File size: 9,433 Bytes
b462700
 
 
 
511930c
b462700
 
 
05d6d9c
b462700
 
 
511930c
 
fc04dc0
511930c
 
 
b462700
5ef1601
0ec1374
58220b6
b462700
511930c
 
 
 
b462700
511930c
b462700
511930c
b462700
05d6d9c
 
 
 
 
511930c
 
 
 
 
b462700
511930c
 
b462700
5ef1601
b462700
58220b6
 
5ef1601
 
b462700
511930c
b462700
511930c
 
b462700
511930c
 
 
b462700
511930c
 
 
b462700
511930c
b462700
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58220b6
0ec1374
58220b6
 
844e617
0ec1374
 
 
 
58220b6
fc04dc0
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511930c
 
 
 
b462700
511930c
 
fc04dc0
511930c
844e617
 
511930c
 
 
 
05d6d9c
844e617
511930c
844e617
 
511930c
05d6d9c
58220b6
 
 
0ec1374
05d6d9c
 
844e617
 
 
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
b462700
5ef1601
 
 
511930c
 
 
 
b462700
 
 
 
 
 
 
 
 
fc04dc0
ade9bc3
fc04dc0
 
b462700
511930c
b462700
844e617
 
 
 
 
 
 
b462700
 
511930c
 
 
05d6d9c
 
 
511930c
 
 
b462700
 
 
511930c
 
 
 
 
b462700
844e617
 
b462700
511930c
 
b462700
511930c
b462700
844e617
 
 
 
511930c
 
 
 
 
b462700
511930c
 
b462700
511930c
 
844e617
 
511930c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#pragma once

#include "llama.h"
#include "llama-cparams.h"
#include "llama-graph.h"
#include "llama-adapter.h"

#include "ggml-cpp.h"
#include "ggml-opt.h"

#include <map>
#include <vector>

struct llama_model;
class llama_batch_allocr;

class llama_io_read_i;
class llama_io_write_i;

struct llama_memory_i;
struct llama_memory_context_i;

struct llama_context {
    // init scheduler and compute buffers, reserve worst-case graphs
    llama_context(
            const llama_model & model,
                  llama_context_params params);

    ~llama_context();

    void synchronize();

    const llama_model   & get_model()   const;
    const llama_cparams & get_cparams() const;

    ggml_backend_sched_t get_sched() const;

    uint32_t n_ctx()         const;
    uint32_t n_ctx_per_seq() const;
    uint32_t n_batch()       const;
    uint32_t n_ubatch()      const;
    uint32_t n_seq_max()     const;

    uint32_t n_threads()       const;
    uint32_t n_threads_batch() const;

    llama_memory_t get_memory() const;

    // return true of the KV cache was updated
    // TODO: remove
    bool kv_self_update(bool optimize);
    void kv_self_defrag_sched();

    enum llama_pooling_type pooling_type() const;

    float * get_logits();
    float * get_logits_ith(int32_t i);

    float * get_embeddings();
    float * get_embeddings_ith(int32_t i);
    float * get_embeddings_seq(llama_seq_id seq_id);

    void attach_threadpool(
            ggml_threadpool_t threadpool,
            ggml_threadpool_t threadpool_batch);

    void detach_threadpool();

    void set_n_threads(int32_t n_threads, int32_t n_threads_batch);

    void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);

    void set_embeddings (bool value);
    void set_causal_attn(bool value);
    void set_warmup(bool value);

    void set_adapter_lora(
            llama_adapter_lora * adapter,
            float scale);

    bool rm_adapter_lora(
            llama_adapter_lora * adapter);

    void clear_adapter_lora();

    bool apply_adapter_cvec(
            const float * data,
                 size_t   len,
                int32_t   n_embd,
                int32_t   il_start,
                int32_t   il_end);

    // process a single ubatch with a specific graph type
    // if memory_context is provided, it will be applied first to the context's memory
    // ret contains the status of the graph computation
    // returns nullptr only if ret != GGML_STATUS_SUCCESS
    llm_graph_result * process_ubatch(
                const llama_ubatch & ubatch,
                    llm_graph_type   gtype,
            llama_memory_context_i * mctx,
                       ggml_status & ret);

    int encode(const llama_batch & batch_inp);
    int decode(const llama_batch & batch_inp);

    //
    // state save/load
    //

    size_t state_get_size();
    size_t state_get_data(      uint8_t * dst, size_t size);
    size_t state_set_data(const uint8_t * src, size_t size);

    size_t state_seq_get_size(llama_seq_id seq_id);
    size_t state_seq_get_data(llama_seq_id seq_id,       uint8_t * dst, size_t size);
    size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size);

    bool state_load_file(
            const char * filepath,
           llama_token * tokens_out,
                size_t   n_token_capacity,
                size_t * n_token_count_out);

    bool state_save_file(
            const char * filepath,
     const llama_token * tokens,
                size_t   n_token_count);

    size_t state_seq_load_file(
          llama_seq_id   seq_id,
            const char * filepath,
           llama_token * tokens_out,
                size_t   n_token_capacity,
                size_t * n_token_count_out);

    size_t state_seq_save_file(
          llama_seq_id   seq_id,
            const char * filepath,
     const llama_token * tokens,
                size_t   n_token_count);

    //
    // perf
    //

    llama_perf_context_data perf_get_data() const;
    void perf_reset();

    //
    // training
    //

    void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);

    void opt_epoch(
            ggml_opt_dataset_t      dataset,
            ggml_opt_result_t       result_train,
            ggml_opt_result_t       result_eval,
            int64_t                 idata_split,
            ggml_opt_epoch_callback callback_train,
            ggml_opt_epoch_callback callback_eval);

    void opt_epoch_iter(
            ggml_opt_dataset_t               dataset,
            ggml_opt_result_t                result,
            const std::vector<llama_token> & tokens,
            const std::vector<llama_token> & labels_sparse,
            llama_batch                    & batch,
            ggml_opt_epoch_callback          callback,
            bool                             train,
            int64_t                          idata_in_loop,
            int64_t                          ndata_in_loop,
            int64_t                          t_loop_start);

private:
    //
    // output
    //

    // Make sure enough space is available for outputs.
    // Returns max number of outputs for which space was reserved.
    uint32_t output_reserve(int32_t n_outputs);

    void output_reorder();

    //
    // graph
    //

public:
    uint32_t graph_max_nodes() const;

    // can reuse the llm_graph_result instance of the context (for example to update a memory module)
    llm_graph_result * get_gf_res_reserve() const;

    // returns the result of ggml_backend_sched_graph_compute_async execution
    ggml_status graph_compute(ggml_cgraph * gf, bool batched);

    // reserve a graph with a dummy ubatch of the specified size
    ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx);

private:
    llm_graph_params graph_params(
                        llm_graph_result * res,
                      const llama_ubatch & ubatch,
            const llama_memory_context_i * mctx,
                          llm_graph_type   gtype) const;

    llm_graph_cb graph_get_cb() const;

    // TODO: read/write lora adapters and cvec
    size_t state_write_data(llama_io_write_i & io);
    size_t state_read_data (llama_io_read_i  & io);

    size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id);
    size_t state_seq_read_data (llama_io_read_i  & io, llama_seq_id seq_id);

    //
    // members
    //

    const llama_model & model;

    llama_cparams       cparams;
    llama_adapter_cvec  cvec;
    llama_adapter_loras loras;

    llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably

    std::unique_ptr<llama_memory_i> memory;

    // TODO: temporary, until the llama_kv_self_defrag() API is removed
    bool memory_force_optimize = false;

    // decode output (2-dimensional array: [n_outputs][n_vocab])
    size_t  logits_size = 0; // capacity (of floats) for logits
    float * logits      = nullptr;

    // embeddings output (2-dimensional array: [n_outputs][n_embd])
    // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
    size_t  embd_size = 0; // capacity (of floats) for embeddings
    float * embd      = nullptr;

    // sequence embeddings output (map of [n_embd] vectors)
    // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
    std::map<llama_seq_id, std::vector<float>> embd_seq;

    // reuse the batch_allocr to avoid unnecessary memory allocations
    std::unique_ptr<llama_batch_allocr> balloc;

    uint32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch

    std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers

    struct swap_info {
        uint32_t i0;
        uint32_t i1;
    };

    std::vector<swap_info> output_swaps;

    ggml_backend_sched_ptr sched;

    ggml_backend_t backend_cpu = nullptr;
    std::vector<ggml_backend_ptr> backends;

    // training
    ggml_opt_context_t opt_ctx = nullptr;

    ggml_threadpool_t threadpool       = nullptr;
    ggml_threadpool_t threadpool_batch = nullptr;

    ggml_abort_callback abort_callback      = nullptr;
    void *              abort_callback_data = nullptr;

    std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;

    // buffer types used for the compute buffer of each backend
    std::vector<ggml_backend_t>             backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    llm_graph_result_ptr gf_res_prev;
    llm_graph_result_ptr gf_res_reserve;

    // host buffer for the model output (logits and embeddings)
    ggml_backend_buffer_ptr buf_output;

    bool has_evaluated_once = false;

    // env: LLAMA_SET_ROWS (temporary)
    // ref: https://github.com/ggml-org/llama.cpp/pull/14285
    bool supports_set_rows = false;

    // perf
    mutable int64_t t_start_us  = 0;
    mutable int64_t t_load_us   = 0;
    mutable int64_t t_p_eval_us = 0;
    mutable int64_t t_eval_us   = 0;

    mutable int64_t t_compute_start_us = 0;
    mutable int64_t n_queued_tokens    = 0;

    mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
    mutable int32_t n_eval   = 0; // number of eval calls

    mutable int32_t n_reused = 0; // number of times the previous graph was reused
};