Spaces:
Running
Running
| // Talk with AI | |
| // | |
| std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { | |
| auto * model = llama_get_model(ctx); | |
| // upper limit for the number of tokens | |
| int n_tokens = text.length() + add_bos; | |
| std::vector<llama_token> result(n_tokens); | |
| n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false); | |
| if (n_tokens < 0) { | |
| result.resize(-n_tokens); | |
| int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false); | |
| GGML_ASSERT(check == -n_tokens); | |
| } else { | |
| result.resize(n_tokens); | |
| } | |
| return result; | |
| } | |
| std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { | |
| std::vector<char> result(8, 0); | |
| const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false); | |
| if (n_tokens < 0) { | |
| result.resize(-n_tokens); | |
| int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false); | |
| GGML_ASSERT(check == -n_tokens); | |
| } else { | |
| result.resize(n_tokens); | |
| } | |
| return std::string(result.data(), result.size()); | |
| } | |
| // command-line parameters | |
| struct whisper_params { | |
| int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); | |
| int32_t voice_ms = 10000; | |
| int32_t capture_id = -1; | |
| int32_t max_tokens = 32; | |
| int32_t audio_ctx = 0; | |
| int32_t n_gpu_layers = 999; | |
| float vad_thold = 0.6f; | |
| float freq_thold = 100.0f; | |
| bool speed_up = false; | |
| bool translate = false; | |
| bool print_special = false; | |
| bool print_energy = false; | |
| bool no_timestamps = true; | |
| bool verbose_prompt = false; | |
| bool use_gpu = true; | |
| bool flash_attn = false; | |
| std::string person = "Georgi"; | |
| std::string bot_name = "LLaMA"; | |
| std::string wake_cmd = ""; | |
| std::string heard_ok = ""; | |
| std::string language = "en"; | |
| std::string model_wsp = "models/ggml-base.en.bin"; | |
| std::string model_llama = "models/ggml-llama-7B.bin"; | |
| std::string speak = "./examples/talk-llama/speak"; | |
| std::string speak_file = "./examples/talk-llama/to_speak.txt"; | |
| std::string prompt = ""; | |
| std::string fname_out; | |
| std::string path_session = ""; // path to file for saving/loading model eval state | |
| }; | |
| void whisper_print_usage(int argc, char ** argv, const whisper_params & params); | |
| bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { | |
| for (int i = 1; i < argc; i++) { | |
| std::string arg = argv[i]; | |
| if (arg == "-h" || arg == "--help") { | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } | |
| else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); } | |
| else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } | |
| else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } | |
| else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } | |
| else if (arg == "-ngl" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(argv[++i]); } | |
| else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } | |
| else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } | |
| else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } | |
| else if (arg == "-tr" || arg == "--translate") { params.translate = true; } | |
| else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } | |
| else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } | |
| else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; } | |
| else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; } | |
| else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; } | |
| else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; } | |
| else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; } | |
| else if (arg == "--session") { params.path_session = argv[++i]; } | |
| else if (arg == "-w" || arg == "--wake-command") { params.wake_cmd = argv[++i]; } | |
| else if (arg == "-ho" || arg == "--heard-ok") { params.heard_ok = argv[++i]; } | |
| else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } | |
| else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; } | |
| else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; } | |
| else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; } | |
| else if (arg == "-sf" || arg == "--speak-file") { params.speak_file = argv[++i]; } | |
| else if (arg == "--prompt-file") { | |
| std::ifstream file(argv[++i]); | |
| std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
| if (params.prompt.back() == '\n') { | |
| params.prompt.pop_back(); | |
| } | |
| } | |
| else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } | |
| else { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| } | |
| return true; | |
| } | |
| void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "options:\n"); | |
| fprintf(stderr, " -h, --help [default] show this help message and exit\n"); | |
| fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); | |
| fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms); | |
| fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); | |
| fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); | |
| fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); | |
| fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers); | |
| fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); | |
| fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); | |
| fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); | |
| fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); | |
| fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); | |
| fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); | |
| fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false"); | |
| fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true"); | |
| fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false"); | |
| fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str()); | |
| fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str()); | |
| fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str()); | |
| fprintf(stderr, " -ho TEXT, --heard-ok TEXT [%-7s] said by TTS before generating reply\n", params.heard_ok.c_str()); | |
| fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); | |
| fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str()); | |
| fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str()); | |
| fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str()); | |
| fprintf(stderr, " -sf FILE, --speak-file [%-7s] file to pass to TTS\n", params.speak_file.c_str()); | |
| fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", ""); | |
| fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n"); | |
| fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); | |
| fprintf(stderr, "\n"); | |
| } | |
| std::string transcribe( | |
| whisper_context * ctx, | |
| const whisper_params & params, | |
| const std::vector<float> & pcmf32, | |
| const std::string prompt_text, | |
| float & prob, | |
| int64_t & t_ms) { | |
| const auto t_start = std::chrono::high_resolution_clock::now(); | |
| prob = 0.0f; | |
| t_ms = 0; | |
| std::vector<whisper_token> prompt_tokens; | |
| whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); | |
| prompt_tokens.resize(1024); | |
| prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size())); | |
| wparams.print_progress = false; | |
| wparams.print_special = params.print_special; | |
| wparams.print_realtime = false; | |
| wparams.print_timestamps = !params.no_timestamps; | |
| wparams.translate = params.translate; | |
| wparams.no_context = true; | |
| wparams.single_segment = true; | |
| wparams.max_tokens = params.max_tokens; | |
| wparams.language = params.language.c_str(); | |
| wparams.n_threads = params.n_threads; | |
| wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data(); | |
| wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size(); | |
| wparams.audio_ctx = params.audio_ctx; | |
| wparams.speed_up = params.speed_up; | |
| if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { | |
| return ""; | |
| } | |
| int prob_n = 0; | |
| std::string result; | |
| const int n_segments = whisper_full_n_segments(ctx); | |
| for (int i = 0; i < n_segments; ++i) { | |
| const char * text = whisper_full_get_segment_text(ctx, i); | |
| result += text; | |
| const int n_tokens = whisper_full_n_tokens(ctx, i); | |
| for (int j = 0; j < n_tokens; ++j) { | |
| const auto token = whisper_full_get_token_data(ctx, i, j); | |
| prob += token.p; | |
| ++prob_n; | |
| } | |
| } | |
| if (prob_n > 0) { | |
| prob /= prob_n; | |
| } | |
| const auto t_end = std::chrono::high_resolution_clock::now(); | |
| t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count(); | |
| return result; | |
| } | |
| std::vector<std::string> get_words(const std::string &txt) { | |
| std::vector<std::string> words; | |
| std::istringstream iss(txt); | |
| std::string word; | |
| while (iss >> word) { | |
| words.push_back(word); | |
| } | |
| return words; | |
| } | |
| const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)"; | |
| const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}. | |
| {1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision. | |
| There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other. | |
| The transcript only includes text, it does not include markup like HTML and Markdown. | |
| {1} responds with short and concise answers. | |
| {0}{4} Hello, {1}! | |
| {1}{4} Hello {0}! How may I help you today? | |
| {0}{4} What time is it? | |
| {1}{4} It is {2} o'clock. | |
| {0}{4} What year is it? | |
| {1}{4} We are in {3}. | |
| {0}{4} What is a cat? | |
| {1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae. | |
| {0}{4} Name a color. | |
| {1}{4} Blue | |
| {0}{4})"; | |
| int main(int argc, char ** argv) { | |
| whisper_params params; | |
| if (whisper_params_parse(argc, argv, params) == false) { | |
| return 1; | |
| } | |
| if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) { | |
| fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| // whisper init | |
| struct whisper_context_params cparams = whisper_context_default_params(); | |
| cparams.use_gpu = params.use_gpu; | |
| cparams.flash_attn = params.flash_attn; | |
| struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams); | |
| if (!ctx_wsp) { | |
| fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw <modelfile>\n"); | |
| return 1; | |
| } | |
| // llama init | |
| llama_backend_init(); | |
| auto lmparams = llama_model_default_params(); | |
| if (!params.use_gpu) { | |
| lmparams.n_gpu_layers = 0; | |
| } else { | |
| lmparams.n_gpu_layers = params.n_gpu_layers; | |
| } | |
| struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams); | |
| if (!model_llama) { | |
| fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n"); | |
| return 1; | |
| } | |
| llama_context_params lcparams = llama_context_default_params(); | |
| // tune these to your liking | |
| lcparams.n_ctx = 2048; | |
| lcparams.seed = 1; | |
| lcparams.n_threads = params.n_threads; | |
| lcparams.flash_attn = params.flash_attn; | |
| struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams); | |
| // print some info about the processing | |
| { | |
| fprintf(stderr, "\n"); | |
| if (!whisper_is_multilingual(ctx_wsp)) { | |
| if (params.language != "en" || params.translate) { | |
| params.language = "en"; | |
| params.translate = false; | |
| fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); | |
| } | |
| } | |
| fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", | |
| __func__, | |
| params.n_threads, | |
| params.language.c_str(), | |
| params.translate ? "translate" : "transcribe", | |
| params.no_timestamps ? 0 : 1); | |
| fprintf(stderr, "\n"); | |
| } | |
| // init audio | |
| audio_async audio(30*1000); | |
| if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { | |
| fprintf(stderr, "%s: audio.init() failed!\n", __func__); | |
| return 1; | |
| } | |
| audio.resume(); | |
| bool is_running = true; | |
| bool force_speak = false; | |
| float prob0 = 0.0f; | |
| const std::string chat_symb = ":"; | |
| std::vector<float> pcmf32_cur; | |
| std::vector<float> pcmf32_prompt; | |
| const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", params.bot_name); | |
| // construct the initial prompt for LLaMA inference | |
| std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt; | |
| // need to have leading ' ' | |
| prompt_llama.insert(0, 1, ' '); | |
| prompt_llama = ::replace(prompt_llama, "{0}", params.person); | |
| prompt_llama = ::replace(prompt_llama, "{1}", params.bot_name); | |
| { | |
| // get time string | |
| std::string time_str; | |
| { | |
| time_t t = time(0); | |
| struct tm * now = localtime(&t); | |
| char buf[128]; | |
| strftime(buf, sizeof(buf), "%H:%M", now); | |
| time_str = buf; | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{2}", time_str); | |
| } | |
| { | |
| // get year string | |
| std::string year_str; | |
| { | |
| time_t t = time(0); | |
| struct tm * now = localtime(&t); | |
| char buf[128]; | |
| strftime(buf, sizeof(buf), "%Y", now); | |
| year_str = buf; | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{3}", year_str); | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{4}", chat_symb); | |
| llama_batch batch = llama_batch_init(llama_n_ctx(ctx_llama), 0, 1); | |
| // init session | |
| std::string path_session = params.path_session; | |
| std::vector<llama_token> session_tokens; | |
| auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true); | |
| if (!path_session.empty()) { | |
| fprintf(stderr, "%s: attempting to load saved session from %s\n", __func__, path_session.c_str()); | |
| // fopen to check for existing session | |
| FILE * fp = std::fopen(path_session.c_str(), "rb"); | |
| if (fp != NULL) { | |
| std::fclose(fp); | |
| session_tokens.resize(llama_n_ctx(ctx_llama)); | |
| size_t n_token_count_out = 0; | |
| if (!llama_load_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { | |
| fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); | |
| return 1; | |
| } | |
| session_tokens.resize(n_token_count_out); | |
| for (size_t i = 0; i < session_tokens.size(); i++) { | |
| embd_inp[i] = session_tokens[i]; | |
| } | |
| fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); | |
| } else { | |
| fprintf(stderr, "%s: session file does not exist, will create\n", __func__); | |
| } | |
| } | |
| // evaluate the initial prompt | |
| printf("\n"); | |
| printf("%s : initializing - please wait ...\n", __func__); | |
| // prepare batch | |
| { | |
| batch.n_tokens = embd_inp.size(); | |
| for (int i = 0; i < batch.n_tokens; i++) { | |
| batch.token[i] = embd_inp[i]; | |
| batch.pos[i] = i; | |
| batch.n_seq_id[i] = 1; | |
| batch.seq_id[i][0] = 0; | |
| batch.logits[i] = i == batch.n_tokens - 1; | |
| } | |
| } | |
| if (llama_decode(ctx_llama, batch)) { | |
| fprintf(stderr, "%s : failed to decode\n", __func__); | |
| return 1; | |
| } | |
| if (params.verbose_prompt) { | |
| fprintf(stdout, "\n"); | |
| fprintf(stdout, "%s", prompt_llama.c_str()); | |
| fflush(stdout); | |
| } | |
| // debug message about similarity of saved session, if applicable | |
| size_t n_matching_session_tokens = 0; | |
| if (session_tokens.size()) { | |
| for (llama_token id : session_tokens) { | |
| if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { | |
| break; | |
| } | |
| n_matching_session_tokens++; | |
| } | |
| if (n_matching_session_tokens >= embd_inp.size()) { | |
| fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__); | |
| } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { | |
| fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", | |
| __func__, n_matching_session_tokens, embd_inp.size()); | |
| } else { | |
| fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n", | |
| __func__, n_matching_session_tokens, embd_inp.size()); | |
| } | |
| } | |
| // HACK - because session saving incurs a non-negligible delay, for now skip re-saving session | |
| // if we loaded a session with at least 75% similarity. It's currently just used to speed up the | |
| // initial prompt so it doesn't need to be an exact match. | |
| bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4); | |
| printf("%s : done! start speaking in the microphone\n", __func__); | |
| // show wake command if enabled | |
| const std::string wake_cmd = params.wake_cmd; | |
| const int wake_cmd_length = get_words(wake_cmd).size(); | |
| const bool use_wake_cmd = wake_cmd_length > 0; | |
| if (use_wake_cmd) { | |
| printf("%s : the wake-up command is: '%s%s%s'\n", __func__, "\033[1m", wake_cmd.c_str(), "\033[0m"); | |
| } | |
| printf("\n"); | |
| printf("%s%s", params.person.c_str(), chat_symb.c_str()); | |
| fflush(stdout); | |
| // clear audio buffer | |
| audio.clear(); | |
| // text inference variables | |
| const int voice_id = 2; | |
| const int n_keep = embd_inp.size(); | |
| const int n_ctx = llama_n_ctx(ctx_llama); | |
| int n_past = n_keep; | |
| int n_prev = 64; // TODO arg | |
| int n_session_consumed = !path_session.empty() && session_tokens.size() > 0 ? session_tokens.size() : 0; | |
| std::vector<llama_token> embd; | |
| // reverse prompts for detecting when it's time to stop speaking | |
| std::vector<std::string> antiprompts = { | |
| params.person + chat_symb, | |
| }; | |
| // main loop | |
| while (is_running) { | |
| // handle Ctrl + C | |
| is_running = sdl_poll_events(); | |
| if (!is_running) { | |
| break; | |
| } | |
| // delay | |
| std::this_thread::sleep_for(std::chrono::milliseconds(100)); | |
| int64_t t_ms = 0; | |
| { | |
| audio.get(2000, pcmf32_cur); | |
| if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) { | |
| //fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); | |
| audio.get(params.voice_ms, pcmf32_cur); | |
| std::string all_heard; | |
| if (!force_speak) { | |
| all_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms)); | |
| } | |
| const auto words = get_words(all_heard); | |
| std::string wake_cmd_heard; | |
| std::string text_heard; | |
| for (int i = 0; i < (int) words.size(); ++i) { | |
| if (i < wake_cmd_length) { | |
| wake_cmd_heard += words[i] + " "; | |
| } else { | |
| text_heard += words[i] + " "; | |
| } | |
| } | |
| // check if audio starts with the wake-up command if enabled | |
| if (use_wake_cmd) { | |
| const float sim = similarity(wake_cmd_heard, wake_cmd); | |
| if ((sim < 0.7f) || (text_heard.empty())) { | |
| audio.clear(); | |
| continue; | |
| } | |
| } | |
| // optionally give audio feedback that the current text is being processed | |
| if (!params.heard_ok.empty()) { | |
| speak_with_file(params.speak, params.heard_ok, params.speak_file, voice_id); | |
| } | |
| // remove text between brackets using regex | |
| { | |
| std::regex re("\\[.*?\\]"); | |
| text_heard = std::regex_replace(text_heard, re, ""); | |
| } | |
| // remove text between brackets using regex | |
| { | |
| std::regex re("\\(.*?\\)"); | |
| text_heard = std::regex_replace(text_heard, re, ""); | |
| } | |
| // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' | |
| text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); | |
| // take first line | |
| text_heard = text_heard.substr(0, text_heard.find_first_of('\n')); | |
| // remove leading and trailing whitespace | |
| text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); | |
| text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); | |
| const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false); | |
| if (text_heard.empty() || tokens.empty() || force_speak) { | |
| //fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__); | |
| audio.clear(); | |
| continue; | |
| } | |
| force_speak = false; | |
| text_heard.insert(0, 1, ' '); | |
| text_heard += "\n" + params.bot_name + chat_symb; | |
| fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m"); | |
| fflush(stdout); | |
| embd = ::llama_tokenize(ctx_llama, text_heard, false); | |
| // Append the new input tokens to the session_tokens vector | |
| if (!path_session.empty()) { | |
| session_tokens.insert(session_tokens.end(), tokens.begin(), tokens.end()); | |
| } | |
| // text inference | |
| bool done = false; | |
| std::string text_to_speak; | |
| while (true) { | |
| // predict | |
| if (embd.size() > 0) { | |
| if (n_past + (int) embd.size() > n_ctx) { | |
| n_past = n_keep; | |
| // insert n_left/2 tokens at the start of embd from last_n_tokens | |
| embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end()); | |
| // stop saving session if we run out of context | |
| path_session = ""; | |
| //printf("\n---\n"); | |
| //printf("resetting: '"); | |
| //for (int i = 0; i < (int) embd.size(); i++) { | |
| // printf("%s", llama_token_to_piece(ctx_llama, embd[i])); | |
| //} | |
| //printf("'\n"); | |
| //printf("\n---\n"); | |
| } | |
| // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) | |
| // REVIEW | |
| if (n_session_consumed < (int) session_tokens.size()) { | |
| size_t i = 0; | |
| for ( ; i < embd.size(); i++) { | |
| if (embd[i] != session_tokens[n_session_consumed]) { | |
| session_tokens.resize(n_session_consumed); | |
| break; | |
| } | |
| n_past++; | |
| n_session_consumed++; | |
| if (n_session_consumed >= (int) session_tokens.size()) { | |
| i++; | |
| break; | |
| } | |
| } | |
| if (i > 0) { | |
| embd.erase(embd.begin(), embd.begin() + i); | |
| } | |
| } | |
| if (embd.size() > 0 && !path_session.empty()) { | |
| session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); | |
| n_session_consumed = session_tokens.size(); | |
| } | |
| // prepare batch | |
| { | |
| batch.n_tokens = embd.size(); | |
| for (int i = 0; i < batch.n_tokens; i++) { | |
| batch.token[i] = embd[i]; | |
| batch.pos[i] = n_past + i; | |
| batch.n_seq_id[i] = 1; | |
| batch.seq_id[i][0] = 0; | |
| batch.logits[i] = i == batch.n_tokens - 1; | |
| } | |
| } | |
| if (llama_decode(ctx_llama, batch)) { | |
| fprintf(stderr, "%s : failed to decode\n", __func__); | |
| return 1; | |
| } | |
| } | |
| embd_inp.insert(embd_inp.end(), embd.begin(), embd.end()); | |
| n_past += embd.size(); | |
| embd.clear(); | |
| if (done) break; | |
| { | |
| // out of user input, sample next token | |
| const float top_k = 5; | |
| const float top_p = 0.80f; | |
| const float temp = 0.30f; | |
| const float repeat_penalty = 1.1764f; | |
| const int repeat_last_n = 256; | |
| if (!path_session.empty() && need_to_save_session) { | |
| need_to_save_session = false; | |
| llama_save_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size()); | |
| } | |
| llama_token id = 0; | |
| { | |
| auto logits = llama_get_logits(ctx_llama); | |
| auto n_vocab = llama_n_vocab(model_llama); | |
| logits[llama_token_eos(model_llama)] = 0; | |
| std::vector<llama_token_data> candidates; | |
| candidates.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
| // apply repeat penalty | |
| const float nl_logit = logits[llama_token_nl(model_llama)]; | |
| llama_sample_repetition_penalties(ctx_llama, &candidates_p, | |
| embd_inp.data() + std::max(0, n_past - repeat_last_n), | |
| repeat_last_n, repeat_penalty, 0.0, 0.0f); | |
| logits[llama_token_nl(model_llama)] = nl_logit; | |
| if (temp <= 0) { | |
| // Greedy sampling | |
| id = llama_sample_token_greedy(ctx_llama, &candidates_p); | |
| } else { | |
| // Temperature sampling | |
| llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1); | |
| llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1); | |
| llama_sample_temp (ctx_llama, &candidates_p, temp); | |
| id = llama_sample_token(ctx_llama, &candidates_p); | |
| } | |
| } | |
| if (id != llama_token_eos(model_llama)) { | |
| // add it to the context | |
| embd.push_back(id); | |
| text_to_speak += llama_token_to_piece(ctx_llama, id); | |
| printf("%s", llama_token_to_piece(ctx_llama, id).c_str()); | |
| fflush(stdout); | |
| } | |
| } | |
| { | |
| std::string last_output; | |
| for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) { | |
| last_output += llama_token_to_piece(ctx_llama, embd_inp[i]); | |
| } | |
| last_output += llama_token_to_piece(ctx_llama, embd[0]); | |
| for (std::string & antiprompt : antiprompts) { | |
| if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { | |
| done = true; | |
| text_to_speak = ::replace(text_to_speak, antiprompt, ""); | |
| fflush(stdout); | |
| need_to_save_session = true; | |
| break; | |
| } | |
| } | |
| } | |
| is_running = sdl_poll_events(); | |
| if (!is_running) { | |
| break; | |
| } | |
| } | |
| speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id); | |
| audio.clear(); | |
| } | |
| } | |
| } | |
| audio.pause(); | |
| whisper_print_timings(ctx_wsp); | |
| whisper_free(ctx_wsp); | |
| llama_print_timings(ctx_llama); | |
| llama_free(ctx_llama); | |
| return 0; | |
| } | |