Spaces:
Running
Running
| struct llama_cparams; | |
| struct llama_hparams; | |
| struct llama_ubatch; | |
| struct llama_kv_cache : public llama_memory_i { | |
| using llama_memory_i::llama_memory_i; | |
| virtual void restore() = 0; // call if batch processing fails - restores the cache state | |
| virtual void commit() = 0; // call after successful batch processing - clears any pending state | |
| virtual int32_t get_n_tokens() const = 0; | |
| virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache | |
| virtual bool get_can_shift() const = 0; | |
| bool get_can_edit() const override { return get_can_shift(); } | |
| }; | |
| struct llama_kv_cache_guard { | |
| llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} | |
| ~llama_kv_cache_guard() { | |
| kv->restore(); | |
| } | |
| void commit() { | |
| kv->commit(); | |
| } | |
| private: | |
| llama_kv_cache * kv; | |
| }; | |
| struct llama_kv_cell { | |
| llama_pos pos = -1; | |
| llama_pos delta = 0; | |
| int32_t src = -1; // used by recurrent state models to copy states | |
| int32_t tail = -1; | |
| std::set<llama_seq_id> seq_id; | |
| bool has_seq_id(const llama_seq_id & id) const { | |
| return seq_id.find(id) != seq_id.end(); | |
| } | |
| bool is_empty() const { | |
| return seq_id.empty(); | |
| } | |
| bool is_same_seq(const llama_kv_cell & other) const { | |
| return seq_id == other.seq_id; | |
| } | |
| }; | |
| // ring-buffer of cached KV data | |
| // TODO: pimpl | |
| // TODO: add notion of max sequences | |
| class llama_kv_cache_unified : public llama_kv_cache { | |
| public: | |
| // can be used to query data from the model if needed | |
| struct callbacks { | |
| std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors; | |
| }; | |
| llama_kv_cache_unified( | |
| const llama_hparams & hparams, | |
| callbacks cbs); | |
| virtual ~llama_kv_cache_unified() = default; | |
| // TODO: become constructor | |
| bool init( | |
| const llama_model & model, // TODO: do not reference the model | |
| const llama_cparams & cparams, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| uint32_t kv_size, | |
| bool offload); | |
| int32_t get_n_tokens() const override; | |
| int32_t get_used_cells() const override; | |
| size_t total_size() const; | |
| // TODO: better data structures to reduce the cost of this operation | |
| llama_pos pos_max() const; | |
| void clear() override; | |
| void defrag() override; | |
| virtual void restore() override; | |
| virtual void commit() override; | |
| bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; | |
| void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; | |
| void seq_keep(llama_seq_id seq_id) override; | |
| void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; | |
| void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; | |
| llama_pos seq_pos_max(llama_seq_id seq_id) const override; | |
| bool get_can_shift() const override; | |
| // find an empty slot of size "n_tokens" in the cache | |
| // updates the cache head | |
| // Note: On success, it's important that cache.head points | |
| // to the first cell of the slot. | |
| bool find_slot(const llama_ubatch & batch); | |
| // TODO: maybe not needed | |
| uint32_t get_padding(const llama_cparams & cparams) const; | |
| // find how many cells are currently in use | |
| uint32_t cell_max() const; | |
| size_t size_k_bytes() const; | |
| size_t size_v_bytes() const; | |
| // defrag | |
| struct { | |
| std::vector<uint32_t> ids; | |
| } defrag_info; | |
| // return true if cells have been moved | |
| bool defrag_prepare(int32_t n_max_nodes); | |
| // commit/restore cache | |
| struct slot_range { | |
| uint32_t c0 = 0; // note: these are cell indices, not sequence positions | |
| uint32_t c1 = 0; | |
| }; | |
| // pending cell updates that are not yet committed | |
| struct { | |
| std::vector<slot_range> ranges; | |
| } pending; | |
| // state write/load | |
| void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const; | |
| void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1); | |
| // members | |
| const llama_hparams & hparams; | |
| callbacks cbs; | |
| bool has_shift = false; | |
| bool do_defrag = false; | |
| // TODO: remove this and implement llama_kv_cache_recurrent instead | |
| bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token | |
| bool v_trans = true; // the value tensor is transposed | |
| bool can_shift = false; | |
| // Note: The value of head isn't only used to optimize searching | |
| // for a free KV slot. llama_decode_impl also uses it, so it | |
| // cannot be freely changed after a slot has been allocated. | |
| uint32_t head = 0; | |
| uint32_t size = 0; | |
| uint32_t used = 0; // used cells (i.e. at least one seq_id) | |
| // computed before each graph build | |
| uint32_t n = 0; | |
| std::vector<llama_kv_cell> cells; | |
| std::vector<ggml_tensor *> k_l; // per layer | |
| std::vector<ggml_tensor *> v_l; | |
| private: | |
| ggml_type type_k = GGML_TYPE_F16; | |
| ggml_type type_v = GGML_TYPE_F16; | |
| std::vector<ggml_context_ptr> ctxs; | |
| std::vector<ggml_backend_buffer_ptr> bufs; | |
| void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const; | |
| void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const; | |
| bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); | |
| bool state_read_data(llama_io_read_i & io, uint32_t cell_count); | |
| }; | |
| // TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified | |
| //class llama_kv_cache_recurrent : public llama_kv_cache_unified { | |
| //public: | |
| // using llama_kv_cache_unified::llama_kv_cache_unified; | |
| //}; | |
| // | |
| // kv cache view | |
| // | |
| llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max); | |
| void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv); | |