| 796 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
|
| 797 |
-
kp::shader_data::op_softmax_comp_spv_len);
|
| 798 |
-
|
| 799 |
-
struct PushConstants {
|
| 800 |
-
uint32_t inAOff, inBOff, outOff;
|
| 801 |
-
int32_t ne00, ne01, ne02;
|
| 802 |
-
float scale, max_bias, m0, m1;
|
| 803 |
-
uint32_t n_head_log2;
|
| 804 |
-
int32_t mask;
|
| 805 |
-
} pushConsts {
|
| 806 |
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 807 |
-
ne00, ne01, ne02,
|
| 808 |
-
scale, max_bias, m0, m1,
|
| 809 |
-
n_head_log2,
|
| 810 |
-
bool(inB)
|
| 811 |
-
};
|
| 812 |
-
|
| 813 |
-
auto & inB_ = inB ? inB : inA;
|
| 814 |
-
|
| 815 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 816 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 817 |
-
// FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
|
| 818 |
-
const uint32_t local_x = 32;
|
| 819 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
|
| 820 |
-
} else {
|
| 821 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 822 |
-
s_algo->setTensors({inA, inB_, out});
|
| 823 |
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
| 824 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 825 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 826 |
-
}
|
| 827 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 828 |
-
}
|
| 829 |
-
|
| 830 |
-
static void ggml_vk_norm_(
|
| 831 |
-
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
| 832 |
-
const std::shared_ptr<kp::Tensor>& in,
|
| 833 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 834 |
-
uint32_t inOff, uint32_t outOff,
|
| 835 |
-
int32_t ne00, int32_t nb01,
|
| 836 |
-
int32_t nrows, float epsilon
|
| 837 |
-
) {
|
| 838 |
-
GGML_ASSERT(nb01%sizeof(float) == 0);
|
| 839 |
-
GGML_ASSERT(ne00%sizeof(float) == 0);
|
| 840 |
-
|
| 841 |
-
struct PushConstants {
|
| 842 |
-
uint32_t inOff, outOff;
|
| 843 |
-
uint32_t ne00, nb01;
|
| 844 |
-
float eps;
|
| 845 |
-
} pushConsts {
|
| 846 |
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
| 847 |
-
(uint32_t)ne00, (uint32_t)nb01, epsilon
|
| 848 |
-
};
|
| 849 |
-
|
| 850 |
-
auto name = std::string(__func__) + "_" + suffix;
|
| 851 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 852 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 853 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
|
| 854 |
-
} else {
|
| 855 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 856 |
-
s_algo->setTensors({in, out});
|
| 857 |
-
s_algo->setWorkgroup({(uint32_t)nrows});
|
| 858 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 859 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 860 |
-
}
|
| 861 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 862 |
-
}
|
| 863 |
-
|
| 864 |
-
template <typename... Args>
|
| 865 |
-
static void ggml_vk_norm(Args&&... args) {
|
| 866 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
|
| 867 |
-
kp::shader_data::op_norm_comp_spv_len);
|
| 868 |
-
|
| 869 |
-
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
|
| 870 |
-
}
|
| 871 |
-
|
| 872 |
-
template <typename... Args>
|
| 873 |
-
static void ggml_vk_rms_norm(Args&&... args) {
|
| 874 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
|
| 875 |
-
kp::shader_data::op_rmsnorm_comp_spv_len);
|
| 876 |
-
|
| 877 |
-
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
|
| 878 |
-
}
|
| 879 |
-
|
| 880 |
-
static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
|
| 881 |
-
const std::shared_ptr<kp::Tensor>& in,
|
| 882 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 883 |
-
uint32_t inOff, uint32_t outOff,
|
| 884 |
-
uint32_t n_past,
|
| 885 |
-
int32_t ne00, int32_t ne01, int32_t ne02) {
|
| 886 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
|
| 887 |
-
kp::shader_data::op_diagmask_comp_spv_len);
|
| 888 |
-
|
| 889 |
-
struct PushConstants {
|
| 890 |
-
uint32_t inOff, outOff;
|
| 891 |
-
uint32_t n_past;
|
| 892 |
-
int32_t ne00, ne01;
|
| 893 |
-
} pushConsts {
|
| 894 |
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
| 895 |
-
n_past,
|
| 896 |
-
ne00, ne01
|
| 897 |
-
};
|
| 898 |
-
|
| 899 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 900 |
-
if (!komputeManager()->hasAlgorithm(__func__))
|
| 901 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
|
| 902 |
-
else {
|
| 903 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 904 |
-
s_algo->setTensors({in, out});
|
| 905 |
-
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
|
| 906 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 907 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 908 |
-
}
|
| 909 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 910 |
-
}
|
| 911 |
-
|
| 912 |
-
static void ggml_vk_mul_mat_f16(
|
| 913 |
-
kp::Sequence& seq,
|
| 914 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 915 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 916 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 917 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 918 |
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
| 919 |
-
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 920 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 921 |
-
uint32_t nb10, uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
| 922 |
-
int32_t ne0, int32_t ne1,
|
| 923 |
-
uint32_t r2, uint32_t r3
|
| 924 |
-
) {
|
| 925 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
|
| 926 |
-
kp::shader_data::op_mul_mat_f16_comp_spv_len);
|
| 927 |
-
|
| 928 |
-
struct PushConstants {
|
| 929 |
-
uint32_t inAOff, inBOff, outOff;
|
| 930 |
-
int32_t ne00, ne01, ne02;
|
| 931 |
-
uint32_t nb00, nb01, nb02, nb03;
|
| 932 |
-
int32_t ne10, ne11, ne12;
|
| 933 |
-
uint32_t nb10, nb11, nb12, nb13;
|
| 934 |
-
int32_t ne0, ne1;
|
| 935 |
-
uint32_t r2, r3;
|
| 936 |
-
} pushConsts {
|
| 937 |
-
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 938 |
-
ne00, ne01, ne02,
|
| 939 |
-
nb00, nb01, nb02, nb03,
|
| 940 |
-
ne10, ne11, ne12,
|
| 941 |
-
nb10, nb11, nb12, nb13,
|
| 942 |
-
ne0, ne1,
|
| 943 |
-
r2, r3
|
| 944 |
-
};
|
| 945 |
-
|
| 946 |
-
const unsigned ny = unsigned((ne11 + 4 - 1)/4);
|
| 947 |
-
|
| 948 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 949 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 950 |
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
| 951 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
| 952 |
-
} else {
|
| 953 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 954 |
-
s_algo->setTensors({inA, inB, out});
|
| 955 |
-
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
|
| 956 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 957 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 958 |
-
}
|
| 959 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 960 |
-
}
|
| 961 |
-
|
| 962 |
-
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
|
| 963 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 964 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 965 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 966 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 967 |
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
| 968 |
-
uint32_t nb01, uint32_t nb02,
|
| 969 |
-
int32_t ne11, int32_t ne12,
|
| 970 |
-
uint32_t nb11, uint32_t nb12,
|
| 971 |
-
uint32_t nb1, uint32_t nb2) {
|
| 972 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
|
| 973 |
-
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
|
| 974 |
-
|
| 975 |
-
struct PushConstants {
|
| 976 |
-
uint32_t inAOff, inBOff, outOff;
|
| 977 |
-
int32_t ne00, ne01, ne02, ne11, ne12;
|
| 978 |
-
uint32_t nb01, nb02;
|
| 979 |
-
uint32_t nb11, nb12;
|
| 980 |
-
uint32_t nb1, nb2;
|
| 981 |
-
} pushConsts {
|
| 982 |
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 983 |
-
ne00, ne01, ne02, ne11, ne12,
|
| 984 |
-
nb01, nb02, nb11, nb12,
|
| 985 |
-
nb1, nb2
|
| 986 |
-
};
|
| 987 |
-
|
| 988 |
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize;
|
| 989 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 990 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 991 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
|
| 992 |
-
{inA, inB, out}, spirv,
|
| 993 |
-
{unsigned(ne01),
|
| 994 |
-
unsigned(ne11),
|
| 995 |
-
unsigned(std::max(ne12, ne02))
|
| 996 |
-
},
|
| 997 |
-
{local_x},
|
| 998 |
-
{pushConsts});
|
| 999 |
-
} else {
|
| 1000 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 1001 |
-
s_algo->setTensors({inA, inB, out});
|
| 1002 |
-
s_algo->setWorkgroup({unsigned(ne01),
|
| 1003 |
-
unsigned(ne11),
|
| 1004 |
-
unsigned(std::max(ne12, ne02)),
|
| 1005 |
-
});
|
| 1006 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1007 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1008 |
-
}
|
| 1009 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1010 |
-
}
|
| 1011 |
-
|
| 1012 |
-
static void ggml_vk_mul_mat_impl(
|
| 1013 |
-
const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
|
| 1014 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 1015 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 1016 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1017 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 1018 |
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
| 1019 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 1020 |
-
int32_t ne0, int32_t ne1,
|
| 1021 |
-
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 1022 |
-
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
| 1023 |
-
uint32_t r2, uint32_t r3
|
| 1024 |
-
) {
|
| 1025 |
-
struct PushConstants {
|
| 1026 |
-
uint32_t inAOff, inBOff, outOff;
|
| 1027 |
-
int32_t ne00, ne01, ne02;
|
| 1028 |
-
int32_t ne10, ne12;
|
| 1029 |
-
int32_t ne0, ne1;
|
| 1030 |
-
uint32_t nb01, nb02, nb03;
|
| 1031 |
-
uint32_t nb11, nb12, nb13;
|
| 1032 |
-
uint32_t r2, r3;
|
| 1033 |
-
} pushConsts {
|
| 1034 |
-
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 1035 |
-
ne00, ne01, ne02,
|
| 1036 |
-
ne10, ne12,
|
| 1037 |
-
ne0, ne1,
|
| 1038 |
-
nb01, nb02, nb03,
|
| 1039 |
-
nb11, nb12, nb13,
|
| 1040 |
-
r2, r3
|
| 1041 |
-
};
|
| 1042 |
-
|
| 1043 |
-
auto name = std::string(__func__) + "_" + suffix;
|
| 1044 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1045 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 1046 |
-
const uint32_t local_x = (ggml_vk_current_device().subgroupSize * 2) / 8;
|
| 1047 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
| 1048 |
-
} else {
|
| 1049 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 1050 |
-
s_algo->setTensors({inA, inB, out});
|
| 1051 |
-
s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
|
| 1052 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1053 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1054 |
-
}
|
| 1055 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1056 |
-
}
|
| 1057 |
-
|
| 1058 |
-
template <typename... Args>
|
| 1059 |
-
static void ggml_vk_mul_mat_q4_0(Args&&... args) {
|
| 1060 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
|
| 1061 |
-
kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
|
| 1062 |
-
|
| 1063 |
-
ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
| 1064 |
-
}
|
| 1065 |
-
|
| 1066 |
-
template <typename... Args>
|
| 1067 |
-
static void ggml_vk_mul_mat_q4_1(Args&&... args) {
|
| 1068 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
|
| 1069 |
-
kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
|
| 1070 |
-
|
| 1071 |
-
ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
| 1072 |
-
}
|
| 1073 |
-
|
| 1074 |
-
template <typename... Args>
|
| 1075 |
-
static void ggml_vk_mul_mat_q8_0(Args&&... args) {
|
| 1076 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
|
| 1077 |
-
kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
|
| 1078 |
-
|
| 1079 |
-
ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
| 1080 |
-
}
|
| 1081 |
-
|
| 1082 |
-
static void ggml_vk_mul_mat_q4_k(
|
| 1083 |
-
kp::Sequence& seq,
|
| 1084 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 1085 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 1086 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1087 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 1088 |
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
| 1089 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 1090 |
-
int32_t ne0, int32_t ne1,
|
| 1091 |
-
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 1092 |
-
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
| 1093 |
-
uint32_t r2, uint32_t r3
|
| 1094 |
-
) {
|
| 1095 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_k_comp_spv,
|
| 1096 |
-
kp::shader_data::op_mul_mat_q4_k_comp_spv_len);
|
| 1097 |
-
|
| 1098 |
-
struct PushConstants {
|
| 1099 |
-
uint32_t inAOff, inBOff, outOff;
|
| 1100 |
-
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
| 1101 |
-
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
| 1102 |
-
uint32_t r2, r3;
|
| 1103 |
-
} pushConsts {
|
| 1104 |
-
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 1105 |
-
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
| 1106 |
-
nb01, nb02, nb03, nb11, nb12, nb13,
|
| 1107 |
-
r2, r3
|
| 1108 |
-
};
|
| 1109 |
-
|
| 1110 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1111 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 1112 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)}, {}, {pushConsts});
|
| 1113 |
-
} else {
|
| 1114 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 1115 |
-
s_algo->setTensors({inA, inB, out});
|
| 1116 |
-
s_algo->setWorkgroup({unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)});
|
| 1117 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1118 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1119 |
-
}
|
| 1120 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1121 |
-
}
|
| 1122 |
-
|
| 1123 |
-
static void ggml_vk_mul_mat_q6_k(
|
| 1124 |
-
kp::Sequence& seq,
|
| 1125 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 1126 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 1127 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1128 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 1129 |
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
| 1130 |
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
| 1131 |
-
int32_t ne0, int32_t ne1,
|
| 1132 |
-
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 1133 |
-
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
| 1134 |
-
uint32_t r2, uint32_t r3
|
| 1135 |
-
) {
|
| 1136 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
|
| 1137 |
-
kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
|
| 1138 |
-
|
| 1139 |
-
struct PushConstants {
|
| 1140 |
-
uint32_t inAOff, inBOff, outOff;
|
| 1141 |
-
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
| 1142 |
-
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
| 1143 |
-
uint32_t r2, r3;
|
| 1144 |
-
} pushConsts {
|
| 1145 |
-
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 1146 |
-
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
| 1147 |
-
nb01, nb02, nb03, nb11, nb12, nb13,
|
| 1148 |
-
r2, r3
|
| 1149 |
-
};
|
| 1150 |
-
|
| 1151 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1152 |
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
| 1153 |
-
const uint32_t local_x = 2;
|
| 1154 |
-
const uint32_t local_y = ggml_vk_current_device().subgroupSize;
|
| 1155 |
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)}, {local_x, local_y}, {pushConsts});
|
| 1156 |
-
} else {
|
| 1157 |
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
| 1158 |
-
s_algo->setTensors({inA, inB, out});
|
| 1159 |
-
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)});
|
| 1160 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1161 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1162 |
-
}
|
| 1163 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1164 |
-
}
|
| 1165 |
-
|
| 1166 |
-
static void ggml_vk_get_rows(
|
| 1167 |
-
const std::vector<uint32_t>& spirv,
|
| 1168 |
-
const char * suffix,
|
| 1169 |
-
unsigned element_size, unsigned qk,
|
| 1170 |
-
kp::Sequence& seq,
|
| 1171 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 1172 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 1173 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1174 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
| 1175 |
-
int32_t ne00, int32_t nb01, int32_t nb1,
|
| 1176 |
-
uint32_t size
|
| 1177 |
-
) {
|
| 1178 |
-
GGML_ASSERT(nb01%element_size == 0);
|
| 1179 |
-
GGML_ASSERT(nb1%sizeof(float) == 0);
|
| 1180 |
-
if (qk) GGML_ASSERT(ne00%qk == 0);
|
| 1181 |
-
|
| 1182 |
-
struct PushConstants {
|
| 1183 |
-
uint32_t inAOff, inBOff, outOff;
|
| 1184 |
-
int32_t ne00, nb01, nb1;
|
| 1185 |
-
} pushConsts {
|
| 1186 |
-
safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
| 1187 |
-
ne00, nb01, nb1
|
| 1188 |
-
};
|
| 1189 |
-
|
| 1190 |
-
auto name = std::string(__func__) + "_" + suffix;
|
| 1191 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1192 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 1193 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
| 1194 |
-
} else {
|
| 1195 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 1196 |
-
s_algo->setTensors({inA, inB, out});
|
| 1197 |
-
s_algo->setWorkgroup({size});
|
| 1198 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1199 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1200 |
-
}
|
| 1201 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1202 |
-
}
|
| 1203 |
-
|
| 1204 |
-
template <typename... Args>
|
| 1205 |
-
static void ggml_vk_get_rows_f32(Args&&... args) {
|
| 1206 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
|
| 1207 |
-
kp::shader_data::op_getrows_f32_comp_spv_len);
|
| 1208 |
-
|
| 1209 |
-
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
|
| 1210 |
-
}
|
| 1211 |
-
|
| 1212 |
-
template <typename... Args>
|
| 1213 |
-
static void ggml_vk_get_rows_f16(Args&&... args) {
|
| 1214 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
|
| 1215 |
-
kp::shader_data::op_getrows_f16_comp_spv_len);
|
| 1216 |
-
|
| 1217 |
-
ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
|
| 1218 |
-
}
|
| 1219 |
-
|
| 1220 |
-
template <typename... Args>
|
| 1221 |
-
static void ggml_vk_get_rows_q4_0(Args&&... args) {
|
| 1222 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
|
| 1223 |
-
kp::shader_data::op_getrows_q4_0_comp_spv_len);
|
| 1224 |
-
|
| 1225 |
-
ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
|
| 1226 |
-
}
|
| 1227 |
-
|
| 1228 |
-
template <typename... Args>
|
| 1229 |
-
static void ggml_vk_get_rows_q4_1(Args&&... args) {
|
| 1230 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
|
| 1231 |
-
kp::shader_data::op_getrows_q4_1_comp_spv_len);
|
| 1232 |
-
|
| 1233 |
-
ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
|
| 1234 |
-
}
|
| 1235 |
-
|
| 1236 |
-
template <typename... Args>
|
| 1237 |
-
static void ggml_vk_get_rows_q6_k(Args&&... args) {
|
| 1238 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
|
| 1239 |
-
kp::shader_data::op_getrows_q6_k_comp_spv_len);
|
| 1240 |
-
ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
|
| 1241 |
-
}
|
| 1242 |
-
|
| 1243 |
-
static void ggml_vk_rope(
|
| 1244 |
-
kp::Sequence& seq,
|
| 1245 |
-
const std::shared_ptr<kp::Tensor>& inA,
|
| 1246 |
-
const std::shared_ptr<kp::Tensor>& inB,
|
| 1247 |
-
const std::shared_ptr<kp::Tensor>& inC,
|
| 1248 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1249 |
-
uint32_t inAOff, uint32_t inBOff, uint32_t inCOff, uint32_t outOff,
|
| 1250 |
-
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
|
| 1251 |
-
float freq_base, float freq_scale, bool has_freq_factors, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
| 1252 |
-
int32_t ne01, int32_t ne02, int32_t ne03,
|
| 1253 |
-
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 1254 |
-
int32_t ne0,
|
| 1255 |
-
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
| 1256 |
-
) {
|
| 1257 |
-
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
|
| 1258 |
-
|
| 1259 |
-
static const auto spirv_norm_f16 = getSpirvShader(
|
| 1260 |
-
kp::shader_data::op_rope_norm_f16_comp_spv, kp::shader_data::op_rope_norm_f16_comp_spv_len
|
| 1261 |
-
);
|
| 1262 |
-
static const auto spirv_norm_f32 = getSpirvShader(
|
| 1263 |
-
kp::shader_data::op_rope_norm_f32_comp_spv, kp::shader_data::op_rope_norm_f32_comp_spv_len
|
| 1264 |
-
);
|
| 1265 |
-
static const auto spirv_neox_f16 = getSpirvShader(
|
| 1266 |
-
kp::shader_data::op_rope_neox_f16_comp_spv, kp::shader_data::op_rope_neox_f16_comp_spv_len
|
| 1267 |
-
);
|
| 1268 |
-
static const auto spirv_neox_f32 = getSpirvShader(
|
| 1269 |
-
kp::shader_data::op_rope_neox_f32_comp_spv, kp::shader_data::op_rope_neox_f32_comp_spv_len
|
| 1270 |
-
);
|
| 1271 |
-
|
| 1272 |
-
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
|
| 1273 |
-
|
| 1274 |
-
GGML_ASSERT(nb03 % type_size == 0);
|
| 1275 |
-
GGML_ASSERT(nb02 % type_size == 0);
|
| 1276 |
-
GGML_ASSERT(nb01 % type_size == 0);
|
| 1277 |
-
GGML_ASSERT(nb00 % type_size == 0);
|
| 1278 |
-
GGML_ASSERT(nb3 % type_size == 0);
|
| 1279 |
-
GGML_ASSERT(nb2 % type_size == 0);
|
| 1280 |
-
GGML_ASSERT(nb1 % type_size == 0);
|
| 1281 |
-
GGML_ASSERT(nb0 % type_size == 0);
|
| 1282 |
-
|
| 1283 |
-
struct PushConstants {
|
| 1284 |
-
uint32_t inAOff, inBOff, inCOff, outOff;
|
| 1285 |
-
int32_t n_dims, mode, n_ctx_orig;
|
| 1286 |
-
float freq_base, freq_scale;
|
| 1287 |
-
bool has_freq_factors;
|
| 1288 |
-
float ext_factor, attn_factor, beta_fast, beta_slow;
|
| 1289 |
-
uint32_t nb00, nb01, nb02, nb03;
|
| 1290 |
-
int32_t ne0;
|
| 1291 |
-
uint32_t nb0, nb1, nb2, nb3;
|
| 1292 |
-
} pushConsts {
|
| 1293 |
-
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(inCOff, type_size), safe_divide(outOff, type_size),
|
| 1294 |
-
n_dims, mode, n_ctx_orig,
|
| 1295 |
-
freq_base, freq_scale,
|
| 1296 |
-
has_freq_factors,
|
| 1297 |
-
ext_factor, attn_factor, beta_fast, beta_slow,
|
| 1298 |
-
nb00, nb01, nb02, nb03,
|
| 1299 |
-
ne0,
|
| 1300 |
-
nb0, nb1, nb2, nb3
|
| 1301 |
-
};
|
| 1302 |
-
|
| 1303 |
-
auto & inC_ = inC ? inC : inA;
|
| 1304 |
-
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
| 1305 |
-
const bool is_f16 = src0t == GGML_TYPE_F16;
|
| 1306 |
-
|
| 1307 |
-
auto name = std::string(__func__) + (is_neox ? "_neox" : "_norm") + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
|
| 1308 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1309 |
-
if (!komputeManager()->hasAlgorithm(name)) {
|
| 1310 |
-
auto & spirv = is_neox ? is_f16 ? spirv_neox_f16 : spirv_neox_f32 : is_f16 ? spirv_norm_f16 : spirv_norm_f32;
|
| 1311 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(
|
| 1312 |
-
name, s_kompute_context->pool.get(), {inA, inB, inC_, out}, spirv,
|
| 1313 |
-
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
|
| 1314 |
-
);
|
| 1315 |
-
} else {
|
| 1316 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 1317 |
-
s_algo->setTensors({inA, inB, inC_, out});
|
| 1318 |
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
| 1319 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1320 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1321 |
-
}
|
| 1322 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1323 |
-
}
|
| 1324 |
-
|
| 1325 |
-
static void ggml_vk_cpy(
|
| 1326 |
-
const std::vector<uint32_t>& spirv,
|
| 1327 |
-
uint32_t in_element_size, uint32_t out_element_size,
|
| 1328 |
-
kp::Sequence& seq,
|
| 1329 |
-
const std::shared_ptr<kp::Tensor>& in,
|
| 1330 |
-
const std::shared_ptr<kp::Tensor>& out,
|
| 1331 |
-
uint32_t inOff, uint32_t outOff,
|
| 1332 |
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
| 1333 |
-
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
| 1334 |
-
int32_t ne0, int32_t ne1, int32_t ne2,
|
| 1335 |
-
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
| 1336 |
-
) {
|
| 1337 |
-
struct PushConstants {
|
| 1338 |
-
uint32_t inOff, outOff;
|
| 1339 |
-
int32_t ne00, ne01, ne02;
|
| 1340 |
-
uint32_t nb00, nb01, nb02, nb03;
|
| 1341 |
-
int32_t ne0, ne1, ne2;
|
| 1342 |
-
uint32_t nb0, nb1, nb2, nb3;
|
| 1343 |
-
} pushConsts {
|
| 1344 |
-
safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
|
| 1345 |
-
ne00, ne01, ne02,
|
| 1346 |
-
nb00, nb01, nb02, nb03,
|
| 1347 |
-
ne0, ne1, ne2,
|
| 1348 |
-
nb0, nb1, nb2, nb3
|
| 1349 |
-
};
|
| 1350 |
-
|
| 1351 |
-
std::string name = std::string(__func__)
|
| 1352 |
-
+ "_i_" + std::to_string(in_element_size)
|
| 1353 |
-
+ "_o_" + std::to_string(out_element_size);
|
| 1354 |
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
| 1355 |
-
if (!komputeManager()->hasAlgorithm(name))
|
| 1356 |
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
| 1357 |
-
else {
|
| 1358 |
-
s_algo = komputeManager()->getAlgorithm(name);
|
| 1359 |
-
s_algo->setTensors({in, out});
|
| 1360 |
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
| 1361 |
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
| 1362 |
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
| 1363 |
-
}
|
| 1364 |
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
| 1365 |
-
}
|
| 1366 |
-
|
| 1367 |
-
template <typename... Args>
|
| 1368 |
-
static void ggml_vk_cpy_f32_f16(Args&&... args) {
|
| 1369 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
|
| 1370 |
-
kp::shader_data::op_cpy_f32_f16_comp_spv_len);
|
| 1371 |
-
ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
|
| 1372 |
-
}
|
| 1373 |
-
|
| 1374 |
-
template <typename... Args>
|
| 1375 |
-
static void ggml_vk_cpy_f32_f32(Args&&... args) {
|
| 1376 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
|
| 1377 |
-
kp::shader_data::op_cpy_f32_f32_comp_spv_len);
|
| 1378 |
-
ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
|
| 1379 |
-
}
|
| 1380 |
-
|
| 1381 |
-
template <typename... Args>
|
| 1382 |
-
static void ggml_vk_cpy_f16_f16(Args&&... args) {
|
| 1383 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
|
| 1384 |
-
kp::shader_data::op_cpy_f16_f16_comp_spv_len);
|
| 1385 |
-
ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
|
| 1386 |
-
}
|
| 1387 |
-
|
| 1388 |
-
template <typename... Args>
|
| 1389 |
-
static void ggml_vk_cpy_f16_f32(Args&&... args) {
|
| 1390 |
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
|
| 1391 |
-
kp::shader_data::op_cpy_f16_f32_comp_spv_len);
|
| 1392 |
-
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
|
| 1393 |
-
}
|
| 1394 |
-
|
| 1395 |
-
static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
| 1396 |
-
int64_t n = ggml_nelements(op);
|
| 1397 |
-
switch (op->op) {
|
| 1398 |
-
case GGML_OP_UNARY:
|
| 1399 |
-
if (n % 4 != 0) return false;
|
| 1400 |
-
switch (ggml_get_unary_op(op)) {
|
| 1401 |
-
case GGML_UNARY_OP_GELU:
|
| 1402 |
-
if (n % 8 != 0) return false;
|
| 1403 |
-
// fall through
|
| 1404 |
-
case GGML_UNARY_OP_RELU:
|
| 1405 |
-
case GGML_UNARY_OP_SILU:
|
| 1406 |
-
return ggml_is_contiguous(op->src[0]);
|
| 1407 |
-
default:
|
| 1408 |
-
;
|
| 1409 |
-
}
|
| 1410 |
-
break;
|
| 1411 |
-
case GGML_OP_NONE:
|
| 1412 |
-
case GGML_OP_RESHAPE:
|
| 1413 |
-
case GGML_OP_VIEW:
|
| 1414 |
-
case GGML_OP_TRANSPOSE:
|
| 1415 |
-
case GGML_OP_PERMUTE:
|
| 1416 |
-
case GGML_OP_ADD:
|
| 1417 |
-
case GGML_OP_MUL:
|
| 1418 |
-
case GGML_OP_SCALE:
|
| 1419 |
-
case GGML_OP_SOFT_MAX:
|
| 1420 |
-
case GGML_OP_RMS_NORM:
|
| 1421 |
-
case GGML_OP_NORM:
|
| 1422 |
-
return true;
|
| 1423 |
-
case GGML_OP_ROPE:
|
| 1424 |
-
{
|
| 1425 |
-
const int mode = ((const int32_t *) op->op_params)[2];
|
| 1426 |
-
if (mode & GGML_ROPE_TYPE_MROPE) {
|
| 1427 |
-
return false;
|
| 1428 |
-
}
|
| 1429 |
-
if (mode & GGML_ROPE_TYPE_VISION) {
|
| 1430 |
-
return false;
|
| 1431 |
-
}
|
| 1432 |
-
return true;
|
| 1433 |
-
}
|
| 1434 |
-
case GGML_OP_DUP:
|
| 1435 |
-
case GGML_OP_CPY:
|
| 1436 |
-
case GGML_OP_CONT:
|
| 1437 |
-
switch (op->src[0]->type) {
|
| 1438 |
-
case GGML_TYPE_F32:
|
| 1439 |
-
case GGML_TYPE_F16:
|
| 1440 |
-
break;
|
| 1441 |
-
default:
|
| 1442 |
-
return false;
|
| 1443 |
-
}
|
| 1444 |
-
switch (op->type) {
|
| 1445 |
-
case GGML_TYPE_F32:
|
| 1446 |
-
case GGML_TYPE_F16:
|
| 1447 |
-
break;
|
| 1448 |
-
default:
|
| 1449 |
-
return false;
|
| 1450 |
-
}
|
| 1451 |
-
return true;
|
| 1452 |
-
case GGML_OP_DIAG_MASK_INF:
|
| 1453 |
-
return op->ne[3] == 1;
|
| 1454 |
-
case GGML_OP_GET_ROWS:
|
| 1455 |
-
switch (op->src[0]->type) {
|
| 1456 |
-
case GGML_TYPE_F32:
|
| 1457 |
-
case GGML_TYPE_F16:
|
| 1458 |
-
case GGML_TYPE_Q4_0:
|
| 1459 |
-
case GGML_TYPE_Q4_1:
|
| 1460 |
-
case GGML_TYPE_Q6_K:
|
| 1461 |
-
return op->ne[2] == 1 && op->ne[3] == 1;
|
| 1462 |
-
default:
|
| 1463 |
-
;
|
| 1464 |
-
}
|
| 1465 |
-
return false;
|
| 1466 |
-
case GGML_OP_MUL_MAT:
|
| 1467 |
-
if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
|
| 1468 |
-
return false;
|
| 1469 |
-
|
| 1470 |
-
switch (op->src[0]->type) {
|
| 1471 |
-
case GGML_TYPE_F32:
|
| 1472 |
-
return op->ne[3] == 1;
|
| 1473 |
-
case GGML_TYPE_Q6_K:
|
| 1474 |
-
case GGML_TYPE_F16:
|
| 1475 |
-
case GGML_TYPE_Q8_0:
|
| 1476 |
-
case GGML_TYPE_Q4_0:
|
| 1477 |
-
case GGML_TYPE_Q4_1:
|
| 1478 |
-
case GGML_TYPE_Q4_K:
|
| 1479 |
-
return true;
|
| 1480 |
-
default:
|
| 1481 |
-
;
|
| 1482 |
-
}
|
| 1483 |
-
default:
|
| 1484 |
-
;
|
| 1485 |
-
}
|
| 1486 |
-
return false;
|
| 1487 |
-
|
| 1488 |
-
GGML_UNUSED(dev);
|
| 1489 |
-
}
|
| 1490 |
-
|
| 1491 |
-
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
|
| 1492 |
-
const int n_seq = 8;
|
| 1493 |
-
|
| 1494 |
-
// FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
|
| 1495 |
-
// it to the size of the graph, but I think it can be made smaller?
|
| 1496 |
-
ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
|
| 1497 |
-
|
| 1498 |
-
std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
|
| 1499 |
-
|
| 1500 |
-
for (auto& sequence : sequences) {
|
| 1501 |
-
sequence = komputeManager()->sequence();
|
| 1502 |
-
}
|
| 1503 |
-
for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
|
| 1504 |
-
const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
|
| 1505 |
-
|
| 1506 |
-
auto& seq = *sequences[seq_idx];
|
| 1507 |
-
|
| 1508 |
-
const int node_start = (seq_idx + 0) * n_nodes_per_seq;
|
| 1509 |
-
const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
|
| 1510 |
-
|
| 1511 |
-
bool any_commands_recorded = false;
|
| 1512 |
-
|
| 1513 |
-
for (int i = node_start; i < node_end; ++i) {
|
| 1514 |
-
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
| 1515 |
-
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
| 1516 |
-
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
|
| 1517 |
-
struct ggml_tensor * dst = gf->nodes[i];
|
| 1518 |
-
GGML_ASSERT(dst->data != nullptr);
|
| 1519 |
-
|
| 1520 |
-
if (ggml_is_empty(dst)) {
|
| 1521 |
-
continue;
|
| 1522 |
-
}
|
| 1523 |
-
|
| 1524 |
-
switch (dst->op) {
|
| 1525 |
-
case GGML_OP_NONE:
|
| 1526 |
-
case GGML_OP_RESHAPE:
|
| 1527 |
-
case GGML_OP_VIEW:
|
| 1528 |
-
case GGML_OP_TRANSPOSE:
|
| 1529 |
-
case GGML_OP_PERMUTE:
|
| 1530 |
-
continue; // noop -> next node
|
| 1531 |
-
default:
|
| 1532 |
-
break;
|
| 1533 |
-
}
|
| 1534 |
-
|
| 1535 |
-
any_commands_recorded = true;
|
| 1536 |
-
|
| 1537 |
-
const int32_t ne00 = src0 ? src0->ne[0] : 0;
|
| 1538 |
-
const int32_t ne01 = src0 ? src0->ne[1] : 0;
|
| 1539 |
-
const int32_t ne02 = src0 ? src0->ne[2] : 0;
|
| 1540 |
-
const int32_t ne03 = src0 ? src0->ne[3] : 0;
|
| 1541 |
-
|
| 1542 |
-
const uint32_t nb00 = src0 ? src0->nb[0] : 0;
|
| 1543 |
-
const uint32_t nb01 = src0 ? src0->nb[1] : 0;
|
| 1544 |
-
const uint32_t nb02 = src0 ? src0->nb[2] : 0;
|
| 1545 |
-
const uint32_t nb03 = src0 ? src0->nb[3] : 0;
|
| 1546 |
-
|
| 1547 |
-
const int32_t ne10 = src1 ? src1->ne[0] : 0;
|
| 1548 |
-
const int32_t ne11 = src1 ? src1->ne[1] : 0;
|
| 1549 |
-
const int32_t ne12 = src1 ? src1->ne[2] : 0;
|
| 1550 |
-
const int32_t ne13 = src1 ? src1->ne[3] : 0;
|
| 1551 |
-
|
| 1552 |
-
const uint32_t nb10 = src1 ? src1->nb[0] : 0;
|
| 1553 |
-
const uint32_t nb11 = src1 ? src1->nb[1] : 0;
|
| 1554 |
-
const uint32_t nb12 = src1 ? src1->nb[2] : 0;
|
| 1555 |
-
const uint32_t nb13 = src1 ? src1->nb[3] : 0;
|
| 1556 |
-
|
| 1557 |
-
const int32_t ne0 = dst ? dst->ne[0] : 0;
|
| 1558 |
-
const int32_t ne1 = dst ? dst->ne[1] : 0;
|
| 1559 |
-
const int32_t ne2 = dst ? dst->ne[2] : 0;
|
| 1560 |
-
// const int32_t ne3 = dst ? dst->ne[3] : 0;
|
| 1561 |
-
|
| 1562 |
-
const uint32_t nb0 = dst ? dst->nb[0] : 0;
|
| 1563 |
-
const uint32_t nb1 = dst ? dst->nb[1] : 0;
|
| 1564 |
-
const uint32_t nb2 = dst ? dst->nb[2] : 0;
|
| 1565 |
-
const uint32_t nb3 = dst ? dst->nb[3] : 0;
|
| 1566 |
-
|
| 1567 |
-
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
| 1568 |
-
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
| 1569 |
-
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
| 1570 |
-
|
| 1571 |
-
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
| 1572 |
-
uint32_t off_src0 = 0;
|
| 1573 |
-
uint32_t off_src1 = 0;
|
| 1574 |
-
uint32_t off_src2 = 0;
|
| 1575 |
-
uint32_t off_dst = 0;
|
| 1576 |
-
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
|
| 1577 |
-
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
|
| 1578 |
-
const std::shared_ptr<kp::Tensor>& id_src2 = src2 ? ggml_vk_get_tensor(src2, &off_src2) : nullTensor;
|
| 1579 |
-
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
|
| 1580 |
-
|
| 1581 |
-
switch (dst->op) {
|
| 1582 |
-
case GGML_OP_ADD:
|
| 1583 |
-
{
|
| 1584 |
-
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
| 1585 |
-
// src1 is a row
|
| 1586 |
-
ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
|
| 1587 |
-
} else {
|
| 1588 |
-
ggml_vk_add(
|
| 1589 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1590 |
-
ne00, ne01, ne02, ne03,
|
| 1591 |
-
nb00, nb01, nb02, nb03,
|
| 1592 |
-
ne10, ne11, ne12, ne13,
|
| 1593 |
-
nb10, nb11, nb12, nb13,
|
| 1594 |
-
ne0,
|
| 1595 |
-
nb0, nb1, nb2, nb3
|
| 1596 |
-
);
|
| 1597 |
-
}
|
| 1598 |
-
} break;
|
| 1599 |
-
case GGML_OP_MUL:
|
| 1600 |
-
{
|
| 1601 |
-
ggml_vk_mul(
|
| 1602 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1603 |
-
ne00, ne01, ne02, ne03,
|
| 1604 |
-
nb00, nb01, nb02, nb03,
|
| 1605 |
-
ne10, ne11, ne12, ne13,
|
| 1606 |
-
nb10, nb11, nb12, nb13,
|
| 1607 |
-
ne0,
|
| 1608 |
-
nb0, nb1, nb2, nb3
|
| 1609 |
-
);
|
| 1610 |
-
} break;
|
| 1611 |
-
case GGML_OP_SCALE:
|
| 1612 |
-
{
|
| 1613 |
-
float scale; memcpy(&scale, dst->op_params, sizeof(float));
|
| 1614 |
-
|
| 1615 |
-
ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
|
| 1616 |
-
} break;
|
| 1617 |
-
case GGML_OP_UNARY:
|
| 1618 |
-
{
|
| 1619 |
-
int64_t n = ggml_nelements(dst);
|
| 1620 |
-
GGML_ASSERT(n % 4 == 0);
|
| 1621 |
-
switch (ggml_get_unary_op(gf->nodes[i])) {
|
| 1622 |
-
case GGML_UNARY_OP_SILU:
|
| 1623 |
-
{
|
| 1624 |
-
ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
| 1625 |
-
} break;
|
| 1626 |
-
case GGML_UNARY_OP_RELU:
|
| 1627 |
-
{
|
| 1628 |
-
ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
| 1629 |
-
} break;
|
| 1630 |
-
case GGML_UNARY_OP_GELU:
|
| 1631 |
-
{
|
| 1632 |
-
GGML_ASSERT(n % 8 == 0);
|
| 1633 |
-
ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
|
| 1634 |
-
} break;
|
| 1635 |
-
default:
|
| 1636 |
-
{
|
| 1637 |
-
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
| 1638 |
-
GGML_ABORT("fatal error");
|
| 1639 |
-
}
|
| 1640 |
-
}
|
| 1641 |
-
} break;
|
| 1642 |
-
case GGML_OP_SOFT_MAX:
|
| 1643 |
-
{
|
| 1644 |
-
float scale;
|
| 1645 |
-
float max_bias;
|
| 1646 |
-
|
| 1647 |
-
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float));
|
| 1648 |
-
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
|
| 1649 |
-
|
| 1650 |
-
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
|
| 1651 |
-
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
| 1652 |
-
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
|
| 1653 |
-
|
| 1654 |
-
const int64_t nrows_x = ggml_nrows(src0);
|
| 1655 |
-
const int64_t nrows_y = src0->ne[1];
|
| 1656 |
-
|
| 1657 |
-
const uint32_t n_head = nrows_x/nrows_y;
|
| 1658 |
-
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
| 1659 |
-
|
| 1660 |
-
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
| 1661 |
-
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
| 1662 |
-
|
| 1663 |
-
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale, max_bias, m0, m1, n_head_log2);
|
| 1664 |
-
} break;
|
| 1665 |
-
case GGML_OP_DIAG_MASK_INF:
|
| 1666 |
-
{
|
| 1667 |
-
const int n_past = ((int32_t *)(dst->op_params))[0];
|
| 1668 |
-
ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
|
| 1669 |
-
} break;
|
| 1670 |
-
case GGML_OP_NORM:
|
| 1671 |
-
{
|
| 1672 |
-
float eps;
|
| 1673 |
-
memcpy(&eps, dst->op_params, sizeof(float));
|
| 1674 |
-
ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
| 1675 |
-
} break;
|
| 1676 |
-
case GGML_OP_RMS_NORM:
|
| 1677 |
-
{
|
| 1678 |
-
GGML_ASSERT(ne00 % 4 == 0);
|
| 1679 |
-
|
| 1680 |
-
float eps;
|
| 1681 |
-
memcpy(&eps, dst->op_params, sizeof(float));
|
| 1682 |
-
ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
| 1683 |
-
} break;
|
| 1684 |
-
case GGML_OP_MUL_MAT:
|
| 1685 |
-
{
|
| 1686 |
-
GGML_ASSERT(ne00 == ne10);
|
| 1687 |
-
|
| 1688 |
-
GGML_ASSERT(ne12 % ne02 == 0);
|
| 1689 |
-
GGML_ASSERT(ne13 % ne03 == 0);
|
| 1690 |
-
|
| 1691 |
-
const uint32_t r2 = ne12/ne02;
|
| 1692 |
-
const uint32_t r3 = ne13/ne03;
|
| 1693 |
-
|
| 1694 |
-
if (src1t != GGML_TYPE_F32) {
|
| 1695 |
-
fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
| 1696 |
-
goto not_implemented;
|
| 1697 |
-
}
|
| 1698 |
-
|
| 1699 |
-
if (ggml_is_transposed(src0) ||
|
| 1700 |
-
ggml_is_transposed(src1)) {
|
| 1701 |
-
fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
| 1702 |
-
goto not_implemented;
|
| 1703 |
-
}
|
| 1704 |
-
|
| 1705 |
-
switch (src0t) {
|
| 1706 |
-
case GGML_TYPE_F32:
|
| 1707 |
-
ggml_vk_mul_mat_mat_f32(
|
| 1708 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1709 |
-
ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
|
| 1710 |
-
);
|
| 1711 |
-
break;
|
| 1712 |
-
case GGML_TYPE_F16:
|
| 1713 |
-
ggml_vk_mul_mat_f16(
|
| 1714 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1715 |
-
ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
| 1716 |
-
ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
|
| 1717 |
-
ne0, ne1, r2, r3
|
| 1718 |
-
);
|
| 1719 |
-
break;
|
| 1720 |
-
case GGML_TYPE_Q8_0:
|
| 1721 |
-
ggml_vk_mul_mat_q8_0(
|
| 1722 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1723 |
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
| 1724 |
-
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
| 1725 |
-
);
|
| 1726 |
-
break;
|
| 1727 |
-
case GGML_TYPE_Q4_0:
|
| 1728 |
-
ggml_vk_mul_mat_q4_0(
|
| 1729 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1730 |
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
| 1731 |
-
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
| 1732 |
-
);
|
| 1733 |
-
break;
|
| 1734 |
-
case GGML_TYPE_Q4_1:
|
| 1735 |
-
ggml_vk_mul_mat_q4_1(
|
| 1736 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1737 |
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
| 1738 |
-
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
| 1739 |
-
);
|
| 1740 |
-
break;
|
| 1741 |
-
case GGML_TYPE_Q4_K:
|
| 1742 |
-
ggml_vk_mul_mat_q4_k(
|
| 1743 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1744 |
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
| 1745 |
-
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
| 1746 |
-
);
|
| 1747 |
-
break;
|
| 1748 |
-
case GGML_TYPE_Q6_K:
|
| 1749 |
-
ggml_vk_mul_mat_q6_k(
|
| 1750 |
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
| 1751 |
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
| 1752 |
-
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
| 1753 |
-
);
|
| 1754 |
-
break;
|
| 1755 |
-
default: {
|
| 1756 |
-
fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
| 1757 |
-
goto not_implemented;
|
| 1758 |
-
}
|
| 1759 |
-
}
|
| 1760 |
-
|
| 1761 |
-
} break;
|
| 1762 |
-
case GGML_OP_GET_ROWS:
|
| 1763 |
-
{
|
| 1764 |
-
if (src0t == GGML_TYPE_F32) {
|
| 1765 |
-
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
| 1766 |
-
} else if (src0t == GGML_TYPE_F16) {
|
| 1767 |
-
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
| 1768 |
-
} else if (src0t == GGML_TYPE_Q4_0) {
|
| 1769 |
-
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
| 1770 |
-
} else if (src0t == GGML_TYPE_Q4_1) {
|
| 1771 |
-
ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
| 1772 |
-
} else if (src0t == GGML_TYPE_Q6_K) {
|
| 1773 |
-
ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
| 1774 |
-
} else {
|
| 1775 |
-
fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
|
| 1776 |
-
goto not_implemented;
|
| 1777 |
-
}
|
| 1778 |
-
} break;
|
| 1779 |
-
case GGML_OP_ROPE:
|
| 1780 |
-
{
|
| 1781 |
-
GGML_ASSERT(ne10 == ne02);
|
| 1782 |
-
GGML_ASSERT(src0t == dstt);
|
| 1783 |
-
// const int n_past = ((int32_t *) dst->op_params)[0];
|
| 1784 |
-
const int n_dims = ((int32_t *) dst->op_params)[1];
|
| 1785 |
-
const int mode = ((int32_t *) dst->op_params)[2];
|
| 1786 |
-
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
|
| 1787 |
-
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
| 1788 |
-
|
| 1789 |
-
const bool has_freq_factors = dst->src[2] != nullptr;
|
| 1790 |
-
|
| 1791 |
-
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
| 1792 |
-
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
| 1793 |
-
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
| 1794 |
-
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
| 1795 |
-
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
| 1796 |
-
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
| 1797 |
-
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
| 1798 |
-
ggml_vk_rope(
|
| 1799 |
-
seq, id_src0, id_src1, id_src2, id_dst, off_src0, off_src1, off_src2, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
| 1800 |
-
freq_base, freq_scale, has_freq_factors, ext_factor, attn_factor, beta_fast, beta_slow,
|
| 1801 |
-
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
|
| 1802 |
-
);
|
| 1803 |
-
} break;
|
| 1804 |
-
case GGML_OP_DUP:
|
| 1805 |
-
case GGML_OP_CPY:
|
| 1806 |
-
case GGML_OP_CONT:
|
| 1807 |
-
{
|
| 1808 |
-
switch (src0t) {
|
| 1809 |
-
case GGML_TYPE_F32:
|
| 1810 |
-
{
|
| 1811 |
-
switch (dstt) {
|
| 1812 |
-
case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
| 1813 |
-
case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
| 1814 |
-
default: goto not_implemented;
|
| 1815 |
-
}
|
| 1816 |
-
} break;
|
| 1817 |
-
case GGML_TYPE_F16:
|
| 1818 |
-
{
|
| 1819 |
-
switch (dstt) {
|
| 1820 |
-
case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
| 1821 |
-
case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
| 1822 |
-
default: goto not_implemented;
|
| 1823 |
-
} break;
|
| 1824 |
-
default: goto not_implemented;
|
| 1825 |
-
}
|
| 1826 |
-
}
|
| 1827 |
-
} break;
|
| 1828 |
-
default: goto not_implemented;
|
| 1829 |
-
}
|
| 1830 |
-
continue;
|
| 1831 |
-
not_implemented: {}
|
| 1832 |
-
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
| 1833 |
-
//GGML_ABORT("fatal error");
|
| 1834 |
-
}
|
| 1835 |
-
|
| 1836 |
-
// Evaluate sequence
|
| 1837 |
-
if (any_commands_recorded) {
|
| 1838 |
-
seq.evalAsync();
|
| 1839 |
-
}
|
| 1840 |
-
}
|
| 1841 |
-
|
| 1842 |
-
// Wait for all sequences to finish
|
| 1843 |
-
for (auto& sequence : sequences) {
|
| 1844 |
-
if (sequence->isRunning())
|
| 1845 |
-
sequence->evalAwait();
|
| 1846 |
-
}
|
| 1847 |
-
|
| 1848 |
-
ggml_vk_free_descriptor_pool(ctx);
|
| 1849 |
-
}
|
| 1850 |
-
|
| 1851 |
-
template<>
|
| 1852 |
-
kp::Tensor::TensorDataTypes
|
| 1853 |
-
kp::TensorT<half>::dataType()
|
| 1854 |
-
{
|
| 1855 |
-
return TensorDataTypes::eFloat;
|
| 1856 |
-
}
|
| 1857 |
-
|
| 1858 |
-
template<>
|
| 1859 |
-
kp::Tensor::TensorDataTypes
|
| 1860 |
-
kp::TensorT<uint8_t>::dataType()
|
| 1861 |
-
{
|
| 1862 |
-
return TensorDataTypes::eUnsignedInt;
|
| 1863 |
-
}
|
| 1864 |
-
|
| 1865 |
-
////////////////////////////////////////////////////////////////////////////////
|
| 1866 |
-
|
| 1867 |
-
// backend interface
|
| 1868 |
-
|
| 1869 |
-
struct ggml_backend_kompute_buffer_type_context {
|
| 1870 |
-
int device;
|
| 1871 |
-
int device_ref = 0;
|
| 1872 |
-
uint64_t buffer_alignment;
|
| 1873 |
-
uint64_t max_alloc;
|
| 1874 |
-
std::string name;
|
| 1875 |
-
|
| 1876 |
-
ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
|
| 1877 |
-
: device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
|
| 1878 |
-
};
|
| 1879 |
-
|
| 1880 |
-
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
|
| 1881 |
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
| 1882 |
-
|
| 1883 |
-
if (!ctx->device_ref) {
|
| 1884 |
-
komputeManager()->initializeDevice(
|
| 1885 |
-
ctx->device, {}, {
|
| 1886 |
-
"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
|
| 1887 |
-
"VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
|
| 1888 |
-
}
|
| 1889 |
-
);
|
| 1890 |
-
}
|
| 1891 |
-
|
| 1892 |
-
assert(ggml_vk_has_device());
|
| 1893 |
-
ctx->device_ref++;
|
| 1894 |
-
}
|
| 1895 |
-
|
| 1896 |
-
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
|
| 1897 |
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
| 1898 |
-
|
| 1899 |
-
assert(ctx->device_ref > 0);
|
| 1900 |
-
|
| 1901 |
-
ctx->device_ref--;
|
| 1902 |
-
|
| 1903 |
-
if (!ctx->device_ref) {
|
| 1904 |
-
komputeManager.destroy();
|
| 1905 |
-
}
|
| 1906 |
-
}
|
| 1907 |
-
|
| 1908 |
-
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
| 1909 |
-
auto * memory = (ggml_vk_memory *)buffer->context;
|
| 1910 |
-
if (ggml_vk_has_device()) {
|
| 1911 |
-
ggml_vk_free_memory(*memory);
|
| 1912 |
-
}
|
| 1913 |
-
delete memory;
|
| 1914 |
-
}
|
| 1915 |
-
|
| 1916 |
-
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
|
| 1917 |
-
return ((ggml_vk_memory *)buffer->context)->data;
|
| 1918 |
-
}
|
| 1919 |
-
|
| 1920 |
-
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
| 1921 |
-
GGML_UNUSED(buffer);
|
| 1922 |
-
|
| 1923 |
-
const auto res = ggml_vk_get_tensor(tensor);
|
| 1924 |
-
GGML_ASSERT(res);
|
| 1925 |
-
|
| 1926 |
-
memcpy((char *)tensor->data + offset, data, size);
|
| 1927 |
-
|
| 1928 |
-
komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
|
| 1929 |
-
}
|
| 1930 |
-
|
| 1931 |
-
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
| 1932 |
-
GGML_UNUSED(buffer);
|
| 1933 |
-
|
| 1934 |
-
const auto res = ggml_vk_get_tensor(tensor);
|
| 1935 |
-
GGML_ASSERT(res);
|
| 1936 |
-
|
| 1937 |
-
komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
|
| 1938 |
-
|
| 1939 |
-
memcpy(data, (const char *)tensor->data + offset, size);
|
| 1940 |
-
}
|
| 1941 |
-
|
| 1942 |
-
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
| 1943 |
-
auto * memory = (ggml_vk_memory *)buffer->context;
|
| 1944 |
-
memset(memory->data, value, buffer->size);
|
| 1945 |
-
|
| 1946 |
-
if (memory->stagingBuffer)
|
| 1947 |
-
komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
|
| 1948 |
-
}
|
| 1949 |
-
|
| 1950 |
-
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
|
| 1951 |
-
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
|
| 1952 |
-
/* .get_base = */ ggml_backend_kompute_buffer_get_base,
|
| 1953 |
-
/* .init_tensor = */ NULL,
|
| 1954 |
-
/* .memset_tensor = */ NULL,
|
| 1955 |
-
/* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
|
| 1956 |
-
/* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
|
| 1957 |
-
/* .cpy_tensor = */ NULL,
|
| 1958 |
-
/* .clear = */ ggml_backend_kompute_buffer_clear,
|
| 1959 |
-
/* .reset = */ NULL,
|
| 1960 |
-
};
|
| 1961 |
-
|
| 1962 |
-
// default buffer type
|
| 1963 |
-
|
| 1964 |
-
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
| 1965 |
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
| 1966 |
-
return ctx->name.c_str();
|
| 1967 |
-
}
|
| 1968 |
-
|
| 1969 |
-
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
| 1970 |
-
ggml_backend_kompute_device_ref(buft);
|
| 1971 |
-
auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
|
| 1972 |
-
return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
|
| 1973 |
-
}
|
| 1974 |
-
|
| 1975 |
-
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
| 1976 |
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
| 1977 |
-
return ctx->buffer_alignment;
|
| 1978 |
-
}
|
| 1979 |
-
|
| 1980 |
-
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
| 1981 |
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
| 1982 |
-
return ctx->max_alloc;
|
| 1983 |
-
}
|
| 1984 |
-
|
| 1985 |
-
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
|
| 1986 |
-
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
|
| 1987 |
-
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
|
| 1988 |
-
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
|
| 1989 |
-
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
| 1990 |
-
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
| 1991 |
-
/* .is_host = */ NULL,
|
| 1992 |
-
};
|
| 1993 |
-
|
| 1994 |
-
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
|
| 1995 |
-
static std::mutex mutex;
|
| 1996 |
-
std::lock_guard<std::mutex> lock(mutex);
|
| 1997 |
-
|
| 1998 |
-
auto devices = ggml_vk_available_devices();
|
| 1999 |
-
int32_t device_count = (int32_t) devices.size();
|
| 2000 |
-
GGML_ASSERT(device < device_count);
|
| 2001 |
-
GGML_ASSERT(devices.size() <= GGML_KOMPUTE_MAX_DEVICES);
|
| 2002 |
-
|
| 2003 |
-
static ggml_backend_buffer_type
|
| 2004 |
-
ggml_backend_kompute_buffer_types[GGML_KOMPUTE_MAX_DEVICES];
|
| 2005 |
-
|
| 2006 |
-
static bool ggml_backend_kompute_buffer_type_initialized = false;
|
| 2007 |
-
|
| 2008 |
-
if (!ggml_backend_kompute_buffer_type_initialized) {
|
| 2009 |
-
for (int32_t i = 0; i < device_count; i++) {
|
| 2010 |
-
ggml_backend_kompute_buffer_types[i] = {
|
| 2011 |
-
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
|
| 2012 |
-
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), i),
|
| 2013 |
-
/* .context = */ new ggml_backend_kompute_buffer_type_context{ i, devices[i].bufferAlignment, devices[i].maxAlloc },
|
| 2014 |
-
};
|
| 2015 |
-
}
|
| 2016 |
-
ggml_backend_kompute_buffer_type_initialized = true;
|
| 2017 |
-
}
|
| 2018 |
-
|
| 2019 |
-
return &ggml_backend_kompute_buffer_types[device];
|
| 2020 |
-
}
|
| 2021 |
-
|
| 2022 |
-
// backend
|
| 2023 |
-
|
| 2024 |
-
static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
|
| 2025 |
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
| 2026 |
-
return ctx->name.c_str();
|
| 2027 |
-
}
|
| 2028 |
-
|
| 2029 |
-
static void ggml_backend_kompute_free(ggml_backend_t backend) {
|
| 2030 |
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
| 2031 |
-
|
| 2032 |
-
assert(ctx == s_kompute_context);
|
| 2033 |
-
s_kompute_context = nullptr;
|
| 2034 |
-
if (ctx != nullptr) {
|
| 2035 |
-
delete ctx;
|
| 2036 |
-
}
|
| 2037 |
-
|
| 2038 |
-
delete backend;
|
| 2039 |
-
}
|
| 2040 |
-
|
| 2041 |
-
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
| 2042 |
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
| 2043 |
-
ggml_vk_graph_compute(ctx, cgraph);
|
| 2044 |
-
return GGML_STATUS_SUCCESS;
|
| 2045 |
-
}
|
| 2046 |
-
|
| 2047 |
-
static struct ggml_backend_i kompute_backend_i = {
|
| 2048 |
-
/* .get_name = */ ggml_backend_kompute_name,
|
| 2049 |
-
/* .free = */ ggml_backend_kompute_free,
|
| 2050 |
-
/* .set_tensor_async = */ NULL,
|
| 2051 |
-
/* .get_tensor_async = */ NULL,
|
| 2052 |
-
/* .cpy_tensor_async = */ NULL,
|
| 2053 |
-
/* .synchronize = */ NULL,
|
| 2054 |
-
/* .graph_plan_create = */ NULL,
|
| 2055 |
-
/* .graph_plan_free = */ NULL,
|
| 2056 |
-
/* .graph_plan_update = */ NULL,
|
| 2057 |
-
/* .graph_plan_compute = */ NULL,
|
| 2058 |
-
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
| 2059 |
-
/* .event_record = */ NULL,
|
| 2060 |
-
/* .event_wait = */ NULL,
|
| 2061 |
-
};
|
| 2062 |
-
|
| 2063 |
-
static ggml_guid_t ggml_backend_kompute_guid() {
|
| 2064 |
-
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
|
| 2065 |
-
return &guid;
|
| 2066 |
-
}
|
| 2067 |
-
|
| 2068 |
-
ggml_backend_t ggml_backend_kompute_init(int device) {
|
| 2069 |
-
GGML_ASSERT(s_kompute_context == nullptr);
|
| 2070 |
-
s_kompute_context = new ggml_kompute_context(device);
|
| 2071 |
-
|
| 2072 |
-
ggml_backend_t kompute_backend = new ggml_backend {
|
| 2073 |
-
/* .guid = */ ggml_backend_kompute_guid(),
|
| 2074 |
-
/* .interface = */ kompute_backend_i,
|
| 2075 |
-
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), device),
|
| 2076 |
-
/* .context = */ s_kompute_context,
|
| 2077 |
-
};
|
| 2078 |
-
|
| 2079 |
-
return kompute_backend;
|
| 2080 |
-
}
|
| 2081 |
-
|
| 2082 |
-
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
| 2083 |
-
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
| 2084 |
-
}
|
| 2085 |
-
|
| 2086 |
-
static size_t ggml_backend_kompute_get_device_count() {
|
| 2087 |
-
auto devices = ggml_vk_available_devices();
|
| 2088 |
-
return devices.size();
|
| 2089 |
-
}
|
| 2090 |
-
|
| 2091 |
-
static void ggml_backend_kompute_get_device_description(int device, char * description, size_t description_size) {
|
| 2092 |
-
auto devices = ggml_vk_available_devices();
|
| 2093 |
-
GGML_ASSERT((size_t) device < devices.size());
|
| 2094 |
-
snprintf(description, description_size, "%s", devices[device].name);
|
| 2095 |
-
}
|
| 2096 |
-
|
| 2097 |
-
static void ggml_backend_kompute_get_device_memory(int device, size_t * free, size_t * total) {
|
| 2098 |
-
auto devices = ggml_vk_available_devices();
|
| 2099 |
-
GGML_ASSERT((size_t) device < devices.size());
|
| 2100 |
-
*total = devices[device].heapSize;
|
| 2101 |
-
*free = devices[device].heapSize;
|
| 2102 |
-
}
|
| 2103 |
-
|
| 2104 |
-
//////////////////////////
|
| 2105 |
-
|
| 2106 |
-
struct ggml_backend_kompute_device_context {
|
| 2107 |
-
int device;
|
| 2108 |
-
std::string name;
|
| 2109 |
-
std::string description;
|
| 2110 |
-
};
|
| 2111 |
-
|
| 2112 |
-
static const char * ggml_backend_kompute_device_get_name(ggml_backend_dev_t dev) {
|
| 2113 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2114 |
-
return ctx->name.c_str();
|
| 2115 |
-
}
|
| 2116 |
-
|
| 2117 |
-
static const char * ggml_backend_kompute_device_get_description(ggml_backend_dev_t dev) {
|
| 2118 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2119 |
-
return ctx->description.c_str();
|
| 2120 |
-
}
|
| 2121 |
-
|
| 2122 |
-
static void ggml_backend_kompute_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
| 2123 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2124 |
-
ggml_backend_kompute_get_device_memory(ctx->device, free, total);
|
| 2125 |
-
}
|
| 2126 |
-
|
| 2127 |
-
static ggml_backend_buffer_type_t ggml_backend_kompute_device_get_buffer_type(ggml_backend_dev_t dev) {
|
| 2128 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2129 |
-
return ggml_backend_kompute_buffer_type(ctx->device);
|
| 2130 |
-
}
|
| 2131 |
-
|
| 2132 |
-
static bool ggml_backend_kompute_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
| 2133 |
-
if (buft->iface.get_name != ggml_backend_kompute_buffer_type_get_name) {
|
| 2134 |
-
return false;
|
| 2135 |
-
}
|
| 2136 |
-
|
| 2137 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2138 |
-
ggml_backend_kompute_buffer_type_context * buft_ctx = (ggml_backend_kompute_buffer_type_context *)buft->context;
|
| 2139 |
-
|
| 2140 |
-
return buft_ctx->device == ctx->device;
|
| 2141 |
-
}
|
| 2142 |
-
|
| 2143 |
-
static enum ggml_backend_dev_type ggml_backend_kompute_device_get_type(ggml_backend_dev_t dev) {
|
| 2144 |
-
GGML_UNUSED(dev);
|
| 2145 |
-
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
| 2146 |
-
}
|
| 2147 |
-
|
| 2148 |
-
static void ggml_backend_kompute_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
| 2149 |
-
props->name = ggml_backend_kompute_device_get_name(dev);
|
| 2150 |
-
props->description = ggml_backend_kompute_device_get_description(dev);
|
| 2151 |
-
props->type = ggml_backend_kompute_device_get_type(dev);
|
| 2152 |
-
ggml_backend_kompute_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
| 2153 |
-
props->caps = {
|
| 2154 |
-
/* async = */ false,
|
| 2155 |
-
/* host_buffer = */ false,
|
| 2156 |
-
/* .buffer_from_host_ptr = */ false,
|
| 2157 |
-
/* events = */ false,
|
| 2158 |
-
};
|
| 2159 |
-
}
|
| 2160 |
-
|
| 2161 |
-
static ggml_backend_t ggml_backend_kompute_device_init(ggml_backend_dev_t dev, const char * params) {
|
| 2162 |
-
GGML_UNUSED(params);
|
| 2163 |
-
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
|
| 2164 |
-
return ggml_backend_kompute_init(ctx->device);
|
| 2165 |
-
}
|
| 2166 |
-
|
| 2167 |
-
static bool ggml_backend_kompute_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
| 2168 |
-
const int min_batch_size = 32;
|
| 2169 |
-
|
| 2170 |
-
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
| 2171 |
-
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
| 2172 |
-
|
| 2173 |
-
GGML_UNUSED(dev);
|
| 2174 |
-
}
|
| 2175 |
-
|
| 2176 |
-
static const struct ggml_backend_device_i ggml_backend_kompute_device_i = {
|
| 2177 |
-
/* .get_name = */ ggml_backend_kompute_device_get_name,
|
| 2178 |
-
/* .get_description = */ ggml_backend_kompute_device_get_description,
|
| 2179 |
-
/* .get_memory = */ ggml_backend_kompute_device_get_memory,
|
| 2180 |
-
/* .get_type = */ ggml_backend_kompute_device_get_type,
|
| 2181 |
-
/* .get_props = */ ggml_backend_kompute_device_get_props,
|
| 2182 |
-
/* .init_backend = */ ggml_backend_kompute_device_init,
|
| 2183 |
-
/* .get_buffer_type = */ ggml_backend_kompute_device_get_buffer_type,
|
| 2184 |
-
/* .get_host_buffer_type = */ NULL,
|
| 2185 |
-
/* .buffer_from_host_ptr = */ NULL,
|
| 2186 |
-
/* .supports_op = */ ggml_backend_kompute_device_supports_op,
|
| 2187 |
-
/* .supports_buft = */ ggml_backend_kompute_device_supports_buft,
|
| 2188 |
-
/* .offload_op = */ ggml_backend_kompute_device_offload_op,
|
| 2189 |
-
/* .event_new = */ NULL,
|
| 2190 |
-
/* .event_free = */ NULL,
|
| 2191 |
-
/* .event_synchronize = */ NULL,
|
| 2192 |
-
};
|
| 2193 |
-
|
| 2194 |
-
static const char * ggml_backend_kompute_reg_get_name(ggml_backend_reg_t reg) {
|
| 2195 |
-
GGML_UNUSED(reg);
|
| 2196 |
-
return "Kompute";
|
| 2197 |
-
}
|
| 2198 |
-
|
| 2199 |
-
static size_t ggml_backend_kompute_reg_get_device_count(ggml_backend_reg_t reg) {
|
| 2200 |
-
GGML_UNUSED(reg);
|
| 2201 |
-
return ggml_backend_kompute_get_device_count();
|
| 2202 |
-
}
|
| 2203 |
-
|
| 2204 |
-
static ggml_backend_dev_t ggml_backend_kompute_reg_get_device(ggml_backend_reg_t reg, size_t device) {
|
| 2205 |
-
static std::vector<ggml_backend_dev_t> devices;
|
| 2206 |
-
|
| 2207 |
-
static bool initialized = false;
|
| 2208 |
-
|
| 2209 |
-
{
|
| 2210 |
-
static std::mutex mutex;
|
| 2211 |
-
std::lock_guard<std::mutex> lock(mutex);
|
| 2212 |
-
if (!initialized) {
|
| 2213 |
-
for (size_t i = 0; i < ggml_backend_kompute_get_device_count(); i++) {
|
| 2214 |
-
ggml_backend_kompute_device_context * ctx = new ggml_backend_kompute_device_context;
|
| 2215 |
-
char desc[256];
|
| 2216 |
-
ggml_backend_kompute_get_device_description(i, desc, sizeof(desc));
|
| 2217 |
-
ctx->device = i;
|
| 2218 |
-
ctx->name = "Kompute" + std::to_string(i);
|
| 2219 |
-
ctx->description = desc;
|
| 2220 |
-
devices.push_back(new ggml_backend_device {
|
| 2221 |
-
/* .iface = */ ggml_backend_kompute_device_i,
|
| 2222 |
-
/* .reg = */ reg,
|
| 2223 |
-
/* .context = */ ctx,
|
| 2224 |
-
});
|
| 2225 |
-
}
|
| 2226 |
-
initialized = true;
|
| 2227 |
-
}
|
| 2228 |
-
}
|
| 2229 |
-
|
| 2230 |
-
GGML_ASSERT(device < devices.size());
|
| 2231 |
-
return devices[device];
|
| 2232 |
-
}
|
| 2233 |
-
|
| 2234 |
-
static const struct ggml_backend_reg_i ggml_backend_kompute_reg_i = {
|
| 2235 |
-
/* .get_name = */ ggml_backend_kompute_reg_get_name,
|
| 2236 |
-
/* .get_device_count = */ ggml_backend_kompute_reg_get_device_count,
|
| 2237 |
-
/* .get_device = */ ggml_backend_kompute_reg_get_device,
|
| 2238 |
-
/* .get_proc_address = */ NULL,
|
| 2239 |
-
};
|
| 2240 |
-
|
| 2241 |
-
ggml_backend_reg_t ggml_backend_kompute_reg() {
|
| 2242 |
-
static ggml_backend_reg reg = {
|
| 2243 |
-
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
| 2244 |
-
/* .iface = */ ggml_backend_kompute_reg_i,
|
| 2245 |
-
/* .context = */ nullptr,
|
| 2246 |
-
};
|
| 2247 |
-
|
| 2248 |
-
return ®
|
| 2249 |
-
}
|
| 2250 |
-
|
| 2251 |
-
GGML_BACKEND_DL_IMPL(ggml_backend_kompute_reg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/common.comp
DELETED
|
@@ -1,112 +0,0 @@
|
|
| 1 |
-
#extension GL_EXT_shader_16bit_storage: require
|
| 2 |
-
#extension GL_EXT_shader_8bit_storage: require
|
| 3 |
-
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
|
| 4 |
-
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
|
| 5 |
-
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
|
| 6 |
-
#extension GL_EXT_shader_explicit_arithmetic_types_int64: require
|
| 7 |
-
#extension GL_EXT_control_flow_attributes: enable
|
| 8 |
-
#extension GL_KHR_shader_subgroup_arithmetic : require
|
| 9 |
-
#extension GL_EXT_debug_printf : enable
|
| 10 |
-
|
| 11 |
-
#define QK4_0 32
|
| 12 |
-
#define QK4_1 32
|
| 13 |
-
|
| 14 |
-
#define GELU_COEF_A 0.044715
|
| 15 |
-
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
|
| 16 |
-
#define TWOPI_F 6.283185307179586f
|
| 17 |
-
|
| 18 |
-
#define QK_K 256
|
| 19 |
-
#define K_SCALE_SIZE 12
|
| 20 |
-
|
| 21 |
-
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
|
| 22 |
-
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
|
| 23 |
-
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
|
| 24 |
-
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
|
| 25 |
-
|
| 26 |
-
#define sizeof_block_q4_0 0x12
|
| 27 |
-
struct block_q4_0 {
|
| 28 |
-
float16_t d;
|
| 29 |
-
uint8_t qs[QK4_0 / 2];
|
| 30 |
-
};
|
| 31 |
-
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
|
| 32 |
-
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
| 33 |
-
const float d2 = d1 / 256.f;
|
| 34 |
-
const float md = -8.f * xb.d;
|
| 35 |
-
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
| 36 |
-
const uint16_t mask1 = mask0 << 8;
|
| 37 |
-
|
| 38 |
-
mat4 reg;
|
| 39 |
-
for (int i=0;i<8;i++) {
|
| 40 |
-
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
| 41 |
-
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
|
| 42 |
-
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
|
| 43 |
-
}
|
| 44 |
-
return reg;
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
#define sizeof_block_q4_1 0x14
|
| 48 |
-
struct block_q4_1 {
|
| 49 |
-
float16_t d;
|
| 50 |
-
float16_t m;
|
| 51 |
-
uint8_t qs[QK4_1 / 2];
|
| 52 |
-
};
|
| 53 |
-
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
|
| 54 |
-
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
| 55 |
-
const float d2 = d1 / 256.f;
|
| 56 |
-
const float m = xb.m;
|
| 57 |
-
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
| 58 |
-
const uint16_t mask1 = mask0 << 8;
|
| 59 |
-
|
| 60 |
-
mat4 reg;
|
| 61 |
-
for (int i=0;i<8;i++) {
|
| 62 |
-
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
| 63 |
-
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
|
| 64 |
-
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
|
| 65 |
-
}
|
| 66 |
-
return reg;
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
#define sizeof_block_q4_k 144
|
| 70 |
-
struct block_q4_k {
|
| 71 |
-
float16_t d;
|
| 72 |
-
float16_t dmin;
|
| 73 |
-
uint8_t scales[K_SCALE_SIZE];
|
| 74 |
-
uint8_t qs[QK_K/2];
|
| 75 |
-
};
|
| 76 |
-
|
| 77 |
-
#define sizeof_block_q6_k 210
|
| 78 |
-
struct block_q6_k {
|
| 79 |
-
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
| 80 |
-
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
| 81 |
-
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
| 82 |
-
float16_t d; // super-block scale
|
| 83 |
-
};
|
| 84 |
-
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
|
| 85 |
-
const float16_t d_all = xb.d;
|
| 86 |
-
|
| 87 |
-
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
| 88 |
-
const uint qhIndex = 32*(il/8) + 16*(il&1);
|
| 89 |
-
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
|
| 90 |
-
il = (il/2) & 3;
|
| 91 |
-
|
| 92 |
-
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
|
| 93 |
-
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
|
| 94 |
-
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
|
| 95 |
-
const float16_t ml = float16_t(d_all * sc * 32.f);
|
| 96 |
-
const float16_t dl = float16_t(d_all * sc * coef);
|
| 97 |
-
mat4 reg;
|
| 98 |
-
for (int i = 0; i < 16; ++i) {
|
| 99 |
-
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
|
| 100 |
-
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
|
| 101 |
-
reg[i/4][i%4] = dl * q - ml;
|
| 102 |
-
}
|
| 103 |
-
return reg;
|
| 104 |
-
}
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
#define QK8_0 32
|
| 108 |
-
// struct block_q8_0 {
|
| 109 |
-
// float16_t d; // delta
|
| 110 |
-
// int8_t qs[QK8_0]; // quants
|
| 111 |
-
// };
|
| 112 |
-
#define sizeof_block_q8_0 34
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_add.comp
DELETED
|
@@ -1,58 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1024) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
| 9 |
-
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
| 10 |
-
|
| 11 |
-
layout(push_constant) uniform PushConstants {
|
| 12 |
-
uint inAOff;
|
| 13 |
-
uint inBOff;
|
| 14 |
-
uint outOff;
|
| 15 |
-
int ne00;
|
| 16 |
-
int nb00;
|
| 17 |
-
int nb01;
|
| 18 |
-
int nb02;
|
| 19 |
-
int nb03;
|
| 20 |
-
int ne10;
|
| 21 |
-
int ne11;
|
| 22 |
-
int ne12;
|
| 23 |
-
int ne13;
|
| 24 |
-
int nb10;
|
| 25 |
-
int nb11;
|
| 26 |
-
int nb12;
|
| 27 |
-
int nb13;
|
| 28 |
-
int ne0;
|
| 29 |
-
int nb0;
|
| 30 |
-
int nb1;
|
| 31 |
-
int nb2;
|
| 32 |
-
int nb3;
|
| 33 |
-
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
|
| 34 |
-
} pcs;
|
| 35 |
-
|
| 36 |
-
// general-purpose kernel for addition of two tensors
|
| 37 |
-
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
|
| 38 |
-
// cons: not very efficient
|
| 39 |
-
void main() {
|
| 40 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 41 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 42 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 43 |
-
|
| 44 |
-
const uint i13 = i03 % pcs.ne13;
|
| 45 |
-
const uint i12 = i02 % pcs.ne12;
|
| 46 |
-
const uint i11 = i01 % pcs.ne11;
|
| 47 |
-
|
| 48 |
-
int offs = 0; // TMP (see above)
|
| 49 |
-
|
| 50 |
-
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
|
| 51 |
-
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
|
| 52 |
-
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
|
| 53 |
-
|
| 54 |
-
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
| 55 |
-
const uint i10 = i0 % pcs.ne10;
|
| 56 |
-
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
|
| 57 |
-
}
|
| 58 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
| 9 |
-
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
| 10 |
-
|
| 11 |
-
layout(push_constant) uniform PushConstants {
|
| 12 |
-
uint inAOff;
|
| 13 |
-
uint inBOff;
|
| 14 |
-
uint outOff;
|
| 15 |
-
uint row;
|
| 16 |
-
} pcs;
|
| 17 |
-
|
| 18 |
-
void main() {
|
| 19 |
-
const uint baseIndex = gl_WorkGroupID.x * 4;
|
| 20 |
-
|
| 21 |
-
for (uint x = 0; x < 4; x++) {
|
| 22 |
-
const uint i = baseIndex + x;
|
| 23 |
-
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
|
| 24 |
-
}
|
| 25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define IN_TYPE float16_t
|
| 6 |
-
#define IN_TYPE_SIZE 2
|
| 7 |
-
#define OUT_TYPE float16_t
|
| 8 |
-
#define OUT_TYPE_SIZE 2
|
| 9 |
-
|
| 10 |
-
layout(local_size_x = 1024) in;
|
| 11 |
-
|
| 12 |
-
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
| 13 |
-
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inOff;
|
| 17 |
-
uint outOff;
|
| 18 |
-
int ne00;
|
| 19 |
-
int ne01;
|
| 20 |
-
int ne02;
|
| 21 |
-
uint nb00;
|
| 22 |
-
uint nb01;
|
| 23 |
-
uint nb02;
|
| 24 |
-
uint nb03;
|
| 25 |
-
int ne0;
|
| 26 |
-
int ne1;
|
| 27 |
-
int ne2;
|
| 28 |
-
uint nb0;
|
| 29 |
-
uint nb1;
|
| 30 |
-
uint nb2;
|
| 31 |
-
uint nb3;
|
| 32 |
-
} pcs;
|
| 33 |
-
|
| 34 |
-
void main() {
|
| 35 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 36 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 37 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 38 |
-
|
| 39 |
-
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
| 40 |
-
|
| 41 |
-
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
| 42 |
-
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
| 43 |
-
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
| 44 |
-
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
| 45 |
-
|
| 46 |
-
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 49 |
-
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
| 50 |
-
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define IN_TYPE float16_t
|
| 6 |
-
#define IN_TYPE_SIZE 2
|
| 7 |
-
#define OUT_TYPE float
|
| 8 |
-
#define OUT_TYPE_SIZE 4
|
| 9 |
-
|
| 10 |
-
layout(local_size_x = 1024) in;
|
| 11 |
-
|
| 12 |
-
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
| 13 |
-
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inOff;
|
| 17 |
-
uint outOff;
|
| 18 |
-
int ne00;
|
| 19 |
-
int ne01;
|
| 20 |
-
int ne02;
|
| 21 |
-
uint nb00;
|
| 22 |
-
uint nb01;
|
| 23 |
-
uint nb02;
|
| 24 |
-
uint nb03;
|
| 25 |
-
int ne0;
|
| 26 |
-
int ne1;
|
| 27 |
-
int ne2;
|
| 28 |
-
uint nb0;
|
| 29 |
-
uint nb1;
|
| 30 |
-
uint nb2;
|
| 31 |
-
uint nb3;
|
| 32 |
-
} pcs;
|
| 33 |
-
|
| 34 |
-
void main() {
|
| 35 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 36 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 37 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 38 |
-
|
| 39 |
-
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
| 40 |
-
|
| 41 |
-
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
| 42 |
-
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
| 43 |
-
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
| 44 |
-
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
| 45 |
-
|
| 46 |
-
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 49 |
-
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
| 50 |
-
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define IN_TYPE float
|
| 6 |
-
#define IN_TYPE_SIZE 4
|
| 7 |
-
#define OUT_TYPE float16_t
|
| 8 |
-
#define OUT_TYPE_SIZE 2
|
| 9 |
-
|
| 10 |
-
layout(local_size_x = 1024) in;
|
| 11 |
-
|
| 12 |
-
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
| 13 |
-
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inOff;
|
| 17 |
-
uint outOff;
|
| 18 |
-
int ne00;
|
| 19 |
-
int ne01;
|
| 20 |
-
int ne02;
|
| 21 |
-
uint nb00;
|
| 22 |
-
uint nb01;
|
| 23 |
-
uint nb02;
|
| 24 |
-
uint nb03;
|
| 25 |
-
int ne0;
|
| 26 |
-
int ne1;
|
| 27 |
-
int ne2;
|
| 28 |
-
uint nb0;
|
| 29 |
-
uint nb1;
|
| 30 |
-
uint nb2;
|
| 31 |
-
uint nb3;
|
| 32 |
-
} pcs;
|
| 33 |
-
|
| 34 |
-
void main() {
|
| 35 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 36 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 37 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 38 |
-
|
| 39 |
-
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
| 40 |
-
|
| 41 |
-
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
| 42 |
-
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
| 43 |
-
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
| 44 |
-
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
| 45 |
-
|
| 46 |
-
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 49 |
-
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
| 50 |
-
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define IN_TYPE float
|
| 6 |
-
#define IN_TYPE_SIZE 4
|
| 7 |
-
#define OUT_TYPE float
|
| 8 |
-
#define OUT_TYPE_SIZE 4
|
| 9 |
-
|
| 10 |
-
layout(local_size_x = 1024) in;
|
| 11 |
-
|
| 12 |
-
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
| 13 |
-
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inOff;
|
| 17 |
-
uint outOff;
|
| 18 |
-
int ne00;
|
| 19 |
-
int ne01;
|
| 20 |
-
int ne02;
|
| 21 |
-
uint nb00;
|
| 22 |
-
uint nb01;
|
| 23 |
-
uint nb02;
|
| 24 |
-
uint nb03;
|
| 25 |
-
int ne0;
|
| 26 |
-
int ne1;
|
| 27 |
-
int ne2;
|
| 28 |
-
uint nb0;
|
| 29 |
-
uint nb1;
|
| 30 |
-
uint nb2;
|
| 31 |
-
uint nb3;
|
| 32 |
-
} pcs;
|
| 33 |
-
|
| 34 |
-
void main() {
|
| 35 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 36 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 37 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 38 |
-
|
| 39 |
-
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
| 40 |
-
|
| 41 |
-
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
| 42 |
-
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
| 43 |
-
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
| 44 |
-
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
| 45 |
-
|
| 46 |
-
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 49 |
-
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
| 50 |
-
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp
DELETED
|
@@ -1,30 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
layout(push_constant) uniform PushConstants {
|
| 11 |
-
uint inOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
uint n_past;
|
| 14 |
-
int ne00;
|
| 15 |
-
int ne01;
|
| 16 |
-
} pcs;
|
| 17 |
-
|
| 18 |
-
void main() {
|
| 19 |
-
const uint i02 = gl_WorkGroupID.z;
|
| 20 |
-
const uint i01 = gl_WorkGroupID.y;
|
| 21 |
-
const uint i00 = gl_WorkGroupID.x;
|
| 22 |
-
|
| 23 |
-
const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
|
| 24 |
-
|
| 25 |
-
if (i00 > pcs.n_past + i01) {
|
| 26 |
-
out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
|
| 27 |
-
} else {
|
| 28 |
-
out_[index + pcs.outOff] = in_[index + pcs.inOff];
|
| 29 |
-
}
|
| 30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp
DELETED
|
@@ -1,22 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
layout(push_constant) uniform PushConstants {
|
| 10 |
-
uint inOff;
|
| 11 |
-
uint outOff;
|
| 12 |
-
} pcs;
|
| 13 |
-
|
| 14 |
-
void main() {
|
| 15 |
-
const uint baseIndex = gl_WorkGroupID.x * 8;
|
| 16 |
-
|
| 17 |
-
for (uint x = 0; x < 8; x++) {
|
| 18 |
-
const uint i = baseIndex + x;
|
| 19 |
-
const float y = in_[i + pcs.inOff];
|
| 20 |
-
out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
|
| 21 |
-
}
|
| 22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
void main() {
|
| 2 |
-
const uint i = gl_WorkGroupID.x;
|
| 3 |
-
const int r = inB[i + pcs.inBOff];
|
| 4 |
-
|
| 5 |
-
int z = 0;
|
| 6 |
-
for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
|
| 7 |
-
const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
|
| 8 |
-
const mat4 result = dequantize_block(inIndex, ind%NL);
|
| 9 |
-
for (uint j = 0; j < 4; ++j) {
|
| 10 |
-
for (uint k = 0; k < 4; ++k) {
|
| 11 |
-
const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
|
| 12 |
-
out_[outIndex] = result[j][k];
|
| 13 |
-
++z;
|
| 14 |
-
}
|
| 15 |
-
}
|
| 16 |
-
}
|
| 17 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
| 8 |
-
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
| 9 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 10 |
-
|
| 11 |
-
layout (push_constant) uniform parameter {
|
| 12 |
-
uint inAOff;
|
| 13 |
-
uint inBOff;
|
| 14 |
-
uint outOff;
|
| 15 |
-
int ne00;
|
| 16 |
-
int nb01;
|
| 17 |
-
int nb1;
|
| 18 |
-
} pcs;
|
| 19 |
-
|
| 20 |
-
void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
| 21 |
-
for (int j = 0; j < k; j++) {
|
| 22 |
-
out_[y + j] = inA[x + j];
|
| 23 |
-
}
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
void main() {
|
| 27 |
-
const uint i = gl_WorkGroupID.x;
|
| 28 |
-
const int r = inB[i + pcs.inBOff];
|
| 29 |
-
|
| 30 |
-
dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
| 31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout (binding = 0) readonly buffer tensorInA { float inA[]; };
|
| 8 |
-
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
| 9 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 10 |
-
|
| 11 |
-
layout (push_constant) uniform parameter {
|
| 12 |
-
uint inAOff;
|
| 13 |
-
uint inBOff;
|
| 14 |
-
uint outOff;
|
| 15 |
-
int ne00;
|
| 16 |
-
int nb01;
|
| 17 |
-
int nb1;
|
| 18 |
-
} pcs;
|
| 19 |
-
|
| 20 |
-
void dequantize_row_f32(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
| 21 |
-
for (int j = 0; j < k; j++) {
|
| 22 |
-
out_[y + j] = inA[x + j];
|
| 23 |
-
}
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
void main() {
|
| 27 |
-
const uint i = gl_WorkGroupID.x;
|
| 28 |
-
const int r = inB[i + pcs.inBOff];
|
| 29 |
-
|
| 30 |
-
dequantize_row_f32(r*pcs.nb01/4 + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
| 31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define NL 2
|
| 6 |
-
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
| 7 |
-
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
| 8 |
-
|
| 9 |
-
layout(local_size_x = 1) in;
|
| 10 |
-
|
| 11 |
-
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
| 12 |
-
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
| 13 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inAOff;
|
| 17 |
-
uint inBOff;
|
| 18 |
-
uint outOff;
|
| 19 |
-
int ne00;
|
| 20 |
-
int nb01;
|
| 21 |
-
int nb1;
|
| 22 |
-
} pcs;
|
| 23 |
-
|
| 24 |
-
block_q4_0 get_unaligned_block_q4_0(uint index) {
|
| 25 |
-
block_q4_0 fres;
|
| 26 |
-
fres.d = u8BufToFloat16(inA, index);
|
| 27 |
-
[[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
|
| 28 |
-
fres.qs[it] = inA[index+2+it];
|
| 29 |
-
}
|
| 30 |
-
return fres;
|
| 31 |
-
}
|
| 32 |
-
|
| 33 |
-
mat4 dequantize_block(uint index, uint il) {
|
| 34 |
-
const block_q4_0 block = get_unaligned_block_q4_0(index);
|
| 35 |
-
return dequantize_q4_0(block, il);
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
#include "op_getrows.comp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp
DELETED
|
@@ -1,39 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define NL 2
|
| 6 |
-
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
| 7 |
-
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
| 8 |
-
|
| 9 |
-
layout(local_size_x = 1) in;
|
| 10 |
-
|
| 11 |
-
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
| 12 |
-
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
| 13 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inAOff;
|
| 17 |
-
uint inBOff;
|
| 18 |
-
uint outOff;
|
| 19 |
-
int ne00;
|
| 20 |
-
int nb01;
|
| 21 |
-
int nb1;
|
| 22 |
-
} pcs;
|
| 23 |
-
|
| 24 |
-
block_q4_1 get_unaligned_block_q4_1(uint index) {
|
| 25 |
-
block_q4_1 fres;
|
| 26 |
-
fres.d = u8BufToFloat16(inA, index);
|
| 27 |
-
fres.m = u8BufToFloat16(inA, index+2);
|
| 28 |
-
[[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
|
| 29 |
-
fres.qs[it] = inA[index+4+it];
|
| 30 |
-
}
|
| 31 |
-
return fres;
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
mat4 dequantize_block(uint index, uint il) {
|
| 35 |
-
const block_q4_1 block = get_unaligned_block_q4_1(index);
|
| 36 |
-
return dequantize_q4_1(block, il);
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
#include "op_getrows.comp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp
DELETED
|
@@ -1,44 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define NL 16
|
| 6 |
-
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
| 7 |
-
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
| 8 |
-
|
| 9 |
-
layout(local_size_x = 1) in;
|
| 10 |
-
|
| 11 |
-
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
| 12 |
-
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
| 13 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inAOff;
|
| 17 |
-
uint inBOff;
|
| 18 |
-
uint outOff;
|
| 19 |
-
int ne00;
|
| 20 |
-
int nb01;
|
| 21 |
-
int nb1;
|
| 22 |
-
} pcs;
|
| 23 |
-
|
| 24 |
-
block_q6_k get_unaligned_block_q6_k(uint index) {
|
| 25 |
-
block_q6_k fres;
|
| 26 |
-
[[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
|
| 27 |
-
fres.ql[it] = inA[index + it];
|
| 28 |
-
}
|
| 29 |
-
[[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
|
| 30 |
-
fres.qh[it] = inA[index + QK_K/2 + it];
|
| 31 |
-
}
|
| 32 |
-
[[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
|
| 33 |
-
fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
|
| 34 |
-
}
|
| 35 |
-
fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
|
| 36 |
-
return fres;
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
mat4 dequantize_block(uint index, uint il) {
|
| 40 |
-
const block_q6_k block = get_unaligned_block_q6_k(index);
|
| 41 |
-
return dequantize_q6_k(block, il);
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
#include "op_getrows.comp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1024) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
| 9 |
-
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
| 10 |
-
|
| 11 |
-
layout(push_constant) uniform PushConstants {
|
| 12 |
-
uint inAOff;
|
| 13 |
-
uint inBOff;
|
| 14 |
-
uint outOff;
|
| 15 |
-
int ne00;
|
| 16 |
-
int nb00;
|
| 17 |
-
int nb01;
|
| 18 |
-
int nb02;
|
| 19 |
-
int nb03;
|
| 20 |
-
int ne10;
|
| 21 |
-
int ne11;
|
| 22 |
-
int ne12;
|
| 23 |
-
int ne13;
|
| 24 |
-
int nb10;
|
| 25 |
-
int nb11;
|
| 26 |
-
int nb12;
|
| 27 |
-
int nb13;
|
| 28 |
-
int ne0;
|
| 29 |
-
int nb0;
|
| 30 |
-
int nb1;
|
| 31 |
-
int nb2;
|
| 32 |
-
int nb3;
|
| 33 |
-
} pcs;
|
| 34 |
-
|
| 35 |
-
void main() {
|
| 36 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 37 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 38 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 39 |
-
|
| 40 |
-
const uint i13 = i03 % pcs.ne13;
|
| 41 |
-
const uint i12 = i02 % pcs.ne12;
|
| 42 |
-
const uint i11 = i01 % pcs.ne11;
|
| 43 |
-
|
| 44 |
-
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
|
| 45 |
-
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
|
| 46 |
-
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
|
| 47 |
-
|
| 48 |
-
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
| 49 |
-
const uint i10 = i0 % pcs.ne10;
|
| 50 |
-
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#extension GL_KHR_shader_subgroup_arithmetic : require
|
| 6 |
-
|
| 7 |
-
layout(local_size_x_id = 0) in;
|
| 8 |
-
|
| 9 |
-
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
| 10 |
-
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
| 11 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 12 |
-
|
| 13 |
-
layout (push_constant) uniform parameter {
|
| 14 |
-
uint inAOff;
|
| 15 |
-
uint inBOff;
|
| 16 |
-
uint outOff;
|
| 17 |
-
int ne00;
|
| 18 |
-
int ne01;
|
| 19 |
-
int ne02;
|
| 20 |
-
uint nb00;
|
| 21 |
-
uint nb01;
|
| 22 |
-
uint nb02;
|
| 23 |
-
uint nb03;
|
| 24 |
-
int ne10;
|
| 25 |
-
int ne11;
|
| 26 |
-
int ne12;
|
| 27 |
-
uint nb10;
|
| 28 |
-
uint nb11;
|
| 29 |
-
uint nb12;
|
| 30 |
-
uint nb13;
|
| 31 |
-
int ne0;
|
| 32 |
-
int ne1;
|
| 33 |
-
uint r2;
|
| 34 |
-
uint r3;
|
| 35 |
-
} pcs;
|
| 36 |
-
|
| 37 |
-
#define N_F16_F32 4
|
| 38 |
-
|
| 39 |
-
void main() {
|
| 40 |
-
const uint r0 = gl_WorkGroupID.x;
|
| 41 |
-
const uint rb = gl_WorkGroupID.y*N_F16_F32;
|
| 42 |
-
const uint im = gl_WorkGroupID.z;
|
| 43 |
-
|
| 44 |
-
const uint i12 = im%pcs.ne12;
|
| 45 |
-
const uint i13 = im/pcs.ne12;
|
| 46 |
-
|
| 47 |
-
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb03;
|
| 48 |
-
|
| 49 |
-
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
|
| 50 |
-
|
| 51 |
-
for (uint row = 0; row < N_F16_F32; ++row) {
|
| 52 |
-
uint r1 = rb + row;
|
| 53 |
-
if (r1 >= pcs.ne11) {
|
| 54 |
-
break;
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
| 58 |
-
|
| 59 |
-
float sumf = 0;
|
| 60 |
-
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
| 61 |
-
sumf += float(inA[x+i]) * float(inB[y+i]);
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
const float all_sum = subgroupAdd(sumf);
|
| 65 |
-
if (subgroupElect()) {
|
| 66 |
-
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_mat_f32.comp
DELETED
|
@@ -1,51 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#extension GL_KHR_shader_subgroup_arithmetic : require
|
| 6 |
-
#extension GL_EXT_debug_printf : enable
|
| 7 |
-
|
| 8 |
-
// device subgroup size
|
| 9 |
-
layout (local_size_x_id = 0) in;
|
| 10 |
-
|
| 11 |
-
layout(binding = 0) readonly buffer tensorInA { float inA[]; };
|
| 12 |
-
layout(binding = 1) readonly buffer tensorInB { float inB[]; };
|
| 13 |
-
layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 14 |
-
|
| 15 |
-
layout(push_constant) uniform parameter {
|
| 16 |
-
uint inAOff;
|
| 17 |
-
uint inBOff;
|
| 18 |
-
uint outOff;
|
| 19 |
-
int ne00;
|
| 20 |
-
int ne01;
|
| 21 |
-
int ne02;
|
| 22 |
-
int ne11;
|
| 23 |
-
int ne12;
|
| 24 |
-
uint nb01;
|
| 25 |
-
uint nb02;
|
| 26 |
-
uint nb11;
|
| 27 |
-
uint nb12;
|
| 28 |
-
uint nb1;
|
| 29 |
-
uint nb2;
|
| 30 |
-
}
|
| 31 |
-
pcs;
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
void main() {
|
| 35 |
-
uvec3 gid = gl_WorkGroupID;
|
| 36 |
-
|
| 37 |
-
uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
|
| 38 |
-
uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
|
| 39 |
-
|
| 40 |
-
const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
|
| 41 |
-
const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
|
| 42 |
-
float sum = 0.0f;
|
| 43 |
-
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
| 44 |
-
sum += float(inA[x+i]) * float(inB[y+i]);
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
const float all_sum = subgroupAdd(sum);
|
| 48 |
-
if (subgroupElect()) {
|
| 49 |
-
out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
|
| 50 |
-
}
|
| 51 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp
DELETED
|
@@ -1,33 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define BLOCKS_IN_QUANT QK4_0
|
| 6 |
-
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
| 7 |
-
#define N_ROWS 4
|
| 8 |
-
|
| 9 |
-
#include "op_mul_mv_q_n_pre.comp"
|
| 10 |
-
|
| 11 |
-
// The q4_0 version of this function
|
| 12 |
-
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
| 13 |
-
vec2 acc = vec2(0.0, 0.0);
|
| 14 |
-
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
| 15 |
-
float d = float(u8BufToFloat16(inA, index));
|
| 16 |
-
float sumy = 0.0f;
|
| 17 |
-
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
| 18 |
-
const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
|
| 19 |
-
|
| 20 |
-
const float yl0 = inB[yb + i];
|
| 21 |
-
const float yl1 = inB[yb + i + 1];
|
| 22 |
-
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
| 23 |
-
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
| 24 |
-
|
| 25 |
-
sumy += yl0 + yl1 + yl8 + yl9;
|
| 26 |
-
|
| 27 |
-
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
| 28 |
-
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
| 29 |
-
}
|
| 30 |
-
return d * (sumy * -8.f + acc[0] + acc[1]);
|
| 31 |
-
}
|
| 32 |
-
|
| 33 |
-
#include "op_mul_mv_q_n.comp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define BLOCKS_IN_QUANT QK4_1
|
| 6 |
-
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
| 7 |
-
#define N_ROWS 4
|
| 8 |
-
|
| 9 |
-
#include "op_mul_mv_q_n_pre.comp"
|
| 10 |
-
|
| 11 |
-
// The q4_1 version of this function
|
| 12 |
-
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
| 13 |
-
vec2 acc = vec2(0.0, 0.0);
|
| 14 |
-
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
| 15 |
-
float d = float(u8BufToFloat16(inA, index));
|
| 16 |
-
float m = float(u8BufToFloat16(inA, index+2));
|
| 17 |
-
|
| 18 |
-
float sumy = 0.0f;
|
| 19 |
-
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
| 20 |
-
const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
|
| 21 |
-
|
| 22 |
-
const float yl0 = inB[yb + i];
|
| 23 |
-
const float yl1 = inB[yb + i + 1];
|
| 24 |
-
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
| 25 |
-
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
| 26 |
-
|
| 27 |
-
sumy += yl0 + yl1 + yl8 + yl9;
|
| 28 |
-
|
| 29 |
-
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
| 30 |
-
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
| 31 |
-
}
|
| 32 |
-
return d * (acc[0] + acc[1]) + sumy * m;
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
#include "op_mul_mv_q_n.comp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp
DELETED
|
@@ -1,140 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define N_DST 4
|
| 6 |
-
#define SIZE_OF_BLOCK sizeof_block_q4_k
|
| 7 |
-
|
| 8 |
-
layout(local_size_x = 4) in;
|
| 9 |
-
layout(local_size_y = 8) in;
|
| 10 |
-
layout(local_size_z = 1) in;
|
| 11 |
-
|
| 12 |
-
layout (binding = 0) readonly buffer tensorInA { block_q4_k inA[]; };
|
| 13 |
-
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
| 14 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 15 |
-
|
| 16 |
-
layout (push_constant) uniform parameter {
|
| 17 |
-
uint inAOff;
|
| 18 |
-
uint inBOff;
|
| 19 |
-
uint outOff;
|
| 20 |
-
int ne00;
|
| 21 |
-
int ne10;
|
| 22 |
-
int ne0;
|
| 23 |
-
int ne1;
|
| 24 |
-
int ne01;
|
| 25 |
-
int ne02;
|
| 26 |
-
int ne12;
|
| 27 |
-
uint nb01;
|
| 28 |
-
uint nb02;
|
| 29 |
-
uint nb03;
|
| 30 |
-
uint nb11;
|
| 31 |
-
uint nb12;
|
| 32 |
-
uint nb13;
|
| 33 |
-
uint r2;
|
| 34 |
-
uint r3;
|
| 35 |
-
} pcs;
|
| 36 |
-
|
| 37 |
-
void main() {
|
| 38 |
-
const uint16_t kmask1 = uint16_t(0x3f3f);
|
| 39 |
-
const uint16_t kmask2 = uint16_t(0x0f0f);
|
| 40 |
-
const uint16_t kmask3 = uint16_t(0xc0c0);
|
| 41 |
-
|
| 42 |
-
const uint ix = gl_SubgroupInvocationID/8; // 0...3
|
| 43 |
-
const uint it = gl_SubgroupInvocationID%8; // 0...7
|
| 44 |
-
const uint iq = it/4; // 0 or 1
|
| 45 |
-
const uint ir = it%4; // 0...3
|
| 46 |
-
|
| 47 |
-
const uint nb = pcs.ne00/QK_K;
|
| 48 |
-
|
| 49 |
-
const uint r0 = gl_WorkGroupID.x;
|
| 50 |
-
const uint r1 = gl_WorkGroupID.y;
|
| 51 |
-
const uint im = gl_WorkGroupID.z;
|
| 52 |
-
|
| 53 |
-
const uint first_row = r0 * N_DST;
|
| 54 |
-
const uint ib_row = first_row * nb;
|
| 55 |
-
|
| 56 |
-
const uint i12 = im%pcs.ne12;
|
| 57 |
-
const uint i13 = im/pcs.ne12;
|
| 58 |
-
|
| 59 |
-
const uint offset0 = first_row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
| 60 |
-
const uint offset1 = r1*pcs.nb11 + (i12 )*pcs.nb12 + (i13 )*pcs.nb13;
|
| 61 |
-
|
| 62 |
-
const uint xblk = offset0 + pcs.inAOff;
|
| 63 |
-
const uint y = (offset1 / 4) + pcs.inBOff;
|
| 64 |
-
|
| 65 |
-
float yl[16];
|
| 66 |
-
float yh[16];
|
| 67 |
-
float sumf[N_DST] = {0.f, 0.f, 0.f, 0.f};
|
| 68 |
-
float all_sum = 0.f;
|
| 69 |
-
|
| 70 |
-
uint y4 = y + ix * QK_K + 64 * iq + 8 * ir;
|
| 71 |
-
|
| 72 |
-
for (uint ib = ix; ib < nb; ib += 4) {
|
| 73 |
-
const uint blk_idx = ib + xblk;
|
| 74 |
-
|
| 75 |
-
float sumy[4] = {0.f, 0.f, 0.f, 0.f};
|
| 76 |
-
for (int i = 0; i < 8; ++i) {
|
| 77 |
-
yl[i+0] = inB[y4+i+ 0]; sumy[0] += yl[i+0];
|
| 78 |
-
yl[i+8] = inB[y4+i+ 32]; sumy[1] += yl[i+8];
|
| 79 |
-
yh[i+0] = inB[y4+i+128]; sumy[2] += yh[i+0];
|
| 80 |
-
yh[i+8] = inB[y4+i+160]; sumy[3] += yh[i+8];
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
for (int row = 0; row < N_DST; row++) {
|
| 84 |
-
uint row_idx = row * (pcs.nb01 / SIZE_OF_BLOCK);
|
| 85 |
-
|
| 86 |
-
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
|
| 87 |
-
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
|
| 88 |
-
uint16_t sc_2 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 4);
|
| 89 |
-
uint16_t sc_3 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 6);
|
| 90 |
-
uint16_t sc_4 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 8);
|
| 91 |
-
|
| 92 |
-
uint16_t sc16[4];
|
| 93 |
-
sc16[0] = sc_0 & kmask1;
|
| 94 |
-
sc16[1] = sc_2 & kmask1;
|
| 95 |
-
sc16[2] = ((sc_4 >> 0) & kmask2) | ((sc_0 & kmask3) >> 2);
|
| 96 |
-
sc16[3] = ((sc_4 >> 4) & kmask2) | ((sc_2 & kmask3) >> 2);
|
| 97 |
-
|
| 98 |
-
float acc1[4] = {0.f, 0.f, 0.f, 0.f};
|
| 99 |
-
float acc2[4] = {0.f, 0.f, 0.f, 0.f};
|
| 100 |
-
for (int i = 0; i < 8; i += 2) {
|
| 101 |
-
uint16_t q1 = u8BufToU16(inA[blk_idx + row_idx].qs, 32 * iq + 8 * ir + i);
|
| 102 |
-
uint16_t q2 = u8BufToU16(inA[blk_idx + row_idx].qs, 64 + 32 * iq + 8 * ir + i);
|
| 103 |
-
acc1[0] += yl[i+0] * (q1 & 0x000F);
|
| 104 |
-
acc1[1] += yl[i+1] * (q1 & 0x0F00);
|
| 105 |
-
acc1[2] += yl[i+8] * (q1 & 0x00F0);
|
| 106 |
-
acc1[3] += yl[i+9] * (q1 & 0xF000);
|
| 107 |
-
acc2[0] += yh[i+0] * (q2 & 0x000F);
|
| 108 |
-
acc2[1] += yh[i+1] * (q2 & 0x0F00);
|
| 109 |
-
acc2[2] += yh[i+8] * (q2 & 0x00F0);
|
| 110 |
-
acc2[3] += yh[i+9] * (q2 & 0xF000);
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
uint8_t sc8_0 = uint8_t(sc16[0] & 0xFF);
|
| 114 |
-
uint8_t sc8_1 = uint8_t(sc16[0] >> 8 );
|
| 115 |
-
uint8_t sc8_2 = uint8_t(sc16[1] & 0xFF);
|
| 116 |
-
uint8_t sc8_3 = uint8_t(sc16[1] >> 8 );
|
| 117 |
-
uint8_t sc8_4 = uint8_t(sc16[2] & 0xFF);
|
| 118 |
-
uint8_t sc8_5 = uint8_t(sc16[2] >> 8 );
|
| 119 |
-
uint8_t sc8_6 = uint8_t(sc16[3] & 0xFF);
|
| 120 |
-
uint8_t sc8_7 = uint8_t(sc16[3] >> 8 );
|
| 121 |
-
|
| 122 |
-
float dall = float(inA[blk_idx + row_idx].d);
|
| 123 |
-
float dmin = float(inA[blk_idx + row_idx].dmin);
|
| 124 |
-
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8_0 +
|
| 125 |
-
(acc1[2] + 1.f/256.f * acc1[3]) * sc8_1 * 1.f/16.f +
|
| 126 |
-
(acc2[0] + 1.f/256.f * acc2[1]) * sc8_4 +
|
| 127 |
-
(acc2[2] + 1.f/256.f * acc2[3]) * sc8_5 * 1.f/16.f) -
|
| 128 |
-
dmin * (sumy[0] * sc8_2 + sumy[1] * sc8_3 + sumy[2] * sc8_6 + sumy[3] * sc8_7);
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
y4 += 4 * QK_K;
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
for (int row = 0; row < N_DST; ++row) {
|
| 135 |
-
all_sum = subgroupAdd(sumf[row]);
|
| 136 |
-
if (subgroupElect()) {
|
| 137 |
-
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = all_sum;
|
| 138 |
-
}
|
| 139 |
-
}
|
| 140 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp
DELETED
|
@@ -1,106 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
| 6 |
-
|
| 7 |
-
layout(local_size_x_id = 0) in;
|
| 8 |
-
layout(local_size_y_id = 1) in;
|
| 9 |
-
layout(local_size_z = 1) in;
|
| 10 |
-
|
| 11 |
-
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
| 12 |
-
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
| 13 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 14 |
-
|
| 15 |
-
layout (push_constant) uniform parameter {
|
| 16 |
-
uint inAOff;
|
| 17 |
-
uint inBOff;
|
| 18 |
-
uint outOff;
|
| 19 |
-
int ne00;
|
| 20 |
-
int ne10;
|
| 21 |
-
int ne0;
|
| 22 |
-
int ne1;
|
| 23 |
-
int ne01;
|
| 24 |
-
int ne02;
|
| 25 |
-
int ne12;
|
| 26 |
-
uint nb01;
|
| 27 |
-
uint nb02;
|
| 28 |
-
uint nb03;
|
| 29 |
-
uint nb11;
|
| 30 |
-
uint nb12;
|
| 31 |
-
uint nb13;
|
| 32 |
-
uint r2;
|
| 33 |
-
uint r3;
|
| 34 |
-
} pcs;
|
| 35 |
-
|
| 36 |
-
void main() {
|
| 37 |
-
const uint8_t kmask1 = uint8_t(0x03);
|
| 38 |
-
const uint8_t kmask2 = uint8_t(0x0C);
|
| 39 |
-
const uint8_t kmask3 = uint8_t(0x30);
|
| 40 |
-
const uint8_t kmask4 = uint8_t(0xC0);
|
| 41 |
-
|
| 42 |
-
const uint nb = pcs.ne00/QK_K;
|
| 43 |
-
|
| 44 |
-
const uint r0 = gl_WorkGroupID.x;
|
| 45 |
-
const uint r1 = gl_WorkGroupID.y;
|
| 46 |
-
const uint im = gl_WorkGroupID.z;
|
| 47 |
-
|
| 48 |
-
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
|
| 49 |
-
|
| 50 |
-
const uint i12 = im%pcs.ne12;
|
| 51 |
-
const uint i13 = im/pcs.ne12;
|
| 52 |
-
|
| 53 |
-
const uint x = row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
| 54 |
-
const uint yy = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
| 55 |
-
|
| 56 |
-
float sumf = 0;
|
| 57 |
-
|
| 58 |
-
// bits of invocation ID for gl_SubgroupSize=32:
|
| 59 |
-
// x x x x x
|
| 60 |
-
// 4 3 2 1 0
|
| 61 |
-
// ( tid ) ix
|
| 62 |
-
// ip ( il )
|
| 63 |
-
|
| 64 |
-
const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
|
| 65 |
-
const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
|
| 66 |
-
const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
|
| 67 |
-
const uint ip = tid/8; // first or second half of block (0 or 1)
|
| 68 |
-
const uint il = tid%8; // each half has 8 parts, one per scale
|
| 69 |
-
const uint n = 4; // 4 scales at a time (and 4 sums)
|
| 70 |
-
const uint l0 = n*il; // offset into half-block, 0..28
|
| 71 |
-
const uint is = 8*ip + l0/16; // 0, 1, 8, 9
|
| 72 |
-
|
| 73 |
-
const uint y_offset = 128*ip + l0;
|
| 74 |
-
const uint q_offset_l = 64*ip + l0;
|
| 75 |
-
const uint q_offset_h = 32*ip + l0;
|
| 76 |
-
|
| 77 |
-
for (uint i = ix; i < nb; i += block_stride) {
|
| 78 |
-
|
| 79 |
-
const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
|
| 80 |
-
|
| 81 |
-
const uint qlIndex = q_offset_l;
|
| 82 |
-
const uint q2Index = qlIndex + QK_K/8;
|
| 83 |
-
const uint qhIndex = q_offset_h;
|
| 84 |
-
const uint y = yy + i * QK_K + y_offset;
|
| 85 |
-
|
| 86 |
-
float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
| 87 |
-
for (uint l = 0; l < n; ++l) {
|
| 88 |
-
const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
|
| 89 |
-
const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
|
| 90 |
-
const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
|
| 91 |
-
|
| 92 |
-
sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
|
| 93 |
-
sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
|
| 94 |
-
sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
|
| 95 |
-
sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
|
| 99 |
-
sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
const float tot = subgroupAdd(sumf);
|
| 103 |
-
if (subgroupElect()) {
|
| 104 |
-
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
| 105 |
-
}
|
| 106 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp
DELETED
|
@@ -1,73 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
#include "op_mul_mv_q_n_pre.comp"
|
| 6 |
-
|
| 7 |
-
#define SIZE_OF_D 2
|
| 8 |
-
|
| 9 |
-
#define N_DST 4 // each SIMD group works on 4 rows
|
| 10 |
-
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
| 11 |
-
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
| 12 |
-
|
| 13 |
-
#define NB_Q8_0 8
|
| 14 |
-
|
| 15 |
-
void main() {
|
| 16 |
-
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
| 17 |
-
if (gl_SubgroupInvocationID > 31)
|
| 18 |
-
return;
|
| 19 |
-
|
| 20 |
-
const int nr = N_DST;
|
| 21 |
-
const int nsg = N_SIMDGROUP;
|
| 22 |
-
const int nw = N_SIMDWIDTH;
|
| 23 |
-
|
| 24 |
-
const int nb = pcs.ne00/QK8_0;
|
| 25 |
-
const uint r0 = gl_WorkGroupID.x;
|
| 26 |
-
const uint r1 = gl_WorkGroupID.y;
|
| 27 |
-
const uint im = gl_WorkGroupID.z;
|
| 28 |
-
|
| 29 |
-
const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
|
| 30 |
-
|
| 31 |
-
const uint i12 = im%pcs.ne12;
|
| 32 |
-
const uint i13 = im/pcs.ne12;
|
| 33 |
-
|
| 34 |
-
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
| 35 |
-
|
| 36 |
-
const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
|
| 37 |
-
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
|
| 38 |
-
|
| 39 |
-
float yl[NB_Q8_0];
|
| 40 |
-
float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
|
| 41 |
-
|
| 42 |
-
const uint ix = gl_SubgroupInvocationID.x/4;
|
| 43 |
-
const uint il = gl_SubgroupInvocationID.x%4;
|
| 44 |
-
|
| 45 |
-
uint yb = y + ix * QK8_0 + NB_Q8_0*il;
|
| 46 |
-
|
| 47 |
-
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
| 48 |
-
for (uint ib = ix; ib < nb; ib += nw/4) {
|
| 49 |
-
for (int i = 0; i < NB_Q8_0; ++i) {
|
| 50 |
-
yl[i] = inB[yb + i];
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
for (int row = 0; row < nr; row++) {
|
| 54 |
-
const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
|
| 55 |
-
float sumq = 0.f;
|
| 56 |
-
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
| 57 |
-
const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
|
| 58 |
-
sumq += qs_iq * yl[iq];
|
| 59 |
-
}
|
| 60 |
-
const float16_t d = u8BufToFloat16(inA, x + block_offset);
|
| 61 |
-
sumf[row] += sumq*d;
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
yb += NB_Q8_0 * nw;
|
| 65 |
-
}
|
| 66 |
-
|
| 67 |
-
for (int row = 0; row < nr; ++row) {
|
| 68 |
-
const float tot = subgroupAdd(sumf[row]);
|
| 69 |
-
if (subgroupElect() && first_row + row < pcs.ne01) {
|
| 70 |
-
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
|
| 71 |
-
}
|
| 72 |
-
}
|
| 73 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
void main() {
|
| 2 |
-
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
| 3 |
-
if (gl_SubgroupInvocationID > 31)
|
| 4 |
-
return;
|
| 5 |
-
|
| 6 |
-
const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
|
| 7 |
-
|
| 8 |
-
const uint r0 = gl_WorkGroupID.x;
|
| 9 |
-
const uint r1 = gl_WorkGroupID.y;
|
| 10 |
-
const uint im = gl_WorkGroupID.z;
|
| 11 |
-
|
| 12 |
-
const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
|
| 13 |
-
|
| 14 |
-
const uint i12 = im%pcs.ne12;
|
| 15 |
-
const uint i13 = im/pcs.ne12;
|
| 16 |
-
|
| 17 |
-
// pointers to src0 rows
|
| 18 |
-
uint ax[N_ROWS];
|
| 19 |
-
for (int row = 0; row < N_ROWS; ++row) {
|
| 20 |
-
const uint offset0 = (first_row + row)*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
| 21 |
-
|
| 22 |
-
ax[row] = offset0 + pcs.inAOff;
|
| 23 |
-
}
|
| 24 |
-
|
| 25 |
-
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
| 26 |
-
|
| 27 |
-
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
|
| 28 |
-
|
| 29 |
-
const uint ix = gl_SubgroupInvocationID/2;
|
| 30 |
-
const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
|
| 31 |
-
|
| 32 |
-
uint yb = y + ix * BLOCKS_IN_QUANT + il;
|
| 33 |
-
|
| 34 |
-
//debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
|
| 35 |
-
// gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
|
| 36 |
-
// gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
|
| 37 |
-
|
| 38 |
-
for (uint ib = ix; ib < nb; ib += 16) {
|
| 39 |
-
for (int row = 0; row < N_ROWS; row++) {
|
| 40 |
-
sumf[row] += block_q_n_dot_y(ax[row] + ib, yb, il);
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
yb += BLOCKS_IN_QUANT * 16;
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
for (int row = 0; row < N_ROWS; ++row) {
|
| 47 |
-
const float tot = subgroupAdd(sumf[row]);
|
| 48 |
-
if (first_row + row < pcs.ne01 && subgroupElect()) {
|
| 49 |
-
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp
DELETED
|
@@ -1,28 +0,0 @@
|
|
| 1 |
-
layout(local_size_x_id = 0) in;
|
| 2 |
-
layout(local_size_y = 8) in;
|
| 3 |
-
layout(local_size_z = 1) in;
|
| 4 |
-
|
| 5 |
-
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
| 6 |
-
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
| 7 |
-
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
| 8 |
-
|
| 9 |
-
layout (push_constant) uniform parameter {
|
| 10 |
-
uint inAOff;
|
| 11 |
-
uint inBOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
int ne00;
|
| 14 |
-
int ne01;
|
| 15 |
-
int ne02;
|
| 16 |
-
int ne10;
|
| 17 |
-
int ne12;
|
| 18 |
-
int ne0;
|
| 19 |
-
int ne1;
|
| 20 |
-
uint nb01;
|
| 21 |
-
uint nb02;
|
| 22 |
-
uint nb03;
|
| 23 |
-
uint nb11;
|
| 24 |
-
uint nb12;
|
| 25 |
-
uint nb13;
|
| 26 |
-
uint r2;
|
| 27 |
-
uint r3;
|
| 28 |
-
} pcs;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_norm.comp
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 256) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
layout(push_constant) uniform PushConstants {
|
| 11 |
-
uint inOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
uint ne00;
|
| 14 |
-
uint nb01;
|
| 15 |
-
float eps;
|
| 16 |
-
} pcs;
|
| 17 |
-
|
| 18 |
-
shared float sum[gl_WorkGroupSize.x];
|
| 19 |
-
|
| 20 |
-
void main() {
|
| 21 |
-
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
| 22 |
-
// MEAN
|
| 23 |
-
// parallel sum
|
| 24 |
-
sum[gl_LocalInvocationID.x] = 0.0;
|
| 25 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 26 |
-
sum[gl_LocalInvocationID.x] += in_[x+i00];
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
// reduce
|
| 30 |
-
barrier();
|
| 31 |
-
memoryBarrierShared();
|
| 32 |
-
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
| 33 |
-
if (gl_LocalInvocationID.x < i) {
|
| 34 |
-
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
| 35 |
-
}
|
| 36 |
-
barrier();
|
| 37 |
-
memoryBarrierShared();
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
// broadcast
|
| 41 |
-
if (gl_LocalInvocationID.x == 0) {
|
| 42 |
-
sum[0] /= float(pcs.ne00);
|
| 43 |
-
}
|
| 44 |
-
barrier();
|
| 45 |
-
memoryBarrierShared();
|
| 46 |
-
const float mean = sum[0];
|
| 47 |
-
|
| 48 |
-
// recenter
|
| 49 |
-
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
| 50 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 51 |
-
out_[y+i00] = in_[x+i00] - mean;
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
// VARIANCE
|
| 55 |
-
// parallel sum
|
| 56 |
-
sum[gl_LocalInvocationID.x] = 0.0;
|
| 57 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 58 |
-
sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00];
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
// reduce
|
| 62 |
-
barrier();
|
| 63 |
-
memoryBarrierShared();
|
| 64 |
-
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
| 65 |
-
if (gl_LocalInvocationID.x < i) {
|
| 66 |
-
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
| 67 |
-
}
|
| 68 |
-
barrier();
|
| 69 |
-
memoryBarrierShared();
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
// broadcast
|
| 73 |
-
if (gl_LocalInvocationID.x == 0) {
|
| 74 |
-
sum[0] /= float(pcs.ne00);
|
| 75 |
-
}
|
| 76 |
-
barrier();
|
| 77 |
-
memoryBarrierShared();
|
| 78 |
-
const float variance = sum[0];
|
| 79 |
-
|
| 80 |
-
const float scale = 1.0f/sqrt(variance + pcs.eps);
|
| 81 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 82 |
-
out_[y+i00] *= scale;
|
| 83 |
-
}
|
| 84 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_relu.comp
DELETED
|
@@ -1,21 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
layout(push_constant) uniform PushConstants {
|
| 10 |
-
uint inOff;
|
| 11 |
-
uint outOff;
|
| 12 |
-
} pcs;
|
| 13 |
-
|
| 14 |
-
void main() {
|
| 15 |
-
const uint baseIndex = gl_WorkGroupID.x * 4;
|
| 16 |
-
|
| 17 |
-
for (uint x = 0; x < 4; x++) {
|
| 18 |
-
const uint i = baseIndex + x;
|
| 19 |
-
out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]);
|
| 20 |
-
}
|
| 21 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 512) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
layout(push_constant) uniform PushConstants {
|
| 11 |
-
uint inOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
uint ne00;
|
| 14 |
-
uint nb01;
|
| 15 |
-
float eps;
|
| 16 |
-
} pcs;
|
| 17 |
-
|
| 18 |
-
shared float sum[gl_WorkGroupSize.x];
|
| 19 |
-
|
| 20 |
-
void main() {
|
| 21 |
-
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
| 22 |
-
|
| 23 |
-
// parallel sum
|
| 24 |
-
sum[gl_LocalInvocationID.x] = 0.0;
|
| 25 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 26 |
-
sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00];
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
// reduce
|
| 30 |
-
barrier();
|
| 31 |
-
memoryBarrierShared();
|
| 32 |
-
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
| 33 |
-
if (gl_LocalInvocationID.x < i) {
|
| 34 |
-
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
| 35 |
-
}
|
| 36 |
-
barrier();
|
| 37 |
-
memoryBarrierShared();
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
// broadcast
|
| 41 |
-
if (gl_LocalInvocationID.x == 0) {
|
| 42 |
-
sum[0] /= float(pcs.ne00);
|
| 43 |
-
}
|
| 44 |
-
barrier();
|
| 45 |
-
memoryBarrierShared();
|
| 46 |
-
|
| 47 |
-
const float scale = 1.0f/sqrt(sum[0] + pcs.eps);
|
| 48 |
-
|
| 49 |
-
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
| 50 |
-
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
| 51 |
-
out_[y+i00] = in_[x+i00] * scale;
|
| 52 |
-
}
|
| 53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "rope_common.comp"
|
| 4 |
-
|
| 5 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
| 6 |
-
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
| 7 |
-
layout(binding = 2) buffer restrict readonly tensorInC { float inC[]; };
|
| 8 |
-
layout(binding = 3) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
| 9 |
-
|
| 10 |
-
void main() {
|
| 11 |
-
const uint i3 = gl_WorkGroupID.z;
|
| 12 |
-
const uint i2 = gl_WorkGroupID.y;
|
| 13 |
-
const uint i1 = gl_WorkGroupID.x;
|
| 14 |
-
|
| 15 |
-
float corr_dims[2];
|
| 16 |
-
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
| 17 |
-
|
| 18 |
-
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
| 19 |
-
|
| 20 |
-
float theta_base = float(inB[pcs.inBOff + i2]);
|
| 21 |
-
float inv_ndims = -1.f/pcs.n_dims;
|
| 22 |
-
|
| 23 |
-
float cos_theta;
|
| 24 |
-
float sin_theta;
|
| 25 |
-
|
| 26 |
-
for (uint i0 = 2*gl_LocalInvocationIndex; i0 < pcs.ne0; i0 += 2*gl_WorkGroupSize.x) {
|
| 27 |
-
if (i0 < pcs.n_dims) {
|
| 28 |
-
uint ic = i0/2;
|
| 29 |
-
|
| 30 |
-
float theta = theta_base * pow(pcs.freq_base, inv_ndims*i0);
|
| 31 |
-
|
| 32 |
-
const float freq_factor = pcs.has_freq_factors ? inC[pcs.inCOff + ic] : 1.0f;
|
| 33 |
-
|
| 34 |
-
rope_yarn(theta/freq_factor, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
| 35 |
-
|
| 36 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + ic*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
| 37 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + ic*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
| 38 |
-
|
| 39 |
-
const float x0 = float(inA[src]);
|
| 40 |
-
const float x1 = float(inA[src+pcs.n_dims/2]);
|
| 41 |
-
|
| 42 |
-
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
| 43 |
-
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
| 44 |
-
} else {
|
| 45 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
| 46 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
out_[dst_data] = inA[src];
|
| 49 |
-
out_[dst_data+1] = inA[src+1];
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f32.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "rope_common.comp"
|
| 4 |
-
|
| 5 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 6 |
-
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
| 7 |
-
layout(binding = 2) buffer restrict readonly tensorInC { float inC[]; };
|
| 8 |
-
layout(binding = 3) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
void main() {
|
| 11 |
-
const uint i3 = gl_WorkGroupID.z;
|
| 12 |
-
const uint i2 = gl_WorkGroupID.y;
|
| 13 |
-
const uint i1 = gl_WorkGroupID.x;
|
| 14 |
-
|
| 15 |
-
float corr_dims[2];
|
| 16 |
-
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
| 17 |
-
|
| 18 |
-
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
| 19 |
-
|
| 20 |
-
float theta_base = float(inB[pcs.inBOff + i2]);
|
| 21 |
-
float inv_ndims = -1.f/pcs.n_dims;
|
| 22 |
-
|
| 23 |
-
float cos_theta;
|
| 24 |
-
float sin_theta;
|
| 25 |
-
|
| 26 |
-
for (uint i0 = 2*gl_LocalInvocationIndex; i0 < pcs.ne0; i0 += 2*gl_WorkGroupSize.x) {
|
| 27 |
-
if (i0 < pcs.n_dims) {
|
| 28 |
-
uint ic = i0/2;
|
| 29 |
-
|
| 30 |
-
float theta = theta_base * pow(pcs.freq_base, inv_ndims*i0);
|
| 31 |
-
|
| 32 |
-
const float freq_factor = pcs.has_freq_factors ? inC[pcs.inCOff + ic] : 1.0f;
|
| 33 |
-
|
| 34 |
-
rope_yarn(theta/freq_factor, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
| 35 |
-
|
| 36 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + ic*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
| 37 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + ic*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
| 38 |
-
|
| 39 |
-
const float x0 = inA[src];
|
| 40 |
-
const float x1 = inA[src+pcs.n_dims/2];
|
| 41 |
-
|
| 42 |
-
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
| 43 |
-
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
| 44 |
-
} else {
|
| 45 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
| 46 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
out_[dst_data] = inA[src];
|
| 49 |
-
out_[dst_data+1] = inA[src+1];
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f16.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "rope_common.comp"
|
| 4 |
-
|
| 5 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
| 6 |
-
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
| 7 |
-
layout(binding = 2) buffer restrict readonly tensorInC { float inC[]; };
|
| 8 |
-
layout(binding = 3) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
| 9 |
-
|
| 10 |
-
void main() {
|
| 11 |
-
const uint i3 = gl_WorkGroupID.z;
|
| 12 |
-
const uint i2 = gl_WorkGroupID.y;
|
| 13 |
-
const uint i1 = gl_WorkGroupID.x;
|
| 14 |
-
|
| 15 |
-
float corr_dims[2];
|
| 16 |
-
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
| 17 |
-
|
| 18 |
-
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
| 19 |
-
|
| 20 |
-
float theta_base = float(inB[pcs.inBOff + i2]);
|
| 21 |
-
float inv_ndims = -1.f/pcs.n_dims;
|
| 22 |
-
|
| 23 |
-
float cos_theta;
|
| 24 |
-
float sin_theta;
|
| 25 |
-
|
| 26 |
-
for (uint i0 = 2*gl_LocalInvocationIndex; i0 < pcs.ne0; i0 += 2*gl_WorkGroupSize.x) {
|
| 27 |
-
if (i0 < pcs.n_dims) {
|
| 28 |
-
uint ic = i0/2;
|
| 29 |
-
|
| 30 |
-
float theta = theta_base * pow(pcs.freq_base, inv_ndims*i0);
|
| 31 |
-
|
| 32 |
-
const float freq_factor = pcs.has_freq_factors ? inC[pcs.inCOff + ic] : 1.0f;
|
| 33 |
-
|
| 34 |
-
rope_yarn(theta/freq_factor, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
| 35 |
-
|
| 36 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
| 37 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
| 38 |
-
|
| 39 |
-
const float x0 = float(inA[src]);
|
| 40 |
-
const float x1 = float(inA[src+1]);
|
| 41 |
-
|
| 42 |
-
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
| 43 |
-
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
| 44 |
-
} else {
|
| 45 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
| 46 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
out_[dst_data] = inA[src];
|
| 49 |
-
out_[dst_data+1] = inA[src+1];
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f32.comp
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "rope_common.comp"
|
| 4 |
-
|
| 5 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 6 |
-
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
| 7 |
-
layout(binding = 2) buffer restrict readonly tensorInC { float inC[]; };
|
| 8 |
-
layout(binding = 3) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
void main() {
|
| 11 |
-
const uint i3 = gl_WorkGroupID.z;
|
| 12 |
-
const uint i2 = gl_WorkGroupID.y;
|
| 13 |
-
const uint i1 = gl_WorkGroupID.x;
|
| 14 |
-
|
| 15 |
-
float corr_dims[2];
|
| 16 |
-
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
| 17 |
-
|
| 18 |
-
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
| 19 |
-
|
| 20 |
-
float theta_base = float(inB[pcs.inBOff + i2]);
|
| 21 |
-
float inv_ndims = -1.f/pcs.n_dims;
|
| 22 |
-
|
| 23 |
-
float cos_theta;
|
| 24 |
-
float sin_theta;
|
| 25 |
-
|
| 26 |
-
for (uint i0 = 2*gl_LocalInvocationIndex; i0 < pcs.ne0; i0 += 2*gl_WorkGroupSize.x) {
|
| 27 |
-
if (i0 < pcs.n_dims) {
|
| 28 |
-
uint ic = i0/2;
|
| 29 |
-
|
| 30 |
-
float theta = theta_base * pow(pcs.freq_base, inv_ndims*i0);
|
| 31 |
-
|
| 32 |
-
const float freq_factor = pcs.has_freq_factors ? inC[pcs.inCOff + ic] : 1.0f;
|
| 33 |
-
|
| 34 |
-
rope_yarn(theta/freq_factor, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
| 35 |
-
|
| 36 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
| 37 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
| 38 |
-
|
| 39 |
-
const float x0 = inA[src];
|
| 40 |
-
const float x1 = inA[src+1];
|
| 41 |
-
|
| 42 |
-
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
| 43 |
-
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
| 44 |
-
} else {
|
| 45 |
-
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
| 46 |
-
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
| 47 |
-
|
| 48 |
-
out_[dst_data] = inA[src];
|
| 49 |
-
out_[dst_data+1] = inA[src+1];
|
| 50 |
-
}
|
| 51 |
-
}
|
| 52 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_scale.comp
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
layout(push_constant) uniform PushConstants {
|
| 11 |
-
uint inOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
float scale;
|
| 14 |
-
} pcs;
|
| 15 |
-
|
| 16 |
-
void main() {
|
| 17 |
-
const uint i = gl_WorkGroupID.x;
|
| 18 |
-
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
| 19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
|
| 10 |
-
layout(push_constant) uniform PushConstants {
|
| 11 |
-
uint inOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
float scale;
|
| 14 |
-
} pcs;
|
| 15 |
-
|
| 16 |
-
void main() {
|
| 17 |
-
const uint baseIndex = gl_WorkGroupID.x * 8;
|
| 18 |
-
|
| 19 |
-
for (uint x = 0; x < 8; x++) {
|
| 20 |
-
const uint i = baseIndex + x;
|
| 21 |
-
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
| 22 |
-
}
|
| 23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_silu.comp
DELETED
|
@@ -1,22 +0,0 @@
|
|
| 1 |
-
#version 450
|
| 2 |
-
|
| 3 |
-
#include "common.comp"
|
| 4 |
-
|
| 5 |
-
layout(local_size_x = 1) in;
|
| 6 |
-
|
| 7 |
-
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
| 8 |
-
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
| 9 |
-
layout(push_constant) uniform PushConstants {
|
| 10 |
-
uint inOff;
|
| 11 |
-
uint outOff;
|
| 12 |
-
} pcs;
|
| 13 |
-
|
| 14 |
-
void main() {
|
| 15 |
-
const uint baseIndex = gl_WorkGroupID.x * 4;
|
| 16 |
-
|
| 17 |
-
for (uint x = 0; x < 4; x++) {
|
| 18 |
-
const uint i = baseIndex + x;
|
| 19 |
-
const float y = in_[i + pcs.inOff];
|
| 20 |
-
out_[i + pcs.outOff] = y / (1.0 + exp(-y));
|
| 21 |
-
}
|
| 22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4)
|
| 2 |
-
|
| 3 |
-
#version 450
|
| 4 |
-
|
| 5 |
-
#include "common.comp"
|
| 6 |
-
|
| 7 |
-
layout(local_size_x_id = 0) in;
|
| 8 |
-
|
| 9 |
-
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
| 10 |
-
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
| 11 |
-
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
| 12 |
-
|
| 13 |
-
layout(push_constant) uniform PushConstants {
|
| 14 |
-
uint inAOff;
|
| 15 |
-
uint inBOff;
|
| 16 |
-
uint outOff;
|
| 17 |
-
int ne00;
|
| 18 |
-
int ne01;
|
| 19 |
-
int ne02;
|
| 20 |
-
float scale;
|
| 21 |
-
float max_bias;
|
| 22 |
-
float m0;
|
| 23 |
-
float m1;
|
| 24 |
-
uint n_head_log2;
|
| 25 |
-
int mask;
|
| 26 |
-
} pcs;
|
| 27 |
-
|
| 28 |
-
void main() {
|
| 29 |
-
if (gl_SubgroupInvocationID > 31)
|
| 30 |
-
return;
|
| 31 |
-
|
| 32 |
-
const uint i03 = gl_WorkGroupID.z;
|
| 33 |
-
const uint i02 = gl_WorkGroupID.y;
|
| 34 |
-
const uint i01 = gl_WorkGroupID.x;
|
| 35 |
-
|
| 36 |
-
const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00;
|
| 37 |
-
const uint psrc0 = extra_off + pcs.inAOff; // Based from inA
|
| 38 |
-
const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB
|
| 39 |
-
const uint pdst = extra_off + pcs.outOff; // Based from out_
|
| 40 |
-
|
| 41 |
-
float slope = 1.0f;
|
| 42 |
-
|
| 43 |
-
// ALiBi
|
| 44 |
-
if (pcs.max_bias > 0.0f) {
|
| 45 |
-
int64_t h = i02;
|
| 46 |
-
|
| 47 |
-
float base = h < pcs.n_head_log2 ? pcs.m0 : pcs.m1;
|
| 48 |
-
int64_t exp = h < pcs.n_head_log2 ? h + 1 : 2*(h - pcs.n_head_log2) + 1;
|
| 49 |
-
|
| 50 |
-
slope = pow(base, float(exp));
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
// parallel max
|
| 54 |
-
float localMax = uintBitsToFloat(0xFF800000);
|
| 55 |
-
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
| 56 |
-
localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? slope*inB[pmask + i00] : 0.0f));
|
| 57 |
-
}
|
| 58 |
-
float max_ = subgroupMax(localMax);
|
| 59 |
-
|
| 60 |
-
// parallel sum
|
| 61 |
-
float localSum = 0.0f;
|
| 62 |
-
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
| 63 |
-
const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? slope*inB[pmask + i00] : 0.0f) - max_);
|
| 64 |
-
localSum += exp_psrc0;
|
| 65 |
-
out_[pdst + i00] = exp_psrc0;
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
const float sum = subgroupAdd(localSum);
|
| 69 |
-
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
| 70 |
-
out_[pdst + i00] /= sum;
|
| 71 |
-
}
|
| 72 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-kompute/kompute-shaders/rope_common.comp
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
#include "common.comp"
|
| 2 |
-
|
| 3 |
-
#define GGML_ROPE_TYPE_NEOX 2
|
| 4 |
-
|
| 5 |
-
// TODO: use a local size of 32 or more (Metal uses 1024)
|
| 6 |
-
layout(local_size_x = 1) in;
|
| 7 |
-
|
| 8 |
-
layout (push_constant) uniform parameter {
|
| 9 |
-
uint inAOff;
|
| 10 |
-
uint inBOff;
|
| 11 |
-
uint inCOff;
|
| 12 |
-
uint outOff;
|
| 13 |
-
int n_dims;
|
| 14 |
-
int mode;
|
| 15 |
-
int n_ctx_orig;
|
| 16 |
-
float freq_base;
|
| 17 |
-
float freq_scale;
|
| 18 |
-
bool has_freq_factors;
|
| 19 |
-
float ext_factor;
|
| 20 |
-
float attn_factor;
|
| 21 |
-
float beta_fast;
|
| 22 |
-
float beta_slow;
|
| 23 |
-
uint nb00;
|
| 24 |
-
uint nb01;
|
| 25 |
-
uint nb02;
|
| 26 |
-
uint nb03;
|
| 27 |
-
int ne0;
|
| 28 |
-
uint nb0;
|
| 29 |
-
uint nb1;
|
| 30 |
-
uint nb2;
|
| 31 |
-
uint nb3;
|
| 32 |
-
} pcs;
|
| 33 |
-
|
| 34 |
-
float rope_yarn_ramp(const float low, const float high, const float i0) {
|
| 35 |
-
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
| 36 |
-
return 1.0f - min(1.0f, max(0.0f, y));
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
| 40 |
-
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
| 41 |
-
void rope_yarn(
|
| 42 |
-
float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
|
| 43 |
-
out float cos_theta, out float sin_theta
|
| 44 |
-
) {
|
| 45 |
-
// Get n-d rotational scaling corrected for extrapolation
|
| 46 |
-
float theta_interp = freq_scale * theta_extrap;
|
| 47 |
-
float theta = theta_interp;
|
| 48 |
-
if (ext_factor != 0.0f) {
|
| 49 |
-
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
| 50 |
-
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
| 51 |
-
|
| 52 |
-
// Get n-d magnitude scaling corrected for interpolation
|
| 53 |
-
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
| 54 |
-
}
|
| 55 |
-
cos_theta = cos(theta) * mscale;
|
| 56 |
-
sin_theta = sin(theta) * mscale;
|
| 57 |
-
}
|
| 58 |
-
|
| 59 |
-
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
| 60 |
-
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
| 61 |
-
float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
| 62 |
-
return n_dims * log(n_ctx_orig / (n_rot * TWOPI_F)) / (2 * log(base));
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
void rope_yarn_corr_dims(
|
| 66 |
-
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, out float dims[2]
|
| 67 |
-
) {
|
| 68 |
-
// start and end correction dims
|
| 69 |
-
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
|
| 70 |
-
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
|
| 71 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|