Spaces:
Running
Running
| typedef uint16_t ggml_fp16_t; | |
| static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size"); | |
| typedef struct { | |
| float d; // delta | |
| uint8_t qs[QK4_0 / 2]; // nibbles / quants | |
| } block_q4_0; | |
| static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); | |
| typedef struct { | |
| float d; // delta | |
| float m; // min | |
| uint8_t qs[QK4_1 / 2]; // nibbles / quants | |
| } block_q4_1; | |
| static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); | |
| typedef struct { | |
| __half d; // delta | |
| uint8_t qs[QK4_2 / 2]; // nibbles / quants | |
| } block_q4_2; | |
| static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); | |
| typedef struct { | |
| __half d; // delta | |
| uint8_t qh[4]; // 5-th bit of quants | |
| uint8_t qs[QK5_0 / 2]; // nibbles / quants | |
| } block_q5_0; | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); | |
| typedef struct { | |
| __half d; // delta | |
| __half m; // min | |
| uint32_t qh; // 5-th bit of quants | |
| uint8_t qs[QK5_1 / 2]; // nibbles / quants | |
| } block_q5_1; | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); | |
| typedef struct { | |
| float d; // delta | |
| int8_t qs[QK8_0]; // quants | |
| } block_q8_0; | |
| static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); | |
| static __global__ void dequantize_block_q4_0(const void * vx, float * y) { | |
| const block_q4_0 * x = (const block_q4_0 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const uint8_t * pp = x[i].qs; | |
| for (int l = 0; l < QK4_0; l += 2) { | |
| const uint8_t vi = pp[l/2]; | |
| const int8_t vi0 = vi & 0xf; | |
| const int8_t vi1 = vi >> 4; | |
| const float v0 = (vi0 - 8)*d; | |
| const float v1 = (vi1 - 8)*d; | |
| y[i*QK4_0 + l + 0] = v0; | |
| y[i*QK4_0 + l + 1] = v1; | |
| } | |
| } | |
| static __global__ void dequantize_block_q4_1(const void * vx, float * y) { | |
| const block_q4_1 * x = (const block_q4_1 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const float m = x[i].m; | |
| const uint8_t * pp = x[i].qs; | |
| for (int l = 0; l < QK4_1; l += 2) { | |
| const uint8_t vi = pp[l/2]; | |
| const int8_t vi0 = vi & 0xf; | |
| const int8_t vi1 = vi >> 4; | |
| const float v0 = vi0*d + m; | |
| const float v1 = vi1*d + m; | |
| y[i*QK4_1 + l + 0] = v0; | |
| y[i*QK4_1 + l + 1] = v1; | |
| } | |
| } | |
| static __global__ void dequantize_block_q4_2(const void * vx, float * y) { | |
| const block_q4_2 * x = (const block_q4_2 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const uint8_t * pp = x[i].qs; | |
| for (int l = 0; l < QK4_2; l += 2) { | |
| const uint8_t vi = pp[l/2]; | |
| const int8_t vi0 = vi & 0xf; | |
| const int8_t vi1 = vi >> 4; | |
| const float v0 = (vi0 - 8)*d; | |
| const float v1 = (vi1 - 8)*d; | |
| y[i*QK4_2 + l + 0] = v0; | |
| y[i*QK4_2 + l + 1] = v1; | |
| } | |
| } | |
| static __global__ void dequantize_block_q5_0(const void * vx, float * y) { | |
| const block_q5_0 * x = (const block_q5_0 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const uint8_t * pp = x[i].qs; | |
| uint32_t qh; | |
| memcpy(&qh, x[i].qh, sizeof(qh)); | |
| for (int l = 0; l < QK5_0; l += 2) { | |
| const uint8_t vi = pp[l/2]; | |
| const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; | |
| const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; | |
| const int8_t vi0 = ((vi & 0xf) | vh0); | |
| const int8_t vi1 = ((vi >> 4) | vh1); | |
| const float v0 = (vi0 - 16)*d; | |
| const float v1 = (vi1 - 16)*d; | |
| y[i*QK5_0 + l + 0] = v0; | |
| y[i*QK5_0 + l + 1] = v1; | |
| } | |
| } | |
| static __global__ void dequantize_block_q5_1(const void * vx, float * y) { | |
| const block_q5_1 * x = (const block_q5_1 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const float m = x[i].m; | |
| const uint8_t * pp = x[i].qs; | |
| const uint32_t qh = x[i].qh; | |
| for (int l = 0; l < QK5_1; l += 2) { | |
| const uint8_t vi = pp[l/2]; | |
| const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; | |
| const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; | |
| const int8_t vi0 = (vi & 0xf) | vh0; | |
| const int8_t vi1 = (vi >> 4) | vh1; | |
| const float v0 = vi0*d + m; | |
| const float v1 = vi1*d + m; | |
| y[i*QK5_1 + l + 0] = v0; | |
| y[i*QK5_1 + l + 1] = v1; | |
| } | |
| } | |
| static __global__ void dequantize_block_q8_0(const void * vx, float * y) { | |
| const block_q8_0 * x = (const block_q8_0 *) vx; | |
| const int i = blockIdx.x; | |
| const float d = x[i].d; | |
| const int8_t * pp = x[i].qs; | |
| for (int l = 0; l < QK8_0; l++) { | |
| const int8_t vi = pp[l]; | |
| y[i*QK8_0 + l] = vi*d; | |
| } | |
| } | |
| void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK4_0; | |
| dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK4_1; | |
| dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK4_2; | |
| dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK5_0; | |
| dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK5_1; | |
| dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { | |
| const int nb = k / QK8_0; | |
| dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y); | |
| } | |
| dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) { | |
| switch (type) { | |
| case GGML_TYPE_Q4_0: | |
| return dequantize_row_q4_0_cuda; | |
| case GGML_TYPE_Q4_1: | |
| return dequantize_row_q4_1_cuda; | |
| case GGML_TYPE_Q4_2: | |
| return dequantize_row_q4_2_cuda; | |
| case GGML_TYPE_Q5_0: | |
| return dequantize_row_q5_0_cuda; | |
| case GGML_TYPE_Q5_1: | |
| return dequantize_row_q5_1_cuda; | |
| case GGML_TYPE_Q8_0: | |
| return dequantize_row_q8_0_cuda; | |
| default: | |
| return nullptr; | |
| } | |
| } | |
| // buffer pool for cuda | |
| struct scoped_spin_lock { | |
| std::atomic_flag& lock; | |
| scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { | |
| while (lock.test_and_set(std::memory_order_acquire)) { | |
| ; // spin | |
| } | |
| } | |
| ~scoped_spin_lock() { | |
| lock.clear(std::memory_order_release); | |
| } | |
| scoped_spin_lock(const scoped_spin_lock&) = delete; | |
| scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; | |
| }; | |
| struct cuda_buffer { | |
| void * ptr = nullptr; | |
| size_t size = 0; | |
| }; | |
| static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; | |
| void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { | |
| scoped_spin_lock lock(g_cuda_pool_lock); | |
| for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { | |
| cuda_buffer& b = g_cuda_buffer_pool[i]; | |
| if (b.size >= size && b.ptr != nullptr) { | |
| void * ptr = b.ptr; | |
| *actual_size = b.size; | |
| b.ptr = nullptr; | |
| b.size = 0; | |
| return ptr; | |
| } | |
| } | |
| void * ptr; | |
| CUDA_CHECK(cudaMalloc((void **) &ptr, size)); | |
| *actual_size = size; | |
| return ptr; | |
| } | |
| void ggml_cuda_pool_free(void * ptr, size_t size) { | |
| scoped_spin_lock lock(g_cuda_pool_lock); | |
| for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { | |
| cuda_buffer& b = g_cuda_buffer_pool[i]; | |
| if (b.ptr == nullptr) { | |
| b.ptr = ptr; | |
| b.size = size; | |
| return; | |
| } | |
| } | |
| fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); | |
| CUDA_CHECK(cudaFree(ptr)); | |
| } | |
| cublasHandle_t g_cublasH = nullptr; | |
| cudaStream_t g_cudaStream = nullptr; | |
| cudaStream_t g_cudaStream2 = nullptr; | |
| cudaEvent_t g_cudaEvent = nullptr; | |
| void ggml_init_cublas() { | |
| if (g_cublasH == nullptr) { | |
| // create cublas handle, bind a stream | |
| CUBLAS_CHECK(cublasCreate(&g_cublasH)); | |
| CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking)); | |
| CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream)); | |
| // create additional stream and event for synchronization | |
| CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking)); | |
| CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming)); | |
| // configure logging to stdout | |
| // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL)); | |
| } | |
| } | |
| cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { | |
| const uint64_t ne0 = src->ne[0]; | |
| const uint64_t ne1 = src->ne[1]; | |
| const uint64_t nb0 = src->nb[0]; | |
| const uint64_t nb1 = src->nb[1]; | |
| const uint64_t nb2 = src->nb[2]; | |
| const uint64_t nb3 = src->nb[3]; | |
| const enum ggml_type type = src->type; | |
| const size_t ts = ggml_type_size(type); | |
| const size_t bs = ggml_blck_size(type); | |
| const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); | |
| if (nb0 == ts && nb1 == ts*ne0/bs) { | |
| return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); | |
| } else if (nb0 == ts) { | |
| return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); | |
| } else { | |
| for (uint64_t i1 = 0; i1 < ne1; i1++) { | |
| const void * rx = (const void *) ((const char *) x + i1*nb1); | |
| void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); | |
| // pretend the row is a matrix with cols=1 | |
| cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); | |
| if (r != cudaSuccess) return r; | |
| } | |
| return cudaSuccess; | |
| } | |
| } | |
| void * ggml_cuda_host_malloc(size_t size) { | |
| void * ptr; | |
| CUDA_CHECK(cudaMallocHost((void **) &ptr, size)); | |
| return ptr; | |
| } | |
| void ggml_cuda_host_free(void * ptr) { | |
| CUDA_CHECK(cudaFreeHost(ptr)); | |
| } | |