Spaces:
Running
Running
| | |
| static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) { | |
| std::string result; | |
| for (size_t i = 0; i < cps.size(); ++i) { | |
| result.append(unicode_cpt_to_utf8(cps[i])); | |
| } | |
| return result; | |
| } | |
| static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { | |
| assert(offset < utf8.size()); | |
| if (!(utf8[offset + 0] & 0x80)) { | |
| auto result = utf8[offset + 0]; | |
| offset += 1; | |
| return result; | |
| } | |
| if (!(utf8[offset + 0] & 0x40)) { | |
| throw std::invalid_argument("invalid character"); | |
| } | |
| if (!(utf8[offset + 0] & 0x20)) { | |
| if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) { | |
| throw std::invalid_argument("invalid character"); | |
| } | |
| auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f); | |
| offset += 2; | |
| return result; | |
| } | |
| if (!(utf8[offset + 0] & 0x10)) { | |
| if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) { | |
| throw std::invalid_argument("invalid character"); | |
| } | |
| auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f); | |
| offset += 3; | |
| return result; | |
| } | |
| if (!(utf8[offset + 0] & 0x08)) { | |
| if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { | |
| throw std::invalid_argument("invalid character"); | |
| } | |
| auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f); | |
| offset += 4; | |
| return result; | |
| } | |
| throw std::invalid_argument("failed to convert utf8 to codepoint"); | |
| } | |
| //static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) { | |
| // std::vector<uint16_t> result; | |
| // if (/* 0x0000 <= cp && */ cp <= 0xffff) { | |
| // result.emplace_back(cp); | |
| // return result; | |
| // } | |
| // if (0x10000 <= cp && cp <= 0x10ffff) { | |
| // result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); | |
| // result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); | |
| // return result; | |
| // } | |
| // throw std::invalid_argument("failed to convert codepoint to utf16"); | |
| //} | |
| //static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) { | |
| // std::vector<uint16_t> result; | |
| // for (size_t i = 0; i < cps.size(); ++i) { | |
| // auto temp = unicode_cpt_to_utf16(cps[i]); | |
| // result.insert(result.end(), temp.begin(), temp.end()); | |
| // } | |
| // return result; | |
| //} | |
| //static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) { | |
| // assert(offset < utf16.size()); | |
| // if (((utf16[0] >> 10) << 10) != 0xd800) { | |
| // auto result = utf16[offset + 0]; | |
| // offset += 1; | |
| // return result; | |
| // } | |
| // | |
| // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { | |
| // throw std::invalid_argument("invalid character"); | |
| // } | |
| // | |
| // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); | |
| // offset += 2; | |
| // return result; | |
| //} | |
| //static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) { | |
| // std::vector<uint32_t> result; | |
| // size_t offset = 0; | |
| // while (offset < utf16.size()) { | |
| // result.push_back(unicode_cpt_from_utf16(utf16, offset)); | |
| // } | |
| // return result; | |
| //} | |
| static std::unordered_map<uint32_t, int> unicode_cpt_type_map() { | |
| std::unordered_map<uint32_t, int> cpt_types; | |
| for (auto p : unicode_ranges_number) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_NUMBER; | |
| } | |
| } | |
| for (auto p : unicode_ranges_letter) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_LETTER; | |
| } | |
| } | |
| for (auto p : unicode_ranges_separator) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_SEPARATOR; | |
| } | |
| } | |
| for (auto p : unicode_ranges_accent_mark) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK; | |
| } | |
| } | |
| for (auto p : unicode_ranges_punctuation) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION; | |
| } | |
| } | |
| for (auto p : unicode_ranges_symbol) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_SYMBOL; | |
| } | |
| } | |
| for (auto p : unicode_ranges_control) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| cpt_types[i] = CODEPOINT_TYPE_CONTROL; | |
| } | |
| } | |
| return cpt_types; | |
| } | |
| static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() { | |
| std::unordered_map<uint8_t, std::string> map; | |
| for (int ch = u'!'; ch <= u'~'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[ch] = unicode_cpt_to_utf8(ch); | |
| } | |
| for (int ch = u'¡'; ch <= u'¬'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[ch] = unicode_cpt_to_utf8(ch); | |
| } | |
| for (int ch = u'®'; ch <= u'ÿ'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[ch] = unicode_cpt_to_utf8(ch); | |
| } | |
| auto n = 0; | |
| for (int ch = 0; ch < 256; ++ch) { | |
| if (map.find(ch) == map.end()) { | |
| map[ch] = unicode_cpt_to_utf8(256 + n); | |
| ++n; | |
| } | |
| } | |
| return map; | |
| } | |
| static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() { | |
| std::unordered_map<std::string, uint8_t> map; | |
| for (int ch = u'!'; ch <= u'~'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[unicode_cpt_to_utf8(ch)] = ch; | |
| } | |
| for (int ch = u'¡'; ch <= u'¬'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[unicode_cpt_to_utf8(ch)] = ch; | |
| } | |
| for (int ch = u'®'; ch <= u'ÿ'; ++ch) { | |
| assert(0 <= ch && ch < 256); | |
| map[unicode_cpt_to_utf8(ch)] = ch; | |
| } | |
| auto n = 0; | |
| for (int ch = 0; ch < 256; ++ch) { | |
| if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) { | |
| map[unicode_cpt_to_utf8(256 + n)] = ch; | |
| ++n; | |
| } | |
| } | |
| return map; | |
| } | |
| static inline std::wstring unicode_wstring_from_utf8(const std::string & s) { | |
| std::wstring_convert<std::codecvt_utf8<wchar_t>> conv; | |
| return conv.from_bytes(s); | |
| } | |
| static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) { | |
| std::vector<std::string> bpe_encoded_words; | |
| for (const auto & word : bpe_words) { | |
| std::string text_utf; | |
| auto utf_word = unicode_cpts_from_utf8(word); | |
| for (size_t i = 0; i < utf_word.size(); ++i) { | |
| text_utf += unicode_cpt_to_utf8(utf_word[i]); | |
| } | |
| std::string encoded_token; | |
| for (char & c : text_utf) { | |
| encoded_token += unicode_byte_to_utf8(c); | |
| } | |
| bpe_encoded_words.emplace_back(encoded_token); | |
| } | |
| return bpe_encoded_words; | |
| } | |
| // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ | |
| static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) { | |
| std::vector<size_t> bpe_offsets; // store the offset of each word | |
| bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size | |
| const auto cpts = unicode_cpts_from_utf8(text); | |
| size_t start = 0; | |
| for (auto offset : offsets) { | |
| const size_t offset_ini = start; | |
| const size_t offset_end = start + offset; | |
| assert(offset_end <= cpts.size()); | |
| start = offset_end; | |
| auto _get_cpt = [&] (const size_t pos) -> char32_t { | |
| return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0; | |
| }; | |
| auto _get_cpt_type = [&] (const size_t pos) -> int { | |
| return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED; | |
| }; | |
| size_t _prev_end = offset_ini; | |
| auto _add_token = [&] (const size_t end) -> size_t { | |
| assert(_prev_end <= end && end <= offset_end); | |
| size_t len = end - _prev_end; | |
| if (len > 0) { | |
| bpe_offsets.push_back(len); | |
| } | |
| _prev_end = end; | |
| //if (len > 0) { | |
| // std::string s = ""; | |
| // for(size_t p = end-len; p < end; p++) | |
| // s += unicode_cpt_to_utf8(cpts[p]); | |
| // printf(">>> '%s'\n", s.c_str()); | |
| //} | |
| return len; | |
| }; | |
| for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { | |
| const char32_t cpt = _get_cpt(pos); | |
| const int cpt_type = _get_cpt_type(pos); | |
| // regex: 's|'t|'re|'ve|'m|'ll|'d | |
| if (cpt == '\'' && pos+1 < offset_end) { | |
| char32_t cpt_next = _get_cpt(pos+1); | |
| if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { | |
| pos += _add_token(pos+2); | |
| continue; | |
| } | |
| if (pos+2 < offset_end) { | |
| char32_t cpt_next_next = _get_cpt(pos+2); | |
| if ((cpt_next == 'r' && cpt_next_next == 'e') || | |
| (cpt_next == 'v' && cpt_next_next == 'e') || | |
| (cpt_next == 'l' && cpt_next_next == 'l')) { | |
| pos += _add_token(pos+3); | |
| continue; | |
| } | |
| } | |
| } | |
| char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt); | |
| int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type); | |
| // regex: <space>?\p{L}+ | |
| if (cpt2_type == CODEPOINT_TYPE_LETTER) { | |
| pos += (cpt == ' '); | |
| while (cpt2_type == CODEPOINT_TYPE_LETTER) { | |
| cpt2_type = _get_cpt_type(++pos); | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: <space>?\p{N}+ | |
| if (cpt2_type == CODEPOINT_TYPE_NUMBER) { | |
| pos += (cpt == ' '); | |
| while (cpt2_type == CODEPOINT_TYPE_NUMBER) { | |
| cpt2_type = _get_cpt_type(++pos); | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: <space>?[^\s\p{L}\p{N}]+ | |
| if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) { | |
| pos += (cpt == ' '); | |
| while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) { | |
| cpt2_type = _get_cpt_type(++pos); | |
| cpt2 = _get_cpt(pos); | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| size_t num_whitespaces = 0; | |
| while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) { | |
| num_whitespaces++; | |
| } | |
| // regex: \s+(?!\S) | |
| if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) { | |
| pos += num_whitespaces - 1; | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: \s+ | |
| if (num_whitespaces > 0) { | |
| pos += num_whitespaces; | |
| _add_token(pos); | |
| continue; | |
| } | |
| // no matches | |
| _add_token(++pos); | |
| } | |
| } | |
| return bpe_offsets; | |
| } | |
| // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" | |
| static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) { | |
| std::vector<size_t> bpe_offsets; // store the offset of each word | |
| bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size | |
| const auto cpts = unicode_cpts_from_utf8(text); | |
| size_t start = 0; | |
| for (auto offset : offsets) { | |
| const size_t offset_ini = start; | |
| const size_t offset_end = start + offset; | |
| assert(offset_end <= cpts.size()); | |
| start = offset_end; | |
| auto _get_cpt = [&] (const size_t pos) -> char32_t { | |
| return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0; | |
| }; | |
| auto _get_cpt_type = [&] (const size_t pos) -> int { | |
| return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED; | |
| }; | |
| size_t _prev_end = offset_ini; | |
| auto _add_token = [&] (const size_t end) -> size_t { | |
| assert(_prev_end <= end && end <= offset_end); | |
| size_t len = end - _prev_end; | |
| if (len > 0) { | |
| bpe_offsets.push_back(len); | |
| } | |
| _prev_end = end; | |
| //if (len > 0) { | |
| // std::string s = ""; | |
| // for(size_t p = end-len; p < end; p++) | |
| // s += unicode_cpt_to_utf8(cpts[p]); | |
| // printf(">>> '%s'\n", s.c_str()); | |
| //} | |
| return len; | |
| }; | |
| for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { | |
| const char32_t cpt = _get_cpt(pos); | |
| const int cpt_type = _get_cpt_type(pos); | |
| // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive | |
| if (cpt == '\'' && pos+1 < offset_end) { | |
| char32_t cpt_next = unicode_tolower(_get_cpt(pos+1)); | |
| if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { | |
| pos += _add_token(pos+2); | |
| continue; | |
| } | |
| if (pos+2 < offset_end) { | |
| char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2)); | |
| if ((cpt_next == 'r' && cpt_next_next == 'e') || | |
| (cpt_next == 'v' && cpt_next_next == 'e') || | |
| (cpt_next == 'l' && cpt_next_next == 'l')) { | |
| pos += _add_token(pos+3); | |
| continue; | |
| } | |
| } | |
| } | |
| // regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct? | |
| if (cpt != '\r' && cpt != '\n' && /*cpt_type != CODEPOINT_TYPE_LETTER &&*/ cpt_type != CODEPOINT_TYPE_NUMBER) { | |
| if (cpt_type == CODEPOINT_TYPE_LETTER || _get_cpt_type(pos+1) == CODEPOINT_TYPE_LETTER) { // one or more letters | |
| pos++; | |
| while (_get_cpt_type(pos) == CODEPOINT_TYPE_LETTER) { | |
| pos++; | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| } | |
| // regex: \p{N}{1,3} | |
| if (cpt_type == CODEPOINT_TYPE_NUMBER) { | |
| size_t ini = pos; | |
| while (_get_cpt_type(pos) == CODEPOINT_TYPE_NUMBER) { | |
| if (++pos - ini >= 3 ) { | |
| _add_token(pos); | |
| ini = pos; | |
| } | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]* | |
| char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt); | |
| int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type); | |
| if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) { | |
| pos += (cpt == ' '); | |
| while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) { | |
| cpt2_type = _get_cpt_type(++pos); | |
| cpt2 = _get_cpt(pos); | |
| } | |
| while (cpt2 == '\r' || cpt2 == '\n') { | |
| cpt2 = _get_cpt(++pos); | |
| } | |
| _add_token(pos); | |
| continue; | |
| } | |
| size_t num_whitespaces = 0; | |
| size_t last_end_r_or_n = 0; | |
| while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) { | |
| char32_t cpt2 = _get_cpt(pos+num_whitespaces); | |
| if (cpt2 == '\r' || cpt2 == '\n') { | |
| last_end_r_or_n = pos + num_whitespaces + 1; | |
| } | |
| num_whitespaces++; | |
| } | |
| // regex: \s*[\r\n]+ | |
| if (last_end_r_or_n > 0) { | |
| pos = last_end_r_or_n; | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: \s+(?!\S) | |
| if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) { | |
| pos += num_whitespaces - 1; | |
| _add_token(pos); | |
| continue; | |
| } | |
| // regex: \s+ | |
| if (num_whitespaces > 0) { | |
| pos += num_whitespaces; | |
| _add_token(pos); | |
| continue; | |
| } | |
| // no matches | |
| _add_token(++pos); | |
| } | |
| } | |
| return bpe_offsets; | |
| } | |
| // use std::wregex to split the text | |
| static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) { | |
| std::wregex expr(regex_expr); | |
| std::vector<size_t> bpe_offsets; // store the offset of each word | |
| bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size | |
| size_t start = 0; | |
| for (auto offset : offsets) { | |
| std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr); | |
| std::wcregex_iterator end; | |
| int64_t start_idx = 0; | |
| while (it != end) { | |
| std::wcmatch match = *it; | |
| if (match.position() > start_idx) { | |
| bpe_offsets.emplace_back(match.position() - start_idx); | |
| } | |
| bpe_offsets.emplace_back(match.length()); | |
| start_idx = match.position() + match.length(); | |
| ++it; | |
| } | |
| if (start_idx < (int64_t) offset) { | |
| bpe_offsets.emplace_back(offset - start_idx); | |
| } | |
| start += offset; | |
| } | |
| return bpe_offsets; | |
| } | |
| // use std::regex to split the text | |
| static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { | |
| std::regex expr(regex_expr); | |
| std::vector<size_t> bpe_offsets; // store the offset of each word | |
| bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size | |
| size_t start = 0; | |
| for (auto offset : offsets) { | |
| std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr); | |
| std::cregex_iterator end; | |
| int64_t start_idx = 0; | |
| while (it != end) { | |
| std::cmatch match = *it; | |
| if (match.position() > start_idx) { | |
| bpe_offsets.emplace_back(match.position() - start_idx); | |
| } | |
| bpe_offsets.emplace_back(match.length()); | |
| start_idx = match.position() + match.length(); | |
| ++it; | |
| } | |
| if (start_idx < (int64_t) offset) { | |
| bpe_offsets.emplace_back(offset - start_idx); | |
| } | |
| start += offset; | |
| } | |
| return bpe_offsets; | |
| } | |
| static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { | |
| std::vector<size_t> bpe_offsets; | |
| if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") { | |
| bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); | |
| } else if ( | |
| regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" || | |
| regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") { | |
| bpe_offsets = unicode_regex_split_custom_llama3(text, offsets); | |
| } | |
| return bpe_offsets; | |
| } | |
| // | |
| // interface | |
| // | |
| std::string unicode_cpt_to_utf8(uint32_t cp) { | |
| std::string result; | |
| if (/* 0x00 <= cp && */ cp <= 0x7f) { | |
| result.push_back(cp); | |
| return result; | |
| } | |
| if (0x80 <= cp && cp <= 0x7ff) { | |
| result.push_back(0xc0 | ((cp >> 6) & 0x1f)); | |
| result.push_back(0x80 | (cp & 0x3f)); | |
| return result; | |
| } | |
| if (0x800 <= cp && cp <= 0xffff) { | |
| result.push_back(0xe0 | ((cp >> 12) & 0x0f)); | |
| result.push_back(0x80 | ((cp >> 6) & 0x3f)); | |
| result.push_back(0x80 | (cp & 0x3f)); | |
| return result; | |
| } | |
| if (0x10000 <= cp && cp <= 0x10ffff) { | |
| result.push_back(0xf0 | ((cp >> 18) & 0x07)); | |
| result.push_back(0x80 | ((cp >> 12) & 0x3f)); | |
| result.push_back(0x80 | ((cp >> 6) & 0x3f)); | |
| result.push_back(0x80 | (cp & 0x3f)); | |
| return result; | |
| } | |
| throw std::invalid_argument("invalid codepoint"); | |
| } | |
| std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) { | |
| std::vector<uint32_t> result; | |
| result.reserve(cpts.size()); | |
| for (size_t i = 0; i < cpts.size(); ++i) { | |
| auto it = unicode_map_nfd.find(cpts[i]); | |
| if (it == unicode_map_nfd.end()) { | |
| result.push_back(cpts[i]); | |
| } else { | |
| result.push_back(it->second); | |
| } | |
| } | |
| return result; | |
| } | |
| std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) { | |
| std::vector<uint32_t> result; | |
| size_t offset = 0; | |
| while (offset < utf8.size()) { | |
| result.push_back(unicode_cpt_from_utf8(utf8, offset)); | |
| } | |
| return result; | |
| } | |
| int unicode_cpt_type(uint32_t cp) { | |
| static std::unordered_map<uint32_t, int> cpt_types = unicode_cpt_type_map(); | |
| const auto it = cpt_types.find(cp); | |
| return it == cpt_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second; | |
| } | |
| int unicode_cpt_type(const std::string & utf8) { | |
| if (utf8.length() == 0) { | |
| return CODEPOINT_TYPE_UNIDENTIFIED; | |
| } | |
| size_t offset = 0; | |
| return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset)); | |
| } | |
| bool unicode_cpt_is_whitespace(uint32_t cp) { | |
| static const std::unordered_set<uint32_t> is_whitespace = [] { | |
| std::unordered_set<uint32_t> is_whitespace; | |
| for (auto p : unicode_ranges_whitespace) { | |
| for (auto i = p.first; i <= p.second; ++i) { | |
| is_whitespace.insert(i); | |
| } | |
| } | |
| return is_whitespace; | |
| }(); | |
| return (bool)is_whitespace.count(cp); | |
| } | |
| std::string unicode_byte_to_utf8(uint8_t byte) { | |
| static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map(); | |
| return map.at(byte); | |
| } | |
| uint8_t unicode_utf8_to_byte(const std::string & utf8) { | |
| static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map(); | |
| return map.at(utf8); | |
| } | |
| char32_t unicode_tolower(char32_t cp) { | |
| auto it = unicode_map_lowercase.find(cp); | |
| return it == unicode_map_lowercase.end() ? cp : it->second; | |
| } | |
| std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) { | |
| // unicode categories | |
| static const std::map<std::string, int> k_ucat_enum = { | |
| { "\\p{N}", CODEPOINT_TYPE_NUMBER }, | |
| { "\\p{L}", CODEPOINT_TYPE_LETTER }, | |
| { "\\p{P}", CODEPOINT_TYPE_PUNCTUATION }, | |
| }; | |
| static const std::map<int, int> k_ucat_cpt = { | |
| { CODEPOINT_TYPE_NUMBER, 0xD1 }, | |
| { CODEPOINT_TYPE_LETTER, 0xD2 }, | |
| { CODEPOINT_TYPE_PUNCTUATION, 0xD3 }, | |
| }; | |
| static const std::map<int, std::string> k_ucat_map = { | |
| { CODEPOINT_TYPE_NUMBER, "\x30-\x39" }, // 0-9 | |
| { CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z | |
| { CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} | |
| }; | |
| // compute collapsed codepoints only if needed by at least one regex | |
| bool need_collapse = false; | |
| for (auto & regex_expr : regex_exprs) { | |
| // search for unicode categories | |
| for (const auto & ucat : k_ucat_enum) { | |
| if (std::string::npos != regex_expr.find(ucat.first)) { | |
| need_collapse = true; | |
| break; | |
| } | |
| } | |
| } | |
| const auto cpts = unicode_cpts_from_utf8(text); | |
| // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte | |
| // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935 | |
| std::string text_collapsed; | |
| if (need_collapse) { | |
| // collapse all unicode categories | |
| text_collapsed.resize(cpts.size()); | |
| for (size_t i = 0; i < cpts.size(); ++i) { | |
| // keep single-byte codepoints as is | |
| if (cpts[i] < 128) { | |
| text_collapsed[i] = cpts[i]; | |
| continue; | |
| } | |
| const int cpt_type = unicode_cpt_type(cpts[i]); | |
| if (k_ucat_cpt.find(cpt_type) != k_ucat_cpt.end()) { | |
| text_collapsed[i] = k_ucat_cpt.at(cpt_type); | |
| } else { | |
| text_collapsed[i] = (char) 0xD0; // fallback | |
| } | |
| } | |
| } | |
| std::vector<size_t> bpe_offsets = { cpts.size() }; | |
| for (auto & regex_expr : regex_exprs) { | |
| // first, see if we have an efficient custom regex implementation | |
| auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); | |
| if (!tmp.empty()) { | |
| bpe_offsets = std::move(tmp); | |
| continue; | |
| } | |
| // fallback to general-purpose std::regex / std::wregex | |
| try { | |
| // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category | |
| // with the corresponding collapsed representation | |
| bool use_collapsed = false; | |
| for (auto & ucat : k_ucat_enum) { | |
| if (std::string::npos != regex_expr.find(ucat.first)) { | |
| use_collapsed = true; | |
| break; | |
| } | |
| } | |
| if (use_collapsed) { | |
| // sanity-check that the original regex does not contain any non-ASCII characters | |
| const auto cpts_regex = unicode_cpts_from_utf8(regex_expr); | |
| for (size_t i = 0; i < cpts_regex.size(); ++i) { | |
| if (cpts_regex[i] >= 128) { | |
| throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported"); | |
| } | |
| } | |
| // generate a collapsed representation of the regex | |
| std::string regex_expr_collapsed; | |
| // track if we are inside [], because nested [] are not allowed | |
| bool inside = false; | |
| for (size_t i = 0; i < regex_expr.size(); ++i) { | |
| if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) { | |
| regex_expr_collapsed += '['; | |
| inside = true; | |
| continue; | |
| } | |
| if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') { | |
| regex_expr_collapsed += ']'; | |
| inside = false; | |
| continue; | |
| } | |
| if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() && | |
| regex_expr[i + 1] == 'p' && | |
| regex_expr[i + 2] == '{' && | |
| regex_expr[i + 4] == '}') { | |
| const std::string pat = regex_expr.substr(i, 5); | |
| if (k_ucat_enum.find(pat) != k_ucat_enum.end()) { | |
| if (!inside) { | |
| regex_expr_collapsed += '['; | |
| } | |
| regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat)); | |
| regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat)); | |
| if (!inside) { | |
| regex_expr_collapsed += ']'; | |
| } | |
| i += 4; | |
| continue; | |
| } | |
| } | |
| regex_expr_collapsed += regex_expr[i]; | |
| } | |
| //printf("text_collapsed: %s\n", text_collapsed.c_str()); | |
| //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str()); | |
| bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets); | |
| } else { | |
| // no unicode category used, we can use std::wregex directly | |
| const std::wstring wtext = unicode_wstring_from_utf8(text); | |
| const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr); | |
| //printf("text: %s\n", text.c_str()); | |
| //printf("regex_expr: %s\n", regex_expr.c_str()); | |
| bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets); | |
| } | |
| } catch (std::regex_error & e) { | |
| fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str()); | |
| fprintf(stderr, "Regex error: %s\n", e.what()); | |
| throw std::runtime_error("Failed to process regex"); | |
| } | |
| } | |
| std::vector<std::string> bpe_words; | |
| bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size | |
| size_t start = 0; | |
| for (size_t & offset : bpe_offsets) { | |
| bpe_words.emplace_back(); | |
| for (size_t i = start; i < start + offset; ++i) { | |
| bpe_words.back() += unicode_cpt_to_utf8(cpts[i]); | |
| } | |
| start += offset; | |
| } | |
| return unicode_byte_encoding_process(bpe_words); | |
| } | |