Spaces:
Sleeping
Sleeping
| // backend buffer | |
| ggml_backend_buffer_t ggml_backend_buffer_init( | |
| struct ggml_backend * backend, | |
| struct ggml_backend_buffer_i iface, | |
| ggml_backend_buffer_context_t context, | |
| size_t size) { | |
| ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); | |
| GGML_ASSERT(iface.get_base != NULL); | |
| (*buffer) = (struct ggml_backend_buffer) { | |
| /* .interface = */ iface, | |
| /* .backend = */ backend, | |
| /* .context = */ context, | |
| /* .size = */ size, | |
| }; | |
| return buffer; | |
| } | |
| void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { | |
| if (buffer == NULL) { | |
| return; | |
| } | |
| if (buffer->iface.free_buffer != NULL) { | |
| buffer->iface.free_buffer(buffer); | |
| } | |
| free(buffer); | |
| } | |
| size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { | |
| return ggml_backend_get_alignment(buffer->backend); | |
| } | |
| size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { | |
| return buffer->size; | |
| } | |
| void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { | |
| void * base = buffer->iface.get_base(buffer); | |
| GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL"); | |
| return base; | |
| } | |
| size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
| // get_alloc_size is optional, defaults to ggml_nbytes | |
| if (buffer->iface.get_alloc_size) { | |
| return buffer->iface.get_alloc_size(buffer, tensor); | |
| } | |
| return ggml_nbytes(tensor); | |
| } | |
| void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
| // init_tensor is optional | |
| if (buffer->iface.init_tensor) { | |
| buffer->iface.init_tensor(buffer, tensor); | |
| } | |
| } | |
| void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
| // free_tensor is optional | |
| if (buffer->iface.free_tensor) { | |
| buffer->iface.free_tensor(buffer, tensor); | |
| } | |
| } | |
| // backend | |
| ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) { | |
| return tensor->buffer ? tensor->buffer->backend : NULL; | |
| } | |
| const char * ggml_backend_name(ggml_backend_t backend) { | |
| if (backend == NULL) { | |
| return "NULL"; | |
| } | |
| return backend->iface.get_name(backend); | |
| } | |
| void ggml_backend_free(ggml_backend_t backend) { | |
| if (backend == NULL) { | |
| return; | |
| } | |
| backend->iface.free(backend); | |
| } | |
| ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { | |
| return backend->iface.alloc_buffer(backend, size); | |
| } | |
| size_t ggml_backend_get_alignment(ggml_backend_t backend) { | |
| return backend->iface.get_alignment(backend); | |
| } | |
| void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
| ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); | |
| } | |
| void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
| ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); | |
| } | |
| void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
| ggml_backend_t backend = ggml_get_backend(tensor); | |
| GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
| GGML_ASSERT(backend != NULL && "tensor backend not set"); | |
| backend->iface.set_tensor_async(backend, tensor, data, offset, size); | |
| backend->iface.synchronize(backend); | |
| } | |
| void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
| ggml_backend_t backend = ggml_get_backend(tensor); | |
| GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
| GGML_ASSERT(backend != NULL && "tensor backend not set"); | |
| backend->iface.get_tensor_async(backend, tensor, data, offset, size); | |
| backend->iface.synchronize(backend); | |
| } | |
| void ggml_backend_synchronize(ggml_backend_t backend) { | |
| backend->iface.synchronize(backend); | |
| } | |
| ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
| return backend->iface.graph_plan_create(backend, cgraph); | |
| } | |
| void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
| backend->iface.graph_plan_free(backend, plan); | |
| } | |
| void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
| backend->iface.graph_plan_compute(backend, plan); | |
| } | |
| void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
| backend->iface.graph_compute(backend, cgraph); | |
| } | |
| bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
| return backend->iface.supports_op(backend, op); | |
| } | |
| // backend copy | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
| if (a->type != b->type) { | |
| return false; | |
| } | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| if (a->ne[i] != b->ne[i]) { | |
| return false; | |
| } | |
| if (a->nb[i] != b->nb[i]) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { | |
| //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); | |
| //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); | |
| GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); | |
| // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); | |
| if (src == dst) { | |
| return; | |
| } | |
| // TODO: allow backends to support copy to/from same backend | |
| if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) { | |
| ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst); | |
| } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) { | |
| ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst); | |
| } else { | |
| // shouldn't be hit when copying from/to CPU | |
| fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend)); | |
| size_t nbytes = ggml_nbytes(src); | |
| void * data = malloc(nbytes); | |
| ggml_backend_tensor_get(src, data, 0, nbytes); | |
| ggml_backend_tensor_set(dst, data, 0, nbytes); | |
| free(data); | |
| } | |
| } | |
| // backend CPU | |
| struct ggml_backend_cpu_context { | |
| int n_threads; | |
| void * work_data; | |
| size_t work_size; | |
| }; | |
| static const char * ggml_backend_cpu_name(ggml_backend_t backend) { | |
| return "CPU"; | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_free(ggml_backend_t backend) { | |
| struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
| free(cpu_ctx->work_data); | |
| free(cpu_ctx); | |
| free(backend); | |
| } | |
| static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { | |
| return (void *)buffer->context; | |
| } | |
| static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
| free(buffer->context); | |
| UNUSED(buffer); | |
| } | |
| static struct ggml_backend_buffer_i cpu_backend_buffer_i = { | |
| /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, | |
| /* .get_base = */ ggml_backend_cpu_buffer_get_base, | |
| /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
| /* .init_tensor = */ NULL, // no initialization required | |
| /* .free_tensor = */ NULL, // no cleanup required | |
| }; | |
| // for buffers from ptr, free is not called | |
| static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { | |
| /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed | |
| /* .get_base = */ ggml_backend_cpu_buffer_get_base, | |
| /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
| /* .init_tensor = */ NULL, | |
| /* .free_tensor = */ NULL, | |
| }; | |
| static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 | |
| static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) { | |
| size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned | |
| void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? | |
| GGML_ASSERT(data != NULL && "failed to allocate buffer"); | |
| return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size); | |
| } | |
| static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) { | |
| return TENSOR_ALIGNMENT; | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
| GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); | |
| GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
| memcpy((char *)tensor->data + offset, data, size); | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
| GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); | |
| GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
| memcpy(data, (const char *)tensor->data + offset, size); | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_synchronize(ggml_backend_t backend) { | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { | |
| ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { | |
| ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); | |
| UNUSED(backend); | |
| } | |
| struct ggml_backend_plan_cpu { | |
| struct ggml_cplan cplan; | |
| struct ggml_cgraph cgraph; | |
| }; | |
| static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
| struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
| struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); | |
| cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | |
| cpu_plan->cgraph = *cgraph; | |
| if (cpu_plan->cplan.work_size > 0) { | |
| cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); | |
| } | |
| return cpu_plan; | |
| } | |
| static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
| struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; | |
| free(cpu_plan->cplan.work_data); | |
| free(cpu_plan); | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
| struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; | |
| ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); | |
| UNUSED(backend); | |
| } | |
| static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
| struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
| struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | |
| if (cpu_ctx->work_size < cplan.work_size) { | |
| // TODO: may be faster to free and use malloc to avoid the copy | |
| cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); | |
| cpu_ctx->work_size = cplan.work_size; | |
| } | |
| cplan.work_data = cpu_ctx->work_data; | |
| ggml_graph_compute(cgraph, &cplan); | |
| } | |
| static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
| return true; | |
| UNUSED(backend); | |
| UNUSED(op); | |
| } | |
| static struct ggml_backend_i cpu_backend_i = { | |
| /* .get_name = */ ggml_backend_cpu_name, | |
| /* .free = */ ggml_backend_cpu_free, | |
| /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, | |
| /* .get_alignment = */ ggml_backend_cpu_get_alignment, | |
| /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, | |
| /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, | |
| /* .synchronize = */ ggml_backend_cpu_synchronize, | |
| /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, | |
| /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, | |
| /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, | |
| /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, | |
| /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, | |
| /* .graph_compute = */ ggml_backend_cpu_graph_compute, | |
| /* .supports_op = */ ggml_backend_cpu_supports_op, | |
| }; | |
| ggml_backend_t ggml_backend_cpu_init(void) { | |
| struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); | |
| ctx->n_threads = GGML_DEFAULT_N_THREADS; | |
| ctx->work_data = NULL; | |
| ctx->work_size = 0; | |
| ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); | |
| *cpu_backend = (struct ggml_backend) { | |
| /* .interface = */ cpu_backend_i, | |
| /* .context = */ ctx | |
| }; | |
| return cpu_backend; | |
| } | |
| bool ggml_backend_is_cpu(ggml_backend_t backend) { | |
| return backend->iface.get_name == ggml_backend_cpu_name; | |
| } | |
| void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { | |
| GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); | |
| struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; | |
| ctx->n_threads = n_threads; | |
| } | |
| ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) { | |
| return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size); | |
| } | |
| // scheduler | |
| struct ggml_backend_sched_split { | |
| ggml_tallocr_t tallocr; | |
| int i_start; | |
| int i_end; | |
| struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS]; | |
| int n_inputs; | |
| struct ggml_cgraph * graph; | |
| }; | |
| struct ggml_backend_sched { | |
| int n_backends; | |
| ggml_backend_t backends[GGML_MAX_BACKENDS]; | |
| ggml_tallocr_t tallocs[GGML_MAX_BACKENDS]; | |
| ggml_gallocr_t galloc; | |
| struct ggml_hash_set hash_set; | |
| ggml_tallocr_t * node_talloc; // [hash_set.size] | |
| struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS] | |
| struct ggml_cgraph * graph; | |
| struct ggml_backend_sched_split splits[GGML_MAX_SPLITS]; | |
| int n_splits; | |
| struct ggml_context * ctx; | |
| // align context_buffer to GGML_MEM_ALIGN | |
| __declspec(align(GGML_MEM_ALIGN)) | |
| __attribute__((aligned(GGML_MEM_ALIGN))) | |
| char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)]; | |
| }; | |
| static bool ggml_is_view_op(enum ggml_op op) { | |
| return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; | |
| } | |
| // returns the priority of the backend, lower is better | |
| static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) { | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| if (sched->backends[i] == backend) { | |
| return i; | |
| } | |
| } | |
| return INT_MAX; | |
| } | |
| static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) { | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| if (sched->tallocs[i] == allocr) { | |
| return i; | |
| } | |
| } | |
| return INT_MAX; | |
| } | |
| // returns the backend that should be used for the node based on the current locations | |
| char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove | |
| static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) { | |
| // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there | |
| // ie. kv cache updates | |
| // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend. | |
| // dst | |
| ggml_backend_t cur_backend = ggml_get_backend(node); | |
| if (cur_backend != NULL) { | |
| sprintf(causes[hash_id(node)], "1.dst"); | |
| return cur_backend; | |
| } | |
| // view_src | |
| if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) { | |
| sprintf(causes[hash_id(node)], "1.vsrc"); | |
| return ggml_get_backend(node->view_src); | |
| } | |
| // src | |
| int cur_prio = INT_MAX; | |
| size_t cur_size = 0; | |
| for (int i = 0; i < GGML_MAX_SRC; i++) { | |
| const struct ggml_tensor * src = node->src[i]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_backend_t src_backend = ggml_get_backend(src); | |
| if (src_backend != NULL) { | |
| int src_prio = sched_backend_prio(sched, src_backend); | |
| size_t src_size = ggml_nbytes(src); | |
| if (src_prio < cur_prio && src_size >= cur_size) { | |
| cur_prio = src_prio; | |
| cur_size = src_size; | |
| cur_backend = src_backend; | |
| sprintf(causes[hash_id(node)], "1.src%d", i); | |
| } | |
| } | |
| } | |
| return cur_backend; | |
| } | |
| static char * fmt_size(size_t size) { | |
| static char buffer[128]; | |
| if (size >= 1024*1024) { | |
| sprintf(buffer, "%zuM", size/1024/1024); | |
| } else { | |
| sprintf(buffer, "%zuK", size/1024); | |
| } | |
| return buffer; | |
| } | |
| static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
| int cur_split = 0; | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { | |
| ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend; | |
| fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs); | |
| for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { | |
| fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j]))); | |
| } | |
| fprintf(stderr, "\n"); | |
| cur_split++; | |
| } | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| if (ggml_is_view_op(node->op)) { | |
| continue; | |
| } | |
| ggml_tallocr_t node_allocr = node_allocr(node); | |
| ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL; | |
| fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]); | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * src = node->src[j]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_tallocr_t src_allocr = node_allocr(src); | |
| ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL; | |
| fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]); | |
| } | |
| fprintf(stderr, "\n"); | |
| } | |
| } | |
| // creates a copy of the tensor with the same memory layout | |
| static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { | |
| struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| dup->nb[i] = tensor->nb[i]; | |
| } | |
| return dup; | |
| } | |
| // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend | |
| // TODO: merge passes | |
| static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
| // reset state | |
| size_t hash_size = sched->hash_set.size; | |
| memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); | |
| memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size); | |
| memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size); | |
| sched->n_splits = 0; | |
| struct ggml_init_params params = { | |
| /*.mem_size = */ sizeof(sched->context_buffer), | |
| /*.mem_buffer = */ sched->context_buffer, | |
| /*.no_alloc = */ true | |
| }; | |
| if (sched->ctx != NULL) { | |
| ggml_free(sched->ctx); | |
| } | |
| sched->ctx = ggml_init(params); | |
| // pass 1: assign backends to ops with allocated inputs | |
| for (int i = 0; i < graph->n_leafs; i++) { | |
| struct ggml_tensor * leaf = graph->leafs[i]; | |
| if (node_allocr(leaf) != NULL) { | |
| // do not overwrite user assignments | |
| continue; | |
| } | |
| ggml_backend_t leaf_backend = ggml_get_backend(leaf); | |
| if (leaf_backend == NULL && leaf->view_src != NULL) { | |
| leaf_backend = ggml_get_backend(leaf->view_src); | |
| } | |
| if (leaf_backend != NULL) { | |
| node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend); | |
| } | |
| } | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| if (node_allocr(node) != NULL) { | |
| // do not overwrite user assignments | |
| continue; | |
| } | |
| ggml_backend_t node_backend = sched_backend_from_cur(sched, node); | |
| if (node_backend != NULL) { | |
| node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend); | |
| } | |
| } | |
| //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); | |
| // pass 2: assign backends to ops from current assignments | |
| // TODO: | |
| // - reuse sched_backend_from_cur | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| ggml_tallocr_t node_allocr = node_allocr(node); | |
| if (node_allocr == NULL) { | |
| int cur_prio = INT_MAX; | |
| size_t cur_size = 0; | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * src = node->src[j]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_tallocr_t src_allocr = node_allocr(src); | |
| if (src_allocr != NULL) { | |
| int src_prio = sched_allocr_prio(sched, src_allocr); | |
| size_t src_size = ggml_nbytes(src); | |
| if (src_prio < cur_prio && src_size >= cur_size) { | |
| cur_prio = src_prio; | |
| cur_size = src_size; | |
| node_allocr = src_allocr; | |
| sprintf(causes[hash_id(node)], "2.src%d", j); | |
| } | |
| } | |
| } | |
| if (node_allocr != NULL) { | |
| node_allocr(node) = node_allocr; | |
| } | |
| } | |
| } | |
| //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); | |
| // pass 3: assign backends to remaining src from dst (should only be leafs) | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| ggml_tallocr_t node_allocr = node_allocr(node); | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * src = node->src[j]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_tallocr_t src_allocr = node_allocr(src); | |
| if (src_allocr == NULL) { | |
| node_allocr(src) = node_allocr; | |
| } | |
| } | |
| } | |
| //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); | |
| // pass 4: split graph, find tensors that need to be copied | |
| // TODO: | |
| // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost | |
| // find first backend | |
| int cur_split = 0; | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| if (node->view_src == NULL) { | |
| sched->splits[0].tallocr = node_allocr(node); | |
| break; | |
| } | |
| } | |
| sched->splits[0].i_start = 0; | |
| sched->splits[0].n_inputs = 0; | |
| memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK | |
| ggml_tallocr_t cur_allocr = sched->splits[0].tallocr; | |
| size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr); | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| if (ggml_is_view_op(node->op)) { | |
| continue; | |
| } | |
| ggml_tallocr_t node_allocr = node_allocr(node); | |
| if (node_allocr != cur_allocr) { | |
| sched->splits[cur_split].i_end = i; | |
| cur_split++; | |
| GGML_ASSERT(cur_split < GGML_MAX_SPLITS); | |
| sched->splits[cur_split].tallocr = node_allocr; | |
| sched->splits[cur_split].i_start = i; | |
| sched->splits[cur_split].n_inputs = 0; | |
| memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK | |
| cur_allocr = node_allocr; | |
| cur_backend_id = sched_allocr_prio(sched, cur_allocr); | |
| } | |
| // find inputs that are not on the same backend | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * src = node->src[j]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_tallocr_t src_allocr = node_allocr(src); | |
| if (src_allocr != node_allocr) { | |
| int n_inputs = sched->splits[cur_split].n_inputs++; | |
| GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); | |
| sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src; | |
| // create copies | |
| size_t id = hash_id(src); | |
| if (sched->node_copies[id][cur_backend_id] == NULL) { | |
| struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); | |
| sched->node_copies[id][cur_backend_id] = tensor_copy; | |
| node_allocr(tensor_copy) = cur_allocr; | |
| ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend; | |
| ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name); | |
| } | |
| node->src[j] = sched->node_copies[id][cur_backend_id]; | |
| } | |
| } | |
| } | |
| sched->splits[cur_split].i_end = graph->n_nodes; | |
| sched->n_splits = cur_split + 1; | |
| //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout); | |
| // sanity check: all sources should have the same backend as the node | |
| for (int i = 0; i < graph->n_nodes; i++) { | |
| struct ggml_tensor * node = graph->nodes[i]; | |
| ggml_tallocr_t node_allocr = node_allocr(node); | |
| if (node_allocr == NULL) { | |
| fprintf(stderr, "!!!!!!! %s has no backend\n", node->name); | |
| } | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * src = node->src[j]; | |
| if (src == NULL) { | |
| break; | |
| } | |
| ggml_tallocr_t src_allocr = node_allocr(src); | |
| if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now | |
| fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n", | |
| node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL", | |
| j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL"); | |
| } | |
| } | |
| } | |
| // create copies of the graph for each split | |
| // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way | |
| struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false); | |
| for (int i = 0; i < sched->n_splits; i++) { | |
| struct ggml_backend_sched_split * split = &sched->splits[i]; | |
| split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end); | |
| // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split | |
| for (int j = 0; j < split->n_inputs; j++) { | |
| struct ggml_tensor * input = split->inputs[j]; | |
| struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)]; | |
| input_cpy->src[0] = input; | |
| graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; | |
| } | |
| for (int j = split->i_start; j < split->i_end; j++) { | |
| graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; | |
| } | |
| } | |
| sched->graph = graph_copy; | |
| } | |
| static void sched_alloc_splits(ggml_backend_sched_t sched) { | |
| ggml_gallocr_alloc_graph_n( | |
| sched->galloc, | |
| sched->graph, | |
| sched->hash_set, | |
| sched->node_talloc); | |
| } | |
| static void sched_compute_splits(ggml_backend_sched_t sched) { | |
| uint64_t copy_us[GGML_MAX_BACKENDS] = {0}; | |
| uint64_t compute_us[GGML_MAX_BACKENDS] = {0}; | |
| struct ggml_backend_sched_split * splits = sched->splits; | |
| for (int i = 0; i < sched->n_splits; i++) { | |
| struct ggml_backend_sched_split * split = &splits[i]; | |
| ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend; | |
| int split_backend_id = sched_backend_prio(sched, split_backend); | |
| // copy the input tensors to the split backend | |
| uint64_t copy_start_us = ggml_time_us(); | |
| for (int j = 0; j < split->n_inputs; j++) { | |
| struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)]; | |
| if (split->inputs[j]->buffer == NULL) { | |
| if (split->inputs[j]->view_src == NULL) { | |
| fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name); | |
| exit(1); | |
| } | |
| struct ggml_tensor * view = split->inputs[j]; | |
| view->backend = view->view_src->backend; | |
| view->buffer = view->view_src->buffer; | |
| view->data = (char *)view->view_src->data + view->view_offs; | |
| ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view); | |
| } | |
| if (input_cpy->buffer == NULL) { | |
| fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name); | |
| exit(1); | |
| } | |
| GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend); | |
| GGML_ASSERT(input_cpy->buffer->backend == split_backend); | |
| ggml_backend_tensor_copy(split->inputs[j], input_cpy); | |
| } | |
| // ggml_backend_synchronize(split_backend); | |
| int64_t copy_end_us = ggml_time_us(); | |
| copy_us[split_backend_id] += copy_end_us - copy_start_us; | |
| char split_filename[GGML_MAX_NAME]; | |
| snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend)); | |
| ggml_graph_dump_dot(split->graph, NULL, split_filename); | |
| uint64_t compute_start_us = ggml_time_us(); | |
| ggml_backend_graph_compute(split_backend, split->graph); | |
| // ggml_backend_synchronize(split_backend); | |
| uint64_t compute_end_us = ggml_time_us(); | |
| compute_us[split_backend_id] += compute_end_us - compute_start_us; | |
| } | |
| // per-backend timings | |
| fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits); | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| if (copy_us[i] > 0 || compute_us[i] > 0) { | |
| fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]); | |
| } | |
| } | |
| } | |
| static void sched_reset(ggml_backend_sched_t sched) { | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| ggml_tallocr_reset(sched->tallocs[i]); | |
| } | |
| } | |
| ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) { | |
| GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS); | |
| struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched)); | |
| memset(sched, 0, sizeof(struct ggml_backend_sched)); | |
| fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024); | |
| sched->n_backends = n_backends; | |
| for (int i = 0; i < n_backends; i++) { | |
| sched->backends[i] = backends[i]; | |
| } | |
| sched->galloc = ggml_gallocr_new(); | |
| // init measure allocs for each backend | |
| for (int i = 0; i < n_backends; i++) { | |
| sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]); | |
| } | |
| return sched; | |
| } | |
| void ggml_backend_sched_free(ggml_backend_sched_t sched) { | |
| if (sched == NULL) { | |
| return; | |
| } | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| ggml_tallocr_free(sched->tallocs[i]); | |
| } | |
| ggml_gallocr_free(sched->galloc); | |
| free(sched->hash_set.keys); | |
| free(sched->node_talloc); | |
| free(sched->node_copies); | |
| free(sched); | |
| } | |
| void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { | |
| // initialize hash tables | |
| size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS; | |
| sched->hash_set.size = hash_size; | |
| sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size); | |
| sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size); | |
| sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size); | |
| sched_split_graph(sched, measure_graph); | |
| sched_alloc_splits(sched); | |
| // allocate buffers and reset allocators | |
| for (int i = 0; i < sched->n_backends; i++) { | |
| size_t size = ggml_tallocr_max_size(sched->tallocs[i]); | |
| ggml_tallocr_free(sched->tallocs[i]); | |
| sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size); | |
| } | |
| sched_reset(sched); | |
| } | |
| void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
| GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); | |
| sched_split_graph(sched, graph); | |
| sched_alloc_splits(sched); | |
| sched_compute_splits(sched); | |
| sched_reset(sched); | |
| } | |
| ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) { | |
| int backend_index = sched_backend_prio(sched, backend); | |
| return sched->tallocs[backend_index]; | |
| } | |
| ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) { | |
| int backend_index = sched_backend_prio(sched, backend); | |
| return ggml_tallocr_get_buffer(sched->tallocs[backend_index]); | |
| } | |
| void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { | |
| int backend_index = sched_backend_prio(sched, backend); | |
| GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); | |
| node_allocr(node) = sched->tallocs[backend_index]; | |
| } | |