a3sh commited on
Commit
a18cd16
·
1 Parent(s): 06ec111

ggml : faster ssm scan (llama/10558)

Browse files

* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash

ggml/src/ggml-cuda/ggml-cuda.cu CHANGED
@@ -31,6 +31,8 @@
31
  #include "ggml-cuda/rope.cuh"
32
  #include "ggml-cuda/scale.cuh"
33
  #include "ggml-cuda/softmax.cuh"
 
 
34
  #include "ggml-cuda/sum.cuh"
35
  #include "ggml-cuda/sumrows.cuh"
36
  #include "ggml-cuda/tsembd.cuh"
@@ -2296,6 +2298,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
2296
  case GGML_OP_SUM_ROWS:
2297
  ggml_cuda_op_sum_rows(ctx, dst);
2298
  break;
 
 
 
 
 
 
2299
  case GGML_OP_ARGSORT:
2300
  ggml_cuda_op_argsort(ctx, dst);
2301
  break;
@@ -3193,6 +3201,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
3193
  case GGML_OP_COS:
3194
  case GGML_OP_CLAMP:
3195
  case GGML_OP_LOG:
 
 
3196
  return true;
3197
  case GGML_OP_CONT:
3198
  return op->src[0]->type != GGML_TYPE_BF16;
 
31
  #include "ggml-cuda/rope.cuh"
32
  #include "ggml-cuda/scale.cuh"
33
  #include "ggml-cuda/softmax.cuh"
34
+ #include "ggml-cuda/ssm-conv.cuh"
35
+ #include "ggml-cuda/ssm-scan.cuh"
36
  #include "ggml-cuda/sum.cuh"
37
  #include "ggml-cuda/sumrows.cuh"
38
  #include "ggml-cuda/tsembd.cuh"
 
2298
  case GGML_OP_SUM_ROWS:
2299
  ggml_cuda_op_sum_rows(ctx, dst);
2300
  break;
2301
+ case GGML_OP_SSM_CONV:
2302
+ ggml_cuda_op_ssm_conv(ctx, dst);
2303
+ break;
2304
+ case GGML_OP_SSM_SCAN:
2305
+ ggml_cuda_op_ssm_scan(ctx, dst);
2306
+ break;
2307
  case GGML_OP_ARGSORT:
2308
  ggml_cuda_op_argsort(ctx, dst);
2309
  break;
 
3201
  case GGML_OP_COS:
3202
  case GGML_OP_CLAMP:
3203
  case GGML_OP_LOG:
3204
+ case GGML_OP_SSM_SCAN:
3205
+ case GGML_OP_SSM_CONV:
3206
  return true;
3207
  case GGML_OP_CONT:
3208
  return op->src[0]->type != GGML_TYPE_BF16;
ggml/src/ggml-cuda/ssm-conv.cu ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "ssm-conv.cuh"
2
+
3
+ template <size_t split_d_inner, size_t d_conv>
4
+ static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1,
5
+ const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1,
6
+ float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2,
7
+ const int nc, const int ncs, const int nr, const int n_t, const int n_s) {
8
+ const int tid = threadIdx.x;
9
+ const int bidx = blockIdx.x;
10
+ const int bidy = blockIdx.y;
11
+
12
+ const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1);
13
+ const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1);
14
+ float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0);
15
+
16
+ const int stride_x = src0_nb1 / sizeof(float);
17
+ const int stride_w = src1_nb1 / sizeof(float);
18
+ const int stride_y = dst_nb1 / sizeof(float);
19
+
20
+ float x[d_conv] = { 0.0f };
21
+ float w[d_conv] = { 0.0f };
22
+
23
+ #pragma unroll
24
+ for (int j = 0; j < d_conv; j++) {
25
+ w[j] = w_block[tid * stride_w + j];
26
+ }
27
+
28
+ for (int i = 0; i < n_t; i++) {
29
+ float sumf = 0.0f;
30
+
31
+ if (i == 0) {
32
+ for (int j = 0; j < d_conv; j++) {
33
+ x[j] = x_block[tid * stride_x + j];
34
+ }
35
+ } else {
36
+ x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
37
+ }
38
+
39
+ #pragma unroll
40
+ for (int j = 0; j < d_conv; j++) {
41
+ sumf += x[(i + j) % d_conv] * w[j];
42
+ }
43
+ y_block[i * stride_y + tid] = sumf;
44
+ }
45
+ }
46
+
47
+ template <size_t split_d_inner, size_t d_conv, size_t split_n_t>
48
+ static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1,
49
+ const int src0_nb0, const int src0_nb1, const int src0_nb2,
50
+ const int src1_nb1, float * __restrict__ dst, const int dst_nb0,
51
+ const int dst_nb1, const int dst_nb2, const int nc, const int ncs,
52
+ const int nr, const int n_t, const int n_s) {
53
+ const int tid = threadIdx.x;
54
+ const int bidx = blockIdx.x;
55
+ const int bidy = blockIdx.y;
56
+ const int bidz = blockIdx.z;
57
+
58
+ const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 +
59
+ bidz * split_n_t * src0_nb0);
60
+ const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1);
61
+ float * y_block =
62
+ (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0);
63
+
64
+ const int stride_x = src0_nb1 / sizeof(float);
65
+ const int stride_w = src1_nb1 / sizeof(float);
66
+ const int stride_y = dst_nb1 / sizeof(float);
67
+
68
+ float x[d_conv] = { 0.0f };
69
+ float w[d_conv] = { 0.0f };
70
+
71
+ #pragma unroll
72
+ for (int j = 0; j < d_conv; j++) {
73
+ w[j] = w_block[tid * stride_w + j];
74
+ }
75
+
76
+ #pragma unroll
77
+ for (int i = 0; i < split_n_t; i++) {
78
+ if (bidz * split_n_t + i < n_t) {
79
+ float sumf = 0.0f;
80
+
81
+ if (i == 0) {
82
+ for (int j = 0; j < d_conv; j++) {
83
+ x[j] = x_block[tid * stride_x + j];
84
+ }
85
+ } else {
86
+ x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1];
87
+ }
88
+
89
+ #pragma unroll
90
+ for (int j = 0; j < d_conv; j++) {
91
+ sumf += x[(i + j) % d_conv] * w[j];
92
+ }
93
+ y_block[i * stride_y + tid] = sumf;
94
+ }
95
+ }
96
+ }
97
+
98
+ static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1,
99
+ const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1,
100
+ const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t,
101
+ const int n_s, cudaStream_t stream) {
102
+ const int threads = 128;
103
+ GGML_ASSERT(nr % threads == 0);
104
+
105
+ if (n_t <= 32) {
106
+ const dim3 blocks(n_s, (nr + threads - 1) / threads, 1);
107
+ if (nc == 4) {
108
+ ssm_conv_f32<threads, 4><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1,
109
+ dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t,
110
+ n_s);
111
+ } else {
112
+ GGML_ABORT("Only support kernel size = 4 now.");
113
+ }
114
+ } else {
115
+ if (nc == 4) {
116
+ const int split_n_t = 32;
117
+ dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t);
118
+ ssm_conv_long_token_f32<threads, 4, split_n_t>
119
+ <<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0,
120
+ dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s);
121
+ } else {
122
+ GGML_ABORT("Only support kernel size = 4 right now.");
123
+ }
124
+ }
125
+ }
126
+
127
+ void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
128
+ const struct ggml_tensor * src0 = dst->src[0]; // conv_x
129
+ const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
130
+
131
+ const int nc = src1->ne[0]; // d_conv
132
+ const int ncs = src0->ne[0]; // d_conv - 1 + n_t
133
+ const int nr = src0->ne[1]; // d_inner
134
+ const int n_t = dst->ne[1]; // tokens per sequence
135
+ const int n_s = dst->ne[2]; // number of sequences in the batch
136
+
137
+ GGML_ASSERT(dst->ne[0] == nr);
138
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
139
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
140
+ GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
141
+
142
+ const float * src0_d = (const float *) src0->data;
143
+ const float * src1_d = (const float *) src1->data;
144
+ float * dst_d = (float *) dst->data;
145
+ cudaStream_t stream = ctx.stream();
146
+
147
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
148
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
149
+ ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1],
150
+ dst->nb[2], nc, ncs, nr, n_t, n_s, stream);
151
+ }
ggml/src/ggml-cuda/ssm-conv.cuh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #include "common.cuh"
2
+
3
+ void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
ggml/src/ggml-cuda/ssm-scan.cu ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "ssm-scan.cuh"
2
+
3
+ // #include <cuda_runtime.h>
4
+ // static __device__ void global_to_shared(const float *src, float *dst) {
5
+ // asm volatile("cp.async.");
6
+ // }
7
+
8
+ template <size_t splitD, size_t N>
9
+ __global__ void __launch_bounds__(splitD, 2)
10
+ ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
11
+ const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
12
+ const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
13
+ const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
14
+ const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
15
+ float * __restrict__ dst, const int D, const int L, const int B) {
16
+ const int bidx = blockIdx.x; // split along B
17
+ const int bidy = blockIdx.y; // split along D
18
+ const int tid = threadIdx.x;
19
+ const int wid = tid / 32;
20
+ const int wtid = tid % 32;
21
+
22
+ extern __shared__ float smem[];
23
+ const int stride_sA = N + 1;
24
+ const int stride_ss0 = N + 1;
25
+ float * smem_A = smem;
26
+ float * smem_s0 = smem_A + splitD * stride_sA;
27
+
28
+ const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
29
+ const float * x_block = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
30
+ const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
31
+ const float * A_block = (const float *) ((char *) src3 + bidy * splitD * src3_nb1);
32
+ const float * B_block = (const float *) ((char *) src4 + (bidx * src4_nb2));
33
+ const float * C_block = (const float *) ((char *) src5 + (bidx * src5_nb2));
34
+ float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
35
+ float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
36
+
37
+ const int stride_s0 = src0_nb1 / sizeof(float);
38
+ const int stride_x = src1_nb1 / sizeof(float);
39
+ const int stride_dt = src2_nb1 / sizeof(float);
40
+ const int stride_A = src3_nb1 / sizeof(float);
41
+ const int stride_B = src4_nb1 / sizeof(float);
42
+ const int stride_C = src5_nb1 / sizeof(float);
43
+ const int stride_s = stride_s0;
44
+ const int stride_y = stride_x;
45
+
46
+ // can N not be 16? for example 32?
47
+ if (N == 16) {
48
+ #pragma unroll
49
+ for (int i = 0; i < splitD / 4; i += 2) {
50
+ float value = A_block[(wid * warpSize + i) * stride_A + wtid];
51
+ // todo: bank conflict
52
+ // I am always confused with how to use the swizzling method to solve
53
+ // bank conflit. Hoping somebody can tell me.
54
+ smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
55
+ }
56
+ #pragma unroll
57
+ for (int i = 0; i < splitD / 4; i += 2) {
58
+ float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid];
59
+ smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
60
+ }
61
+ }
62
+
63
+ __syncthreads();
64
+
65
+ for (int i = 0; i < L; i++) {
66
+ float dt_soft_plus = dt_block[i * stride_dt + tid];
67
+ if (dt_soft_plus <= 20.0f) {
68
+ dt_soft_plus = log1pf(exp(dt_soft_plus));
69
+ }
70
+ float x_dt = x_block[i * stride_x + tid] * dt_soft_plus;
71
+ float sumf = 0.0f;
72
+ #pragma unroll
73
+ for (int j = 0; j < N; j++) {
74
+ float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) +
75
+ (B_block[i * stride_B + j] * x_dt);
76
+ sumf += state * C_block[i * stride_C + j];
77
+ if (i == L - 1) {
78
+ s_block[tid * stride_s + j] = state;
79
+ } else {
80
+ smem_s0[tid * stride_ss0 + j] = state;
81
+ }
82
+ }
83
+ __syncthreads();
84
+ y_block[i * stride_y + tid] = sumf;
85
+ }
86
+ }
87
+
88
+ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
89
+ const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
90
+ const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
91
+ const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
92
+ const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
93
+ float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) {
94
+ const int threads = 128;
95
+ // todo: consider D cannot be divided,does this situation exist?
96
+ GGML_ASSERT(D % threads == 0);
97
+ const dim3 blocks(B, (D + threads - 1) / threads, 1);
98
+ const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
99
+ if (N == 16) {
100
+ ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
101
+ src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
102
+ src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B);
103
+ } else {
104
+ GGML_ABORT("doesn't support N!=16.");
105
+ }
106
+ }
107
+
108
+ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
109
+ const struct ggml_tensor * src0 = dst->src[0]; // s
110
+ const struct ggml_tensor * src1 = dst->src[1]; // x
111
+ const struct ggml_tensor * src2 = dst->src[2]; // dt
112
+ const struct ggml_tensor * src3 = dst->src[3]; // A
113
+ const struct ggml_tensor * src4 = dst->src[4]; // B
114
+ const struct ggml_tensor * src5 = dst->src[5]; // C
115
+
116
+ // const int64_t d_state = src0->ne[0];
117
+ // const int64_t d_inner = src0->ne[1];
118
+ // const int64_t l = src1->ne[1];
119
+ // const int64_t b = src0->ne[2];
120
+
121
+ const int64_t nc = src0->ne[0]; // d_state
122
+ const int64_t nr = src0->ne[1]; // d_inner
123
+ const int64_t n_t = src1->ne[1]; // number of tokens per sequence
124
+ const int64_t n_s = src0->ne[2]; // number of sequences in the batch
125
+
126
+ GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
127
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
128
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
129
+ GGML_ASSERT(src2->nb[0] == sizeof(float));
130
+ GGML_ASSERT(src3->nb[0] == sizeof(float));
131
+ GGML_ASSERT(src4->nb[0] == sizeof(float));
132
+ GGML_ASSERT(src5->nb[0] == sizeof(float));
133
+ // required for the dot product between s and C
134
+ GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
135
+ // required for per-sequence offsets for states
136
+ GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
137
+ // required to get correct offset for state destination (i.e. src1->nb[3])
138
+ GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
139
+
140
+ const float * src0_d = (const float *) src0->data;
141
+ const float * src1_d = (const float *) src1->data;
142
+ const float * src2_d = (const float *) src2->data;
143
+ const float * src3_d = (const float *) src3->data;
144
+ const float * src4_d = (const float *) src4->data;
145
+ const float * src5_d = (const float *) src5->data;
146
+ float * dst_d = (float *) dst->data;
147
+ cudaStream_t stream = ctx.stream();
148
+
149
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
150
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
151
+
152
+ ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
153
+ src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
154
+ src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
155
+ }
ggml/src/ggml-cuda/ssm-scan.cuh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #include "common.cuh"
2
+
3
+ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst);