Spaces:
Running
Running
| import argparse | |
| import importlib.util | |
| spec = importlib.util.spec_from_file_location('whisper_to_coreml', 'models/convert-whisper-to-coreml.py') | |
| whisper_to_coreml = importlib.util.module_from_spec(spec) | |
| spec.loader.exec_module(whisper_to_coreml) | |
| from whisper import load_model | |
| from copy import deepcopy | |
| import torch | |
| from transformers import WhisperForConditionalGeneration | |
| from huggingface_hub import metadata_update | |
| # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
| WHISPER_MAPPING = { | |
| "layers": "blocks", | |
| "fc1": "mlp.0", | |
| "fc2": "mlp.2", | |
| "final_layer_norm": "mlp_ln", | |
| "layers": "blocks", | |
| ".self_attn.q_proj": ".attn.query", | |
| ".self_attn.k_proj": ".attn.key", | |
| ".self_attn.v_proj": ".attn.value", | |
| ".self_attn_layer_norm": ".attn_ln", | |
| ".self_attn.out_proj": ".attn.out", | |
| ".encoder_attn.q_proj": ".cross_attn.query", | |
| ".encoder_attn.k_proj": ".cross_attn.key", | |
| ".encoder_attn.v_proj": ".cross_attn.value", | |
| ".encoder_attn_layer_norm": ".cross_attn_ln", | |
| ".encoder_attn.out_proj": ".cross_attn.out", | |
| "decoder.layer_norm.": "decoder.ln.", | |
| "encoder.layer_norm.": "encoder.ln_post.", | |
| "embed_tokens": "token_embedding", | |
| "encoder.embed_positions.weight": "encoder.positional_embedding", | |
| "decoder.embed_positions.weight": "decoder.positional_embedding", | |
| "layer_norm": "ln_post", | |
| } | |
| # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
| def rename_keys(s_dict): | |
| keys = list(s_dict.keys()) | |
| for key in keys: | |
| new_key = key | |
| for k, v in WHISPER_MAPPING.items(): | |
| if k in key: | |
| new_key = new_key.replace(k, v) | |
| print(f"{key} -> {new_key}") | |
| s_dict[new_key] = s_dict.pop(key) | |
| return s_dict | |
| # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
| def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str): | |
| transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path) | |
| config = transformer_model.config | |
| # first build dims | |
| dims = { | |
| 'n_mels': config.num_mel_bins, | |
| 'n_vocab': config.vocab_size, | |
| 'n_audio_ctx': config.max_source_positions, | |
| 'n_audio_state': config.d_model, | |
| 'n_audio_head': config.encoder_attention_heads, | |
| 'n_audio_layer': config.encoder_layers, | |
| 'n_text_ctx': config.max_target_positions, | |
| 'n_text_state': config.d_model, | |
| 'n_text_head': config.decoder_attention_heads, | |
| 'n_text_layer': config.decoder_layers | |
| } | |
| state_dict = deepcopy(transformer_model.model.state_dict()) | |
| state_dict = rename_keys(state_dict) | |
| torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path) | |
| # Ported from models/convert-whisper-to-coreml.py | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, large-v3-turbo)", required=True) | |
| parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True) | |
| parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False) | |
| parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False) | |
| parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False) | |
| args = parser.parse_args() | |
| if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]: | |
| raise ValueError("Invalid model name") | |
| pt_target_path = f"models/hf-{args.model_name}.pt" | |
| convert_hf_whisper(args.model_path, pt_target_path) | |
| whisper = load_model(pt_target_path).cpu() | |
| hparams = whisper.dims | |
| print(hparams) | |
| if args.optimize_ane: | |
| whisperANE = whisper_to_coreml.WhisperANE(hparams).eval() | |
| whisperANE.load_state_dict(whisper.state_dict()) | |
| encoder = whisperANE.encoder | |
| decoder = whisperANE.decoder | |
| else: | |
| encoder = whisper.encoder | |
| decoder = whisper.decoder | |
| # Convert encoder | |
| encoder = whisper_to_coreml.convert_encoder(hparams, encoder, quantize=args.quantize) | |
| encoder.save(f"models/coreml-encoder-{args.model_name}.mlpackage") | |
| if args.encoder_only is False: | |
| # Convert decoder | |
| decoder = whisper_to_coreml.convert_decoder(hparams, decoder, quantize=args.quantize) | |
| decoder.save(f"models/coreml-decoder-{args.model_name}.mlpackage") | |
| print("done converting") | |