Spaces:
Running
Running
| extern "C" { | |
| // we use the built-in 16-bit float type | |
| typedef __fp16 ggml_fp16_t; | |
| typedef uint16_t ggml_fp16_t; | |
| float ggml_fp16_to_fp32(ggml_fp16_t x); | |
| ggml_fp16_t ggml_fp32_to_fp16(float x); | |
| struct ggml_object; | |
| struct ggml_context; | |
| enum ggml_type { | |
| GGML_TYPE_I8, | |
| GGML_TYPE_I16, | |
| GGML_TYPE_I32, | |
| GGML_TYPE_F16, | |
| GGML_TYPE_F32, | |
| GGML_TYPE_COUNT, | |
| }; | |
| enum ggml_op { | |
| GGML_OP_NONE = 0, | |
| GGML_OP_DUP, | |
| GGML_OP_ADD, | |
| GGML_OP_SUB, | |
| GGML_OP_MUL, | |
| GGML_OP_DIV, | |
| GGML_OP_SQR, | |
| GGML_OP_SQRT, | |
| GGML_OP_SUM, | |
| GGML_OP_MEAN, | |
| GGML_OP_REPEAT, | |
| GGML_OP_ABS, | |
| GGML_OP_SGN, | |
| GGML_OP_NEG, | |
| GGML_OP_STEP, | |
| GGML_OP_RELU, | |
| GGML_OP_GELU, | |
| GGML_OP_NORM, // normalize | |
| GGML_OP_MUL_MAT, | |
| GGML_OP_SCALE, | |
| GGML_OP_CPY, | |
| GGML_OP_RESHAPE, | |
| GGML_OP_VIEW, | |
| GGML_OP_PERMUTE, | |
| GGML_OP_TRANSPOSE, | |
| GGML_OP_GET_ROWS, | |
| GGML_OP_DIAG_MASK_INF, | |
| GGML_OP_SOFT_MAX, | |
| GGML_OP_ROPE, | |
| GGML_OP_CONV_1D_1S, | |
| GGML_OP_CONV_1D_2S, | |
| GGML_OP_COUNT, | |
| }; | |
| // n-dimensional tensor | |
| struct ggml_tensor { | |
| enum ggml_type type; | |
| int n_dims; | |
| int ne[GGML_MAX_DIMS]; // number of elements | |
| size_t nb[GGML_MAX_DIMS]; // stride in bytes: | |
| // nb[0] = sizeof(type) | |
| // nb[1] = nb[0] * ne[0] + padding | |
| // nb[i] = nb[i-1] * ne[i-1] | |
| // compute data | |
| enum ggml_op op; | |
| bool is_param; | |
| struct ggml_tensor * grad; | |
| struct ggml_tensor * src0; | |
| struct ggml_tensor * src1; | |
| // thread scheduling | |
| int n_tasks; | |
| // performance | |
| int perf_runs; | |
| int64_t perf_cycles; | |
| int64_t perf_time_us; | |
| void * data; | |
| char pad[8]; | |
| }; | |
| // computation graph | |
| struct ggml_cgraph { | |
| int n_nodes; | |
| int n_leafs; | |
| int n_threads; | |
| size_t work_size; | |
| struct ggml_tensor * work; | |
| struct ggml_tensor * nodes[GGML_MAX_NODES]; | |
| struct ggml_tensor * grads[GGML_MAX_NODES]; | |
| struct ggml_tensor * leafs[GGML_MAX_NODES]; | |
| // performance | |
| int perf_runs; | |
| int64_t perf_cycles; | |
| int64_t perf_time_us; | |
| }; | |
| struct ggml_init_params { | |
| // memory pool | |
| size_t mem_size; // bytes | |
| void * mem_buffer; // if NULL, memory will be allocated internally | |
| }; | |
| int64_t ggml_time_ms(void); | |
| int64_t ggml_time_us(void); | |
| int64_t ggml_cycles(void); | |
| int64_t ggml_cycles_per_ms(void); | |
| void ggml_print_object (const struct ggml_object * obj); | |
| void ggml_print_objects(const struct ggml_context * ctx); | |
| int ggml_nelements(const struct ggml_tensor * tensor); | |
| size_t ggml_nbytes (const struct ggml_tensor * tensor); | |
| size_t ggml_type_size (enum ggml_type type); | |
| size_t ggml_element_size(const struct ggml_tensor * tensor); | |
| struct ggml_context * ggml_init(struct ggml_init_params params); | |
| void ggml_free(struct ggml_context * ctx); | |
| size_t ggml_used_mem(const struct ggml_context * ctx); | |
| struct ggml_tensor * ggml_new_tensor( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int n_dims, | |
| const int *ne); | |
| struct ggml_tensor * ggml_new_tensor_1d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0); | |
| struct ggml_tensor * ggml_new_tensor_2d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1); | |
| struct ggml_tensor * ggml_new_tensor_3d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1, | |
| int ne2); | |
| struct ggml_tensor * ggml_new_tensor_4d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1, | |
| int ne2, | |
| int ne3); | |
| struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); | |
| struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); | |
| struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); | |
| struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); | |
| struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); | |
| float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); | |
| void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); | |
| void * ggml_get_data (const struct ggml_tensor * tensor); | |
| float * ggml_get_data_f32(const struct ggml_tensor * tensor); | |
| // | |
| // operations on tensors with backpropagation | |
| // | |
| struct ggml_tensor * ggml_dup( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_add( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_sub( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_mul( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_div( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_sqr( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_sqrt( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // return scalar | |
| // TODO: compute sum along rows | |
| struct ggml_tensor * ggml_sum( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // mean along rows | |
| struct ggml_tensor * ggml_mean( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // if a is the same shape as b, and a is not parameter, return a | |
| // otherwise, return a new tensor: repeat(a) to fit in b | |
| struct ggml_tensor * ggml_repeat( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_abs( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_sgn( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_neg( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_step( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_relu( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // TODO: double-check this computation is correct | |
| struct ggml_tensor * ggml_gelu( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // normalize along rows | |
| // TODO: eps is hardcoded to 1e-5 for now | |
| struct ggml_tensor * ggml_norm( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // A: m rows, n columns | |
| // B: p rows, n columns (i.e. we transpose it internally) | |
| // result is m columns, p rows | |
| struct ggml_tensor * ggml_mul_mat( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // | |
| // operations on tensors without backpropagation | |
| // | |
| // in-place, returns view(a) | |
| struct ggml_tensor * ggml_scale( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // a -> b, return view(b) | |
| struct ggml_tensor * ggml_cpy( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // return view(a), b specifies the new shape | |
| // TODO: when we start computing gradient, make a copy instead of view | |
| struct ggml_tensor * ggml_reshape( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // return view(a) | |
| // TODO: when we start computing gradient, make a copy instead of view | |
| struct ggml_tensor * ggml_reshape_2d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1); | |
| // return view(a) | |
| // TODO: when we start computing gradient, make a copy instead of view | |
| struct ggml_tensor * ggml_reshape_3d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1, | |
| int ne2); | |
| // offset in bytes | |
| struct ggml_tensor * ggml_view_1d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| size_t offset); | |
| struct ggml_tensor * ggml_view_2d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1, | |
| size_t nb1, // row stride in bytes | |
| size_t offset); | |
| struct ggml_tensor * ggml_permute( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int axis0, | |
| int axis1, | |
| int axis2, | |
| int axis3); | |
| // alias for ggml_permute(ctx, a, 1, 0, 2, 3) | |
| struct ggml_tensor * ggml_transpose( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| struct ggml_tensor * ggml_get_rows( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // set elements above the diagonal to -INF | |
| // in-place, returns view(a) | |
| struct ggml_tensor * ggml_diag_mask_inf( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int n_past); | |
| // in-place, returns view(a) | |
| struct ggml_tensor * ggml_soft_max( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a); | |
| // rotary position embedding | |
| // in-place, returns view(a) | |
| // if mode == 1, skip n_past elements | |
| // TODO: avoid creating a new tensor every time | |
| struct ggml_tensor * ggml_rope( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int n_past, | |
| int n_dims, | |
| int mode); | |
| // padding = 1 | |
| // TODO: we don't support extra parameters for now | |
| // that's why we are hard-coding the stride, padding, and dilation | |
| // not great .. | |
| struct ggml_tensor * ggml_conv_1d_1s( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| struct ggml_tensor * ggml_conv_1d_2s( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b); | |
| // | |
| // automatic differentiation | |
| // | |
| void ggml_set_param( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * tensor); | |
| void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); | |
| struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); | |
| struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); | |
| void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); | |
| void ggml_graph_reset (struct ggml_cgraph * cgraph); | |
| // print info and performance information for the graph | |
| void ggml_graph_print(const struct ggml_cgraph * cgraph); | |
| // dump the graph into a file using the dot format | |
| void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); | |
| // | |
| // optimization | |
| // | |
| // optimization methods | |
| enum ggml_opt_type { | |
| GGML_OPT_ADAM, | |
| GGML_OPT_LBFGS, | |
| }; | |
| // linesearch methods | |
| enum ggml_linesearch { | |
| GGML_LINESEARCH_DEFAULT = 1, | |
| GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, | |
| GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, | |
| GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, | |
| }; | |
| // optimization return values | |
| enum ggml_opt_result { | |
| GGML_OPT_OK = 0, | |
| GGML_OPT_DID_NOT_CONVERGE, | |
| GGML_OPT_NO_CONTEXT, | |
| GGML_OPT_INVALID_WOLFE, | |
| GGML_OPT_FAIL, | |
| GGML_LINESEARCH_FAIL = -128, | |
| GGML_LINESEARCH_MINIMUM_STEP, | |
| GGML_LINESEARCH_MAXIMUM_STEP, | |
| GGML_LINESEARCH_MAXIMUM_ITERATIONS, | |
| GGML_LINESEARCH_INVALID_PARAMETERS, | |
| }; | |
| // optimization parameters | |
| // | |
| // see ggml.c (ggml_opt_default_params) for default values | |
| // | |
| struct ggml_opt_params { | |
| enum ggml_opt_type type; | |
| int n_threads; | |
| // delta-based convergence test | |
| // | |
| // if past == 0 - disabled | |
| // if past > 0: | |
| // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) | |
| // | |
| int past; | |
| float delta; | |
| // maximum number of iterations without improvement | |
| // | |
| // if 0 - disabled | |
| // if > 0: | |
| // assume convergence if no cost improvement in this number of iterations | |
| // | |
| int max_no_improvement; | |
| bool print_forward_graph; | |
| bool print_backward_graph; | |
| union { | |
| // ADAM parameters | |
| struct { | |
| int n_iter; | |
| float alpha; // learning rate | |
| float beta1; | |
| float beta2; | |
| float eps; // epsilon for numerical stability | |
| float eps_f; // epsilon for convergence test | |
| float eps_g; // epsilon for convergence test | |
| } adam; | |
| // LBFGS parameters | |
| struct { | |
| int m; // number of corrections to approximate the inv. Hessian | |
| int n_iter; | |
| int max_linesearch; | |
| float eps; // convergence tolerance | |
| float ftol; // line search tolerance | |
| float wolfe; | |
| float min_step; | |
| float max_step; | |
| enum ggml_linesearch linesearch; | |
| } lbfgs; | |
| }; | |
| }; | |
| struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); | |
| // optimize the function defined by the tensor f | |
| enum ggml_opt_result ggml_opt( | |
| struct ggml_context * ctx, | |
| struct ggml_opt_params params, | |
| struct ggml_tensor * f); | |
| } | |