Spaces:
Running
Running
File size: 77,486 Bytes
58220b6 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 0ec1374 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 0ec1374 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 0ec1374 58220b6 844e617 58220b6 fc04dc0 bc53087 844e617 bc53087 58220b6 5ef1601 844e617 58220b6 5ef1601 58220b6 844e617 58220b6 5ef1601 58220b6 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 0ec1374 ade9bc3 58220b6 fc04dc0 58220b6 fc04dc0 ade9bc3 58220b6 fc04dc0 ade9bc3 844e617 ade9bc3 fc04dc0 58220b6 bc53087 fc04dc0 0ec1374 bc53087 fc04dc0 58220b6 0ec1374 58220b6 0ec1374 5ef1601 0ec1374 5ef1601 844e617 5ef1601 844e617 58220b6 bc53087 58220b6 844e617 bc53087 58220b6 844e617 58220b6 844e617 58220b6 bc53087 58220b6 bc53087 58220b6 bc53087 58220b6 844e617 58220b6 bc53087 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 5ef1601 58220b6 844e617 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 5ef1601 58220b6 844e617 58220b6 5ef1601 58220b6 844e617 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 844e617 58220b6 844e617 5ef1601 844e617 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 bc53087 844e617 58220b6 844e617 58220b6 844e617 58220b6 fc04dc0 58220b6 fc04dc0 58220b6 fc04dc0 58220b6 fc04dc0 58220b6 fc04dc0 58220b6 fc04dc0 58220b6 844e617 58220b6 844e617 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 844e617 58220b6 844e617 bc53087 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 bc53087 844e617 58220b6 844e617 58220b6 844e617 bc53087 844e617 bc53087 58220b6 844e617 bc53087 58220b6 bc53087 fc04dc0 844e617 fc04dc0 844e617 bc53087 844e617 fc04dc0 844e617 bc53087 844e617 58220b6 844e617 58220b6 844e617 fc04dc0 844e617 fc04dc0 844e617 58220b6 fc04dc0 844e617 fc04dc0 844e617 fc04dc0 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 5ef1601 844e617 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 bc53087 58220b6 bc53087 58220b6 bc53087 844e617 bc53087 844e617 58220b6 bc53087 58220b6 bc53087 58220b6 844e617 58220b6 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 58220b6 844e617 58220b6 bc53087 58220b6 bc53087 58220b6 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 844e617 bc53087 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 fc04dc0 844e617 58220b6 844e617 fc04dc0 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 844e617 58220b6 ade9bc3 844e617 58220b6 ade9bc3 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 5ef1601 844e617 58220b6 5ef1601 58220b6 5ef1601 58220b6 5ef1601 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 844e617 58220b6 fc04dc0 58220b6 bc53087 58220b6 bc53087 58220b6 844e617 58220b6 fc04dc0 58220b6 5ef1601 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 ade9bc3 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 844e617 58220b6 0ec1374 58220b6 0ec1374 58220b6 0ec1374 5ef1601 bc53087 844e617 bc53087 844e617 5ef1601 58220b6 0ec1374 5ef1601 844e617 5ef1601 58220b6 5ef1601 0ec1374 5ef1601 bc53087 5ef1601 58220b6 0ec1374 58220b6 0ec1374 58220b6 bc53087 58220b6 0ec1374 58220b6 5ef1601 844e617 5ef1601 bc53087 58220b6 0ec1374 58220b6 0ec1374 58220b6 bc53087 58220b6 0ec1374 58220b6 844e617 0ec1374 844e617 58220b6 0ec1374 844e617 58220b6 bc53087 58220b6 bc53087 58220b6 0ec1374 58220b6 bc53087 0ec1374 58220b6 0ec1374 58220b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 |
#include "llama-kv-cache-unified.h"
#include "llama-impl.h"
#include "llama-io.h"
#include "llama-model.h"
#include "llama-context.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <map>
#include <stdexcept>
//
// llama_kv_cache_unified
//
llama_kv_cache_unified::llama_kv_cache_unified(
const llama_model & model,
layer_filter_cb && filter,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
bool unified,
uint32_t kv_size,
uint32_t n_seq_max,
uint32_t n_pad,
uint32_t n_swa,
llama_swa_type swa_type) :
model(model), hparams(model.hparams), v_trans(v_trans),
n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
GGML_ASSERT(kv_size % n_pad == 0);
// TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
auto n_layer_cache = hparams.n_layer;
if (model.arch == LLM_ARCH_GEMMA3N) {
n_layer_cache = 20;
}
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*(1 + n_stream)*n_layer_cache*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
v_heads.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_heads[s] = 0;
}
v_cells.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].resize(kv_size);
}
// by default, all sequence ids are mapped to the 0th stream
seq_to_stream.resize(LLAMA_MAX_SEQ, 0);
if (n_stream > 1) {
seq_to_stream.resize(n_stream, 0);
for (uint32_t s = 0; s < n_stream; ++s) {
seq_to_stream[s] = s;
}
}
// [TAG_V_CACHE_VARIABLE]
if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
__func__, hparams.n_embd_v_gqa_max());
}
for (uint32_t il = 0; il < n_layer_cache; il++) {
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
continue;
}
// [TAG_V_CACHE_VARIABLE]
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(il);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k;
ggml_tensor * v;
k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
ggml_format_name(k, "cache_k_l%d", il);
ggml_format_name(v, "cache_v_l%d", il);
std::vector<ggml_tensor *> k_stream;
std::vector<ggml_tensor *> v_stream;
for (uint32_t s = 0; s < n_stream; ++s) {
k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
}
map_layer_ids[il] = layers.size();
layers.push_back({ il, k, v, k_stream, v_stream, });
}
// TODO: this is temporary until we support passing reuse layer filters [KV_REUSE]
if (model.arch == LLM_ARCH_GEMMA3N) {
LLAMA_LOG_DEBUG("%s: GEMMA3N: reuse layers [%d, %d]\n", __func__, n_layer_cache, hparams.n_layer - 1);
for (uint32_t il = n_layer_cache; il < hparams.n_layer; il++) {
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
continue;
}
const bool is_swa = hparams.is_swa(il);
const uint32_t il_reuse = n_layer_cache - (is_swa ? 2 : 1);
GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
map_layer_ids[il] = map_layer_ids[il_reuse];
LLAMA_LOG_DEBUG("%s: layer %3d: reuse layer %d, isw = %d\n", __func__, il, il_reuse, is_swa);
}
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS");
supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) != 0 : 0;
if (!supports_set_rows) {
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
GGML_ASSERT(unified && "cannot use non-unified KV cache without ggml_set_rows() support");
}
if (!supports_set_rows) {
LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__);
}
}
void llama_kv_cache_unified::clear(bool data) {
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].reset();
v_heads[s] = 0;
}
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if (seq_id >= 0) {
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
} else {
// match any sequence
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
cells.rm(i);
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());
const auto s0 = seq_to_stream[seq_id_src];
const auto s1 = seq_to_stream[seq_id_dst];
if (s0 == s1) {
// since both sequences are in the same stream, no data copy is necessary
// we just have to update the cells meta data
auto & cells = v_cells[s0];
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id_src)) {
cells.seq_add(i, seq_id_dst);
}
}
return;
}
// cross-stream sequence copies require to copy the actual buffer data
bool is_full = true;
if (p0 > 0 && p0 + 1 < (int) get_size()) {
is_full = false;
}
if (p1 > 0 && p1 + 1 < (int) get_size()) {
is_full = false;
}
GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");
// enqueue the copy operation - the buffer copy will be performed during the next update
sc_info.ssrc.push_back(s0);
sc_info.sdst.push_back(s1);
v_cells[s1].reset();
for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
if (v_cells[s0].seq_has(i, seq_id_src)) {
llama_pos pos = v_cells[s0].pos_get(i);
llama_pos shift = v_cells[s0].get_shift(i);
if (shift != 0) {
pos -= shift;
assert(pos >= 0);
}
v_cells[s1].pos_set(i, pos);
v_cells[s1].seq_add(i, seq_id_dst);
if (shift != 0) {
v_cells[s1].pos_add(i, shift);
}
}
}
v_heads[s1] = v_heads[s0];
//for (uint32_t s = 0; s < n_stream; ++s) {
// LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
//}
}
void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.seq_keep(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
if (shift == 0) {
return;
}
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over all cells.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
if (cells.pos_add(i, shift)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
head = new_head != cells.size() ? new_head : 0;
}
void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
cells.pos_div(i, d);
}
}
}
llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_min(seq_id);
}
llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_max(seq_id);
}
llama_memory_context_ptr llama_kv_cache_unified::init_batch(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) {
GGML_UNUSED(embd_all);
do {
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (balloc.get_n_used() < balloc.get_n_tokens()) {
// failed to find a suitable split
break;
}
auto sinfos = prepare(ubatches);
if (sinfos.empty()) {
break;
}
return std::make_unique<llama_kv_cache_unified_context>(
this, std::move(sinfos), std::move(ubatches));
} while (false);
return std::make_unique<llama_kv_cache_unified_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_context_ptr llama_kv_cache_unified::init_full() {
return std::make_unique<llama_kv_cache_unified_context>(this);
}
llama_memory_context_ptr llama_kv_cache_unified::init_update(llama_context * lctx, bool optimize) {
bool do_shift = get_has_shift();
defrag_info dinfo;
// see if we need to defrag
if (n_stream == 1) {
// note : for now do not consider defrag for n_stream > 1
const auto & cells = v_cells[seq_to_stream[0]];
bool do_defrag = optimize;
const auto thold = lctx->get_cparams().defrag_thold;
if (!do_defrag && thold > 0.0f) {
const auto n_kv = cells.used_max_p1();
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
if (fragmentation > thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
do_defrag = true;
}
}
if (do_defrag) {
dinfo = defrag_prepare(lctx->graph_max_nodes());
}
}
return std::make_unique<llama_kv_cache_unified_context>(this, lctx, do_shift, std::move(dinfo), std::move(sc_info));
}
llama_kv_cache_unified::slot_info_vec_t llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) {
llama_kv_cache_unified::slot_info_vec_t res;
struct state_t {
slot_info sinfo; // slot info for the ubatch
std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch
std::vector<llama_kv_cells_unified> v_cells; // copy of the old cells, before placing the ubatch
};
// remember the old state of the cells so we can restore it in the end
std::vector<state_t> states;
bool success = true;
for (const auto & ubatch : ubatches) {
// non-continuous slots require support for ggml_set_rows()
const bool cont = supports_set_rows ? false : true;
// only find a suitable slot for the ubatch. don't modify the cells yet
const auto sinfo_new = find_slot(ubatch, cont);
if (sinfo_new.empty()) {
success = false;
break;
}
// remeber the position that we found
res.push_back(sinfo_new);
// store the old state of the cells in the recovery stack
{
state_t state = { sinfo_new, v_heads, {} };
for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
auto & cells = v_cells[sinfo_new.strm[s]];
state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
}
states.push_back(std::move(state));
}
// now emplace the ubatch
apply_ubatch(sinfo_new, ubatch);
}
GGML_ASSERT(!states.empty() || !success);
// iterate backwards and restore the cells to their original state
for (auto it = states.rbegin(); it != states.rend(); ++it) {
const auto & sinfo = it->sinfo;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & cells = v_cells[sinfo.strm[s]];
auto & head = v_heads[sinfo.strm[s]];
cells.set(sinfo.idxs[s], it->v_cells[s]);
head = it->v_heads_old[s];
}
}
if (!success) {
return {};
}
return res;
}
bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info) {
bool updated = false;
auto * sched = lctx->get_sched();
if (!sc_info.empty()) {
assert(n_stream > 1 && "stream copy should never happen with a single stream");
llama_synchronize(lctx);
const size_t n_copy = sc_info.ssrc.size();
for (size_t i = 0; i < n_copy; ++i) {
const auto ssrc = sc_info.ssrc[i];
const auto sdst = sc_info.sdst[i];
assert(ssrc < n_stream);
assert(sdst < n_stream);
LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);
assert(ssrc != sdst);
for (uint32_t il = 0; il < layers.size(); ++il) {
const auto & layer = layers[il];
ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
}
}
}
if (do_shift) {
if (!get_can_shift()) {
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_shift(res, lctx);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
return updated;
}
updated = true;
}
for (uint32_t s = 0; s < n_stream; ++s) {
auto & cells = v_cells[s];
cells.reset_shift();
}
}
if (!dinfo.empty()) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
// note: for now do not consider defrag for n_stream > 1
auto & cells = v_cells[seq_to_stream[0]];
auto & head = v_heads[seq_to_stream[0]];
// apply moves:
{
const auto n_kv = dinfo.ids.size();
for (uint32_t i = 0; i < n_kv; ++i) {
assert(dinfo.ids[i] <= n_kv);
if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
continue;
}
cells.mv(i, dinfo.ids[i]);
}
// reset the head so we can find the first free slot during the next ubatch
head = 0;
}
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_defrag(res, lctx, dinfo);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
return updated;
}
updated = true;
}
return updated;
}
llama_kv_cache_unified::slot_info llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch, bool cont) const {
if (debug > 0) {
const auto & cells = v_cells[seq_to_stream[1]];
const uint32_t head_cur = v_heads[1];
LLAMA_LOG_DEBUG("%s: n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
__func__, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.is_empty(i)) {
ss += '.';
} else {
assert(cells.seq_count(i) >= 1);
if (cells.seq_count(i) == 1) {
ss += std::to_string(cells.seq_get(i));
} else {
ss += 'M';
}
}
if (i%256 == 255) {
ss += " *";
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
std::string cur;
if (cells.is_empty(i)) {
cur = '.';
} else {
cur = std::to_string(cells.pos_get(i));
}
const int n = cur.size();
for (int j = 0; j < 5 - n; ++j) {
cur += ' ';
}
ss += cur;
if (i%256 == 255) {
ss += " *";
}
if (i%64 == 63) {
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (cells.seq_pos_min(s) < 0) {
continue;
}
LLAMA_LOG_DEBUG("%s: min[%d] = %5d, max[%d] = %5d\n", __func__, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
}
}
uint32_t n_tokens = ubatch.n_tokens;
uint32_t n_seqs = 1;
if (n_stream > 1) {
GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);
n_seqs = ubatch.n_seqs_unq;
n_tokens = n_tokens / n_seqs;
}
slot_info res = {
/*.s0 =*/ LLAMA_MAX_SEQ,
/*.s1 =*/ 0,
/*.strm =*/ { },
/*.idxs =*/ { },
};
res.resize(n_seqs);
for (uint32_t s = 0; s < n_seqs; ++s) {
const auto seq_id = ubatch.seq_id_unq[s];
if (n_stream > 1) {
GGML_ASSERT(ubatch.n_seq_id[s*n_tokens] == 1);
GGML_ASSERT(ubatch.seq_id [s*n_tokens][0] == seq_id);
}
res.s0 = std::min<llama_seq_id>(res.s0, seq_to_stream[seq_id]);
res.s1 = std::max<llama_seq_id>(res.s1, seq_to_stream[seq_id]);
res.strm[s] = seq_to_stream[seq_id];
res.idxs[s].reserve(n_tokens);
const auto & cells = v_cells[seq_to_stream[seq_id]];
uint32_t head_cur = v_heads[seq_to_stream[seq_id]];
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head_cur > cells.get_used() + 2*n_tokens) {
head_cur = 0;
}
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return { };
}
uint32_t n_tested = 0;
// for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
// for non-continuous slots, we test the tokens one by one
const uint32_t n_test = cont ? n_tokens : 1;
while (true) {
if (head_cur + n_test > cells.size()) {
n_tested += cells.size() - head_cur;
head_cur = 0;
continue;
}
for (uint32_t i = 0; i < n_test; i++) {
const auto idx = head_cur;
head_cur++;
n_tested++;
//const llama_pos pos = ubatch.pos[i];
//const llama_seq_id seq_id = ubatch.seq_id[i][0];
// can we use this cell? either:
// - the cell is empty
// - the cell is occupied only by one sequence:
// - (disabled) mask causally, if the sequence is the same as the one we are inserting
// - mask SWA, using current max pos for that sequence in the cache
// always insert in the cell with minimum pos
bool can_use = cells.is_empty(idx);
if (!can_use && cells.seq_count(idx) == 1) {
const llama_pos pos_cell = cells.pos_get(idx);
// (disabled) causal mask
// note: it's better to purge any "future" tokens beforehand
//if (cells.seq_has(idx, seq_id)) {
// can_use = pos_cell >= pos;
//}
if (!can_use) {
const llama_seq_id seq_id_cell = cells.seq_get(idx);
// SWA mask
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
can_use = true;
}
}
}
if (can_use) {
res.idxs[s].push_back(idx);
} else {
if (cont) {
break;
}
}
}
if (res.idxs[s].size() == n_tokens) {
break;
}
if (cont) {
res.idxs[s].clear();
}
if (n_tested >= cells.size()) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return { };
}
}
// we didn't find a suitable slot - return empty result
if (res.idxs[s].size() < n_tokens) {
return { };
}
}
assert(res.s1 >= res.s0);
return res;
}
void llama_kv_cache_unified::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
// keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
seq_pos_max_rm[s] = -1;
}
assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
const uint32_t i = s*sinfo.size() + ii;
auto & cells = v_cells[sinfo.strm[s]];
const auto idx = sinfo.idxs[s][ii];
if (!cells.is_empty(idx)) {
assert(cells.seq_count(idx) == 1);
const llama_seq_id seq_id = cells.seq_get(idx);
const llama_pos pos = cells.pos_get(idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(idx);
}
cells.pos_set(idx, ubatch.pos[i]);
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
}
}
// note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
// will be present in the cache. so we have to purge any position which is less than those we would overwrite
// ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (seq_pos_max_rm[s] == -1) {
continue;
}
GGML_ASSERT(s < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[s]];
if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
__func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
}
}
// move the head at the end of the slot
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & head = v_heads[sinfo.strm[s]];
head = sinfo.idxs[s].back() + 1;
}
}
bool llama_kv_cache_unified::get_can_shift() const {
return true;
}
uint32_t llama_kv_cache_unified::get_size() const {
const auto & cells = v_cells[seq_to_stream[0]];
return cells.size();
}
uint32_t llama_kv_cache_unified::get_n_stream() const {
return n_stream;
}
bool llama_kv_cache_unified::get_has_shift() const {
bool result = false;
for (uint32_t s = 0; s < n_stream; ++s) {
result |= v_cells[s].get_has_shift();
}
return result;
}
uint32_t llama_kv_cache_unified::get_n_kv() const {
uint32_t result = 0;
for (uint32_t s = 0; s < n_stream; ++s) {
const auto & cells = v_cells[s];
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
}
return result;
}
bool llama_kv_cache_unified::get_supports_set_rows() const {
return supports_set_rows;
}
ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const uint64_t kv_size = get_size();
const uint64_t n_embd_k_gqa = k->ne[0];
assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
return ggml_view_4d(ctx, k,
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(k->type, hparams.n_embd_head_k),
ggml_row_size(k->type, n_embd_k_gqa),
ggml_row_size(k->type, n_embd_k_gqa*kv_size),
ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
}
ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const uint64_t kv_size = get_size();
const uint64_t n_embd_v_gqa = v->ne[0];
// [TAG_V_CACHE_VARIABLE]
assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
if (!v_trans) {
// note: v->nb[1] <= v->nb[2]
return ggml_view_4d(ctx, v,
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2]
ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3]
ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
}
// note: v->nb[1] > v->nb[2]
return ggml_view_4d(ctx, v,
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, kv_size), // v->nb[2]
ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3]
ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
}
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const int64_t n_embd_k_gqa = k->ne[0];
const int64_t n_tokens = k_cur->ne[2];
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
if (k_idxs && supports_set_rows) {
if (k->ne[2] > 1) {
k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]);
}
return ggml_set_rows(ctx, k, k_cur, k_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS");
ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*n_embd_k_gqa,
ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head());
return ggml_cpy(ctx, k_cur, k_view);
}
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const int64_t n_embd_v_gqa = v_cur->ne[0]*v_cur->ne[1];
const int64_t n_tokens = v_cur->ne[2];
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
if (v_idxs && supports_set_rows) {
if (!v_trans) {
if (v->ne[2] > 1) {
v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]);
}
return ggml_set_rows(ctx, v, v_cur, v_idxs);
}
// [TAG_V_CACHE_VARIABLE]
if (n_embd_v_gqa < v->ne[0]) {
v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_v_gqa, 0, 0, 0);
}
// the row becomes a single element
ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, v->ne[0]*v->ne[1]*v->ne[2]);
v_cur = ggml_reshape_2d(ctx, v_cur, 1, v_cur->ne[0]*v_cur->ne[1]);
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
}
// TODO: fallback to old ggml_cpy() method for backwards compatibility
// will be removed when ggml_set_rows() is adopted by all backends
GGML_ASSERT(n_stream == 1 && "n_stream > 1 not supported without LLAMA_SET_ROWS");
ggml_tensor * v_view = nullptr;
if (!v_trans) {
v_view = ggml_view_1d(ctx, v,
n_tokens*n_embd_v_gqa,
ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head());
} else {
v_cur = ggml_transpose(ctx, v_cur);
v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa,
(v->ne[1] )*ggml_element_size(v),
(sinfo.head())*ggml_element_size(v));
}
return ggml_cpy(ctx, v_cur, v_view);
}
ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
ggml_set_input(k_idxs);
return k_idxs;
}
ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * v_idxs;
if (!v_trans) {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
} else {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
}
ggml_set_input(v_idxs);
return v_idxs;
}
void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
}
void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
if (!supports_set_rows) {
return;
}
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
if (!v_trans) {
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
} else {
// note: the V cache is transposed when not using flash attention
const int64_t kv_size = get_size();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;
for (uint32_t i = 0; i < sinfo.size(); ++i) {
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
}
}
}
}
}
void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const {
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int32_t * data = (int32_t *) dst->data;
for (uint32_t s = 0; s < n_stream; ++s) {
const auto & cells = v_cells[s];
for (uint32_t i = 0; i < cells.size(); ++i) {
data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
}
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
float * data = (float *) dst->data;
const int64_t n_kv = dst->ne[0];
const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch
GGML_ASSERT(n_tokens%n_stream == 0);
// n_tps == n_tokens_per_stream
const int64_t n_tps = n_tokens/n_stream;
const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);
std::fill(data, data + ggml_nelements(dst), -INFINITY);
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
// TODO: optimize this section
for (uint32_t h = 0; h < 1; ++h) {
for (uint32_t s = 0; s < n_stream; ++s) {
for (uint32_t ii = 0; ii < n_tps; ++ii) {
const uint32_t i = s*n_tps + ii;
const llama_seq_id seq_id = ubatch->seq_id[i][0];
const auto & cells = v_cells[seq_to_stream[seq_id]];
const llama_pos p1 = ubatch->pos[i];
const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
if (cells.is_empty(j)) {
continue;
}
// mask the token if not the same sequence
if (!cells.seq_has(j, seq_id)) {
continue;
}
const llama_pos p0 = cells.pos_get(j);
// mask future tokens
if (causal_attn && p0 > p1) {
continue;
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
}
data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
}
}
}
}
void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
const auto & cells = v_cells[0];
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) dst->data;
const int32_t n_kv = dst->ne[0];
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_kv; ++j) {
// the position when the cells is empty is irrelevant - it will be masked out later in the attention
const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
}
}
}
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_unified::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & layer : layers) {
size_k_bytes += ggml_nbytes(layer.k);
}
return size_k_bytes;
}
size_t llama_kv_cache_unified::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & layer : layers) {
size_v_bytes += ggml_nbytes(layer.v);
}
return size_v_bytes;
}
ggml_tensor * llama_kv_cache_unified::build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering
// ref: https://github.com/ggml-org/llama.cpp/pull/13870
? LLAMA_ROPE_TYPE_NEOX
: hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
: cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size*n_stream]
const llama_kv_cache_unified * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
kv_self->set_input_k_shift(k_shift);
}
}
ggml_cgraph * llama_kv_cache_unified::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
ggml_set_input(inp->k_shift);
const auto & cparams = lctx->get_cparams();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * k =
ggml_view_3d(ctx, layer.k,
n_embd_head_k, n_head_kv, get_size()*n_stream,
ggml_row_size(layer.k->type, n_embd_head_k),
ggml_row_size(layer.k->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return gf;
}
ggml_cgraph * llama_kv_cache_unified::build_graph_defrag(
llm_graph_result * res,
llama_context * lctx,
const defrag_info & dinfo) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const auto & ids = dinfo.ids;
const auto & cparams = lctx->get_cparams();
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*id));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, i));
view_v_dst = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, id));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return gf;
}
llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const {
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const uint32_t n_layer = layers.size();
const uint32_t n_kv = cells.used_max_p1();
const uint32_t n_used = cells.get_used();
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//const uint32_t max_moves = max_nodes()/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where
defrag_info res;
auto & ids = res.ids;
ids.resize(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
if (!cells.is_empty(i0)) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
if (cells.is_empty(is) || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
if (cells.is_empty(i1) || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return {};
}
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
return res;
}
bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const {
assert(p0 >= 0 && p1 >= 0);
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE:
{
} break;
case LLAMA_SWA_TYPE_STANDARD:
{
if (p1 - p0 >= (int32_t) n_swa) {
return true;
}
} break;
case LLAMA_SWA_TYPE_CHUNKED:
{
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
if (p0 < pos_chunk_start) {
return true;
}
} break;
}
return false;
}
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
io.write(&n_stream, sizeof(n_stream));
for (uint32_t s = 0; s < n_stream; ++s) {
cell_ranges_t cr { s, {} };
uint32_t cell_count = 0;
const auto & cells = v_cells[s];
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
++cell_count;
if (cell_range_begin == cells.size()) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, i);
cell_range_begin = cells.size();
}
}
}
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, cells.size());
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cr.data) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
// skip empty streams
if (cell_count == 0) {
continue;
}
state_write_meta(io, cr, seq_id);
state_write_data(io, cr);
}
}
void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
uint32_t n_stream_cur;
io.read_to(&n_stream_cur, sizeof(n_stream_cur));
if (n_stream_cur != n_stream) {
throw std::runtime_error("n_stream mismatch");
}
for (uint32_t s = 0; s < n_stream; ++s) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
if (cell_count == 0) {
continue;
}
const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
bool res = true;
res = res && state_read_meta(io, strm, cell_count, seq_id);
res = res && state_read_data(io, strm, cell_count);
if (!res) {
if (seq_id == -1) {
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
}
void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
const auto & cells = v_cells[cr.strm];
for (const auto & range : cr.data) {
for (uint32_t i = range.first; i < range.second; ++i) {
std::vector<llama_seq_id> seq_ids;
for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
if (cur == seq_id || seq_id == -1) {
if (cells.seq_has(i, cur)) {
seq_ids.push_back(cur);
}
}
}
const llama_pos pos = cells.pos_get(i);
const uint32_t n_seq_id = seq_ids.size();
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
const auto & cells = v_cells[cr.strm];
const uint32_t v_trans = this->v_trans ? 1 : 0;
const uint32_t n_layer = layers.size();
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[cr.strm];
// Write key type
const int32_t k_type_i = (int32_t) k->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k, range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v, range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = cells.size();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v, src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
ubatch.seq_id_unq[0] = dest_seq_id;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 1) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
// read the sequence id, but directly discard it - we will use dest_seq_id instead
{
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
}
ubatch.pos[i] = pos;
ubatch.n_seq_id[i] = n_seq_id;
ubatch.seq_id[i] = &dest_seq_id;
}
const auto sinfo = find_slot(ubatch, true);
if (sinfo.empty()) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
// keep the head at the old position because we will read the KV data into it in state_read_data()
head = head_cur;
LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
// DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head_cur + cell_count <= cells.size());
GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cells.pos_set(i, pos);
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
return false;
}
cells.seq_add(i, seq_id);
}
}
head = 0;
}
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != layers.size()) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
return false;
}
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
return false;
}
if (this->v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[strm];
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!this->v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
//
// llama_kv_cache_unified_context
//
llama_kv_cache_unified_context::llama_kv_cache_unified_context(llama_memory_status status) : status(status) {}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
n_kv = kv->get_size();
const uint32_t n_stream = kv->get_n_stream();
// create a dummy slot info - the actual data is irrelevant. we just need to build the graph
sinfos.resize(1);
sinfos[0].s0 = 0;
sinfos[0].s1 = n_stream - 1;
sinfos[0].idxs.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
sinfos[0].strm.push_back(s);
sinfos[0].idxs[s].resize(1, 0);
}
}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv,
llama_context * lctx,
bool do_shift,
defrag_info dinfo,
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)), sc_info(std::move(sc_info)) {
if (!do_shift && this->dinfo.empty() && this->sc_info.empty()) {
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
}
}
llama_kv_cache_unified_context::llama_kv_cache_unified_context(
llama_kv_cache_unified * kv,
llama_kv_cache_unified::slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}
llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default;
bool llama_kv_cache_unified_context::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
if (++i_cur >= ubatches.size()) {
return false;
}
return true;
}
bool llama_kv_cache_unified_context::apply() {
assert(!llama_memory_status_is_fail(status));
// no ubatches -> this is a KV cache update
if (ubatches.empty()) {
kv->update(lctx, do_shift, dinfo, sc_info);
return true;
}
kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
n_kv = kv->get_n_kv();
return true;
}
llama_memory_status llama_kv_cache_unified_context::get_status() const {
return status;
}
const llama_ubatch & llama_kv_cache_unified_context::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_cur];
}
uint32_t llama_kv_cache_unified_context::get_n_kv() const {
return n_kv;
}
bool llama_kv_cache_unified_context::get_supports_set_rows() const {
return kv->get_supports_set_rows();
}
ggml_tensor * llama_kv_cache_unified_context::get_k(ggml_context * ctx, int32_t il) const {
return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t il) const {
return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_k_idxs(ctx, ubatch);
}
ggml_tensor * llama_kv_cache_unified_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_v_idxs(ctx, ubatch);
}
void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst);
}
void llama_kv_cache_unified_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn);
}
void llama_kv_cache_unified_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch);
}
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
|