mursalinir's picture
update app.py
417971f
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
from PIL import Image
import torch
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load model (fits in 12GB with fp16)
model_name = "Salesforce/instructblip-flan-t5-xl"
processor = InstructBlipProcessor.from_pretrained(model_name)
model = InstructBlipForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Prompt to force paragraph-level description
prompt = (
"Describe this image in a detailed paragraph of 5-7 sentences. "
"Mention setting, objects, colors, actions, background details, and possible context."
)
def caption_image(image):
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
out = model.generate(
**inputs,
max_new_tokens=250,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2)
output = processor.batch_decode(out, skip_special_tokens=True)[0]
print(output)
return output
demo = gr.Interface(
fn=caption_image,
inputs=gr.Image(type="pil", label="Upload an Image", height=400),
outputs="text",
title="Image to Paragraph Captioning"
)
demo.queue(api_open=False, max_size=10).launch()