Spaces:
Running
Running
BioNemo demo (#84)
Browse files* Add BioNeMo integration, single demo for now
---------
Co-authored-by: JMLizano <[email protected]>
Co-authored-by: Daniel Darabos <[email protected]>
- examples/BioNemo demo +985 -0
- lynxkite-app/src/lynxkite_app/__main__.py +7 -1
- lynxkite-app/web/src/workspace/nodes/NodeWithVisualization.tsx +2 -2
- lynxkite-graph-analytics/.dockerignore +3 -0
- lynxkite-graph-analytics/Dockerfile.bionemo +17 -0
- lynxkite-graph-analytics/README.md +41 -0
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/__init__.py +3 -0
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/bionemo_ops.py +519 -0
examples/BioNemo demo
ADDED
|
@@ -0,0 +1,985 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"edges": [
|
| 3 |
+
{
|
| 4 |
+
"id": "BioNeMo > Import H5AD file 1 BioNeMo > Get labels 1",
|
| 5 |
+
"source": "BioNeMo > Import H5AD file 1",
|
| 6 |
+
"sourceHandle": "output",
|
| 7 |
+
"target": "BioNeMo > Get labels 1",
|
| 8 |
+
"targetHandle": "adata"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"id": "BioNeMo > Download CELLxGENE dataset 1 BioNeMo > Infer 1",
|
| 12 |
+
"source": "BioNeMo > Download CELLxGENE dataset 1",
|
| 13 |
+
"sourceHandle": "output",
|
| 14 |
+
"target": "BioNeMo > Infer 1",
|
| 15 |
+
"targetHandle": "dataset_path"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "BioNeMo > Download model 2 BioNeMo > Infer 1",
|
| 19 |
+
"source": "BioNeMo > Download model 2",
|
| 20 |
+
"sourceHandle": "output",
|
| 21 |
+
"target": "BioNeMo > Infer 1",
|
| 22 |
+
"targetHandle": "model_path"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "BioNeMo > Download CELLxGENE dataset 1 BioNeMo > Infer 2",
|
| 26 |
+
"source": "BioNeMo > Download CELLxGENE dataset 1",
|
| 27 |
+
"sourceHandle": "output",
|
| 28 |
+
"target": "BioNeMo > Infer 2",
|
| 29 |
+
"targetHandle": "dataset_path"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "BioNeMo > Download model 1 BioNeMo > Infer 2",
|
| 33 |
+
"source": "BioNeMo > Download model 1",
|
| 34 |
+
"sourceHandle": "output",
|
| 35 |
+
"target": "BioNeMo > Infer 2",
|
| 36 |
+
"targetHandle": "model_path"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": "BioNeMo > Infer 2 BioNeMo > Load results 1",
|
| 40 |
+
"source": "BioNeMo > Infer 2",
|
| 41 |
+
"sourceHandle": "output",
|
| 42 |
+
"target": "BioNeMo > Load results 1",
|
| 43 |
+
"targetHandle": "results_path"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"id": "BioNeMo > Load results 1 BioNeMo > Run benchmark 1",
|
| 47 |
+
"source": "BioNeMo > Load results 1",
|
| 48 |
+
"sourceHandle": "output",
|
| 49 |
+
"target": "BioNeMo > Run benchmark 1",
|
| 50 |
+
"targetHandle": "data"
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"id": "BioNeMo > Get labels 1 BioNeMo > Run benchmark 1",
|
| 54 |
+
"source": "BioNeMo > Get labels 1",
|
| 55 |
+
"sourceHandle": "output",
|
| 56 |
+
"target": "BioNeMo > Run benchmark 1",
|
| 57 |
+
"targetHandle": "labels"
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"id": "BioNeMo > Infer 1 BioNeMo > Load results 2",
|
| 61 |
+
"source": "BioNeMo > Infer 1",
|
| 62 |
+
"sourceHandle": "output",
|
| 63 |
+
"target": "BioNeMo > Load results 2",
|
| 64 |
+
"targetHandle": "results_path"
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"id": "BioNeMo > Load results 2 BioNeMo > Run benchmark 2",
|
| 68 |
+
"source": "BioNeMo > Load results 2",
|
| 69 |
+
"sourceHandle": "output",
|
| 70 |
+
"target": "BioNeMo > Run benchmark 2",
|
| 71 |
+
"targetHandle": "data"
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"id": "BioNeMo > Get labels 1 BioNeMo > Run benchmark 2",
|
| 75 |
+
"source": "BioNeMo > Get labels 1",
|
| 76 |
+
"sourceHandle": "output",
|
| 77 |
+
"target": "BioNeMo > Run benchmark 2",
|
| 78 |
+
"targetHandle": "labels"
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"id": "BioNeMo > Run benchmark 2 BioNeMo > Plot f1 comparison 1",
|
| 82 |
+
"source": "BioNeMo > Run benchmark 2",
|
| 83 |
+
"sourceHandle": "output",
|
| 84 |
+
"target": "BioNeMo > Plot f1 comparison 1",
|
| 85 |
+
"targetHandle": "benchmark_output10m"
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"id": "BioNeMo > Run benchmark 1 BioNeMo > Plot f1 comparison 1",
|
| 89 |
+
"source": "BioNeMo > Run benchmark 1",
|
| 90 |
+
"sourceHandle": "output",
|
| 91 |
+
"target": "BioNeMo > Plot f1 comparison 1",
|
| 92 |
+
"targetHandle": "benchmark_output100m"
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"id": "BioNeMo > Run benchmark 2 BioNeMo > Plot accuracy comparison 1",
|
| 96 |
+
"source": "BioNeMo > Run benchmark 2",
|
| 97 |
+
"sourceHandle": "output",
|
| 98 |
+
"target": "BioNeMo > Plot accuracy comparison 1",
|
| 99 |
+
"targetHandle": "benchmark_output10m"
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"id": "BioNeMo > Run benchmark 1 BioNeMo > Plot accuracy comparison 1",
|
| 103 |
+
"source": "BioNeMo > Run benchmark 1",
|
| 104 |
+
"sourceHandle": "output",
|
| 105 |
+
"target": "BioNeMo > Plot accuracy comparison 1",
|
| 106 |
+
"targetHandle": "benchmark_output100m"
|
| 107 |
+
}
|
| 108 |
+
],
|
| 109 |
+
"env": "LynxKite Graph Analytics",
|
| 110 |
+
"nodes": [
|
| 111 |
+
{
|
| 112 |
+
"data": {
|
| 113 |
+
"__execution_delay": 0.0,
|
| 114 |
+
"collapsed": null,
|
| 115 |
+
"display": null,
|
| 116 |
+
"error": null,
|
| 117 |
+
"meta": {
|
| 118 |
+
"inputs": {},
|
| 119 |
+
"name": "BioNeMo > Import H5AD file",
|
| 120 |
+
"outputs": {
|
| 121 |
+
"output": {
|
| 122 |
+
"name": "output",
|
| 123 |
+
"position": "right",
|
| 124 |
+
"type": {
|
| 125 |
+
"type": "None"
|
| 126 |
+
}
|
| 127 |
+
}
|
| 128 |
+
},
|
| 129 |
+
"params": {
|
| 130 |
+
"file_path": {
|
| 131 |
+
"default": null,
|
| 132 |
+
"name": "file_path",
|
| 133 |
+
"type": {
|
| 134 |
+
"type": "<class 'str'>"
|
| 135 |
+
}
|
| 136 |
+
}
|
| 137 |
+
},
|
| 138 |
+
"position": {
|
| 139 |
+
"x": 504.0,
|
| 140 |
+
"y": 355.0
|
| 141 |
+
},
|
| 142 |
+
"type": "basic"
|
| 143 |
+
},
|
| 144 |
+
"params": {
|
| 145 |
+
"file_path": "hs-celltype-bench.h5ad"
|
| 146 |
+
},
|
| 147 |
+
"status": "done",
|
| 148 |
+
"title": "BioNeMo > Import H5AD file"
|
| 149 |
+
},
|
| 150 |
+
"dragHandle": ".bg-primary",
|
| 151 |
+
"height": 347.0,
|
| 152 |
+
"id": "BioNeMo > Import H5AD file 1",
|
| 153 |
+
"position": {
|
| 154 |
+
"x": 975.3920617976814,
|
| 155 |
+
"y": 246.19491328410817
|
| 156 |
+
},
|
| 157 |
+
"type": "basic",
|
| 158 |
+
"width": 295.0
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"data": {
|
| 162 |
+
"display": null,
|
| 163 |
+
"error": null,
|
| 164 |
+
"meta": {
|
| 165 |
+
"inputs": {
|
| 166 |
+
"adata": {
|
| 167 |
+
"name": "adata",
|
| 168 |
+
"position": "left",
|
| 169 |
+
"type": {
|
| 170 |
+
"type": "<class 'inspect._empty'>"
|
| 171 |
+
}
|
| 172 |
+
}
|
| 173 |
+
},
|
| 174 |
+
"name": "BioNeMo > Get labels",
|
| 175 |
+
"outputs": {
|
| 176 |
+
"output": {
|
| 177 |
+
"name": "output",
|
| 178 |
+
"position": "right",
|
| 179 |
+
"type": {
|
| 180 |
+
"type": "None"
|
| 181 |
+
}
|
| 182 |
+
}
|
| 183 |
+
},
|
| 184 |
+
"params": {},
|
| 185 |
+
"position": {
|
| 186 |
+
"x": 389.0,
|
| 187 |
+
"y": 633.0
|
| 188 |
+
},
|
| 189 |
+
"type": "basic"
|
| 190 |
+
},
|
| 191 |
+
"params": {},
|
| 192 |
+
"status": "done",
|
| 193 |
+
"title": "BioNeMo > Get labels"
|
| 194 |
+
},
|
| 195 |
+
"dragHandle": ".bg-primary",
|
| 196 |
+
"height": 200.0,
|
| 197 |
+
"id": "BioNeMo > Get labels 1",
|
| 198 |
+
"position": {
|
| 199 |
+
"x": 1330.5731290863628,
|
| 200 |
+
"y": 322.77821619446473
|
| 201 |
+
},
|
| 202 |
+
"type": "basic",
|
| 203 |
+
"width": 200.0
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"data": {
|
| 207 |
+
"__execution_delay": 0.0,
|
| 208 |
+
"collapsed": null,
|
| 209 |
+
"display": null,
|
| 210 |
+
"error": null,
|
| 211 |
+
"meta": {
|
| 212 |
+
"inputs": {},
|
| 213 |
+
"name": "BioNeMo > Download model",
|
| 214 |
+
"outputs": {
|
| 215 |
+
"output": {
|
| 216 |
+
"name": "output",
|
| 217 |
+
"position": "right",
|
| 218 |
+
"type": {
|
| 219 |
+
"type": "None"
|
| 220 |
+
}
|
| 221 |
+
}
|
| 222 |
+
},
|
| 223 |
+
"params": {
|
| 224 |
+
"model_name": {
|
| 225 |
+
"default": null,
|
| 226 |
+
"name": "model_name",
|
| 227 |
+
"type": {
|
| 228 |
+
"type": "<class 'str'>"
|
| 229 |
+
}
|
| 230 |
+
}
|
| 231 |
+
},
|
| 232 |
+
"position": {
|
| 233 |
+
"x": 1026.0,
|
| 234 |
+
"y": 839.0
|
| 235 |
+
},
|
| 236 |
+
"type": "basic"
|
| 237 |
+
},
|
| 238 |
+
"params": {
|
| 239 |
+
"model_name": "geneformer_100m"
|
| 240 |
+
},
|
| 241 |
+
"status": "done",
|
| 242 |
+
"title": "BioNeMo > Download model"
|
| 243 |
+
},
|
| 244 |
+
"dragHandle": ".bg-primary",
|
| 245 |
+
"height": 200.0,
|
| 246 |
+
"id": "BioNeMo > Download model 1",
|
| 247 |
+
"position": {
|
| 248 |
+
"x": 551.1714527812203,
|
| 249 |
+
"y": 629.2951247275757
|
| 250 |
+
},
|
| 251 |
+
"type": "basic",
|
| 252 |
+
"width": 200.0
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"data": {
|
| 256 |
+
"__execution_delay": 0.0,
|
| 257 |
+
"collapsed": null,
|
| 258 |
+
"display": null,
|
| 259 |
+
"error": null,
|
| 260 |
+
"meta": {
|
| 261 |
+
"inputs": {},
|
| 262 |
+
"name": "BioNeMo > Download model",
|
| 263 |
+
"outputs": {
|
| 264 |
+
"output": {
|
| 265 |
+
"name": "output",
|
| 266 |
+
"position": "right",
|
| 267 |
+
"type": {
|
| 268 |
+
"type": "None"
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
},
|
| 272 |
+
"params": {
|
| 273 |
+
"model_name": {
|
| 274 |
+
"default": null,
|
| 275 |
+
"name": "model_name",
|
| 276 |
+
"type": {
|
| 277 |
+
"type": "<class 'str'>"
|
| 278 |
+
}
|
| 279 |
+
}
|
| 280 |
+
},
|
| 281 |
+
"position": {
|
| 282 |
+
"x": 939.0,
|
| 283 |
+
"y": 523.0
|
| 284 |
+
},
|
| 285 |
+
"type": "basic"
|
| 286 |
+
},
|
| 287 |
+
"params": {
|
| 288 |
+
"model_name": "geneformer_10m"
|
| 289 |
+
},
|
| 290 |
+
"status": "done",
|
| 291 |
+
"title": "BioNeMo > Download model"
|
| 292 |
+
},
|
| 293 |
+
"dragHandle": ".bg-primary",
|
| 294 |
+
"height": 200.0,
|
| 295 |
+
"id": "BioNeMo > Download model 2",
|
| 296 |
+
"position": {
|
| 297 |
+
"x": 556.2267014450949,
|
| 298 |
+
"y": 313.55564323889297
|
| 299 |
+
},
|
| 300 |
+
"type": "basic",
|
| 301 |
+
"width": 200.0
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"data": {
|
| 305 |
+
"__execution_delay": 0.0,
|
| 306 |
+
"collapsed": null,
|
| 307 |
+
"display": null,
|
| 308 |
+
"error": null,
|
| 309 |
+
"meta": {
|
| 310 |
+
"inputs": {},
|
| 311 |
+
"name": "BioNeMo > Download CELLxGENE dataset",
|
| 312 |
+
"outputs": {
|
| 313 |
+
"output": {
|
| 314 |
+
"name": "output",
|
| 315 |
+
"position": "right",
|
| 316 |
+
"type": {
|
| 317 |
+
"type": "None"
|
| 318 |
+
}
|
| 319 |
+
}
|
| 320 |
+
},
|
| 321 |
+
"params": {
|
| 322 |
+
"census_version": {
|
| 323 |
+
"default": "2023-12-15",
|
| 324 |
+
"name": "census_version",
|
| 325 |
+
"type": {
|
| 326 |
+
"type": "<class 'str'>"
|
| 327 |
+
}
|
| 328 |
+
},
|
| 329 |
+
"max_workers": {
|
| 330 |
+
"default": 1.0,
|
| 331 |
+
"name": "max_workers",
|
| 332 |
+
"type": {
|
| 333 |
+
"type": "<class 'int'>"
|
| 334 |
+
}
|
| 335 |
+
},
|
| 336 |
+
"organism": {
|
| 337 |
+
"default": "Homo sapiens",
|
| 338 |
+
"name": "organism",
|
| 339 |
+
"type": {
|
| 340 |
+
"type": "<class 'str'>"
|
| 341 |
+
}
|
| 342 |
+
},
|
| 343 |
+
"save_path": {
|
| 344 |
+
"default": null,
|
| 345 |
+
"name": "save_path",
|
| 346 |
+
"type": {
|
| 347 |
+
"type": "<class 'str'>"
|
| 348 |
+
}
|
| 349 |
+
},
|
| 350 |
+
"use_mp": {
|
| 351 |
+
"default": false,
|
| 352 |
+
"name": "use_mp",
|
| 353 |
+
"type": {
|
| 354 |
+
"type": "<class 'bool'>"
|
| 355 |
+
}
|
| 356 |
+
},
|
| 357 |
+
"value_filter": {
|
| 358 |
+
"default": "dataset_id==\"8e47ed12-c658-4252-b126-381df8d52a3d\"",
|
| 359 |
+
"name": "value_filter",
|
| 360 |
+
"type": {
|
| 361 |
+
"type": "<class 'str'>"
|
| 362 |
+
}
|
| 363 |
+
}
|
| 364 |
+
},
|
| 365 |
+
"position": {
|
| 366 |
+
"x": 1020.0,
|
| 367 |
+
"y": 262.0
|
| 368 |
+
},
|
| 369 |
+
"type": "basic"
|
| 370 |
+
},
|
| 371 |
+
"params": {
|
| 372 |
+
"census_version": "2023-12-15",
|
| 373 |
+
"max_workers": 1.0,
|
| 374 |
+
"organism": "Homo sapiens",
|
| 375 |
+
"save_path": "celltype-bench-dataset",
|
| 376 |
+
"use_mp": false,
|
| 377 |
+
"value_filter": "dataset_id==\"8e47ed12-c658-4252-b126-381df8d52a3d\""
|
| 378 |
+
},
|
| 379 |
+
"status": "done",
|
| 380 |
+
"title": "BioNeMo > Download CELLxGENE dataset"
|
| 381 |
+
},
|
| 382 |
+
"dragHandle": ".bg-primary",
|
| 383 |
+
"height": 421.0,
|
| 384 |
+
"id": "BioNeMo > Download CELLxGENE dataset 1",
|
| 385 |
+
"position": {
|
| 386 |
+
"x": 414.9692093497506,
|
| 387 |
+
"y": -221.8644693915577
|
| 388 |
+
},
|
| 389 |
+
"type": "basic",
|
| 390 |
+
"width": 240.0
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"data": {
|
| 394 |
+
"__execution_delay": 0.0,
|
| 395 |
+
"collapsed": null,
|
| 396 |
+
"display": null,
|
| 397 |
+
"error": null,
|
| 398 |
+
"meta": {
|
| 399 |
+
"inputs": {
|
| 400 |
+
"dataset_path": {
|
| 401 |
+
"name": "dataset_path",
|
| 402 |
+
"position": "left",
|
| 403 |
+
"type": {
|
| 404 |
+
"type": "<class 'str'>"
|
| 405 |
+
}
|
| 406 |
+
},
|
| 407 |
+
"model_path": {
|
| 408 |
+
"name": "model_path",
|
| 409 |
+
"position": "left",
|
| 410 |
+
"type": {
|
| 411 |
+
"type": "str | None"
|
| 412 |
+
}
|
| 413 |
+
}
|
| 414 |
+
},
|
| 415 |
+
"name": "BioNeMo > Infer",
|
| 416 |
+
"outputs": {
|
| 417 |
+
"output": {
|
| 418 |
+
"name": "output",
|
| 419 |
+
"position": "right",
|
| 420 |
+
"type": {
|
| 421 |
+
"type": "None"
|
| 422 |
+
}
|
| 423 |
+
}
|
| 424 |
+
},
|
| 425 |
+
"params": {
|
| 426 |
+
"results_path": {
|
| 427 |
+
"default": null,
|
| 428 |
+
"name": "results_path",
|
| 429 |
+
"type": {
|
| 430 |
+
"type": "<class 'str'>"
|
| 431 |
+
}
|
| 432 |
+
}
|
| 433 |
+
},
|
| 434 |
+
"position": {
|
| 435 |
+
"x": 1544.0,
|
| 436 |
+
"y": 356.0
|
| 437 |
+
},
|
| 438 |
+
"type": "basic"
|
| 439 |
+
},
|
| 440 |
+
"params": {
|
| 441 |
+
"results_path": "results_10m"
|
| 442 |
+
},
|
| 443 |
+
"status": "done",
|
| 444 |
+
"title": "BioNeMo > Infer"
|
| 445 |
+
},
|
| 446 |
+
"dragHandle": ".bg-primary",
|
| 447 |
+
"height": 200.0,
|
| 448 |
+
"id": "BioNeMo > Infer 1",
|
| 449 |
+
"position": {
|
| 450 |
+
"x": 1039.04712219626,
|
| 451 |
+
"y": -43.33924107744772
|
| 452 |
+
},
|
| 453 |
+
"type": "basic",
|
| 454 |
+
"width": 200.0
|
| 455 |
+
},
|
| 456 |
+
{
|
| 457 |
+
"data": {
|
| 458 |
+
"__execution_delay": 0.0,
|
| 459 |
+
"collapsed": null,
|
| 460 |
+
"display": null,
|
| 461 |
+
"error": null,
|
| 462 |
+
"meta": {
|
| 463 |
+
"inputs": {
|
| 464 |
+
"dataset_path": {
|
| 465 |
+
"name": "dataset_path",
|
| 466 |
+
"position": "left",
|
| 467 |
+
"type": {
|
| 468 |
+
"type": "<class 'str'>"
|
| 469 |
+
}
|
| 470 |
+
},
|
| 471 |
+
"model_path": {
|
| 472 |
+
"name": "model_path",
|
| 473 |
+
"position": "left",
|
| 474 |
+
"type": {
|
| 475 |
+
"type": "str | None"
|
| 476 |
+
}
|
| 477 |
+
}
|
| 478 |
+
},
|
| 479 |
+
"name": "BioNeMo > Infer",
|
| 480 |
+
"outputs": {
|
| 481 |
+
"output": {
|
| 482 |
+
"name": "output",
|
| 483 |
+
"position": "right",
|
| 484 |
+
"type": {
|
| 485 |
+
"type": "None"
|
| 486 |
+
}
|
| 487 |
+
}
|
| 488 |
+
},
|
| 489 |
+
"params": {
|
| 490 |
+
"results_path": {
|
| 491 |
+
"default": null,
|
| 492 |
+
"name": "results_path",
|
| 493 |
+
"type": {
|
| 494 |
+
"type": "<class 'str'>"
|
| 495 |
+
}
|
| 496 |
+
}
|
| 497 |
+
},
|
| 498 |
+
"position": {
|
| 499 |
+
"x": 1256.0,
|
| 500 |
+
"y": 1005.0
|
| 501 |
+
},
|
| 502 |
+
"type": "basic"
|
| 503 |
+
},
|
| 504 |
+
"params": {
|
| 505 |
+
"results_path": "results_100m"
|
| 506 |
+
},
|
| 507 |
+
"status": "done",
|
| 508 |
+
"title": "BioNeMo > Infer"
|
| 509 |
+
},
|
| 510 |
+
"dragHandle": ".bg-primary",
|
| 511 |
+
"height": 200.0,
|
| 512 |
+
"id": "BioNeMo > Infer 2",
|
| 513 |
+
"position": {
|
| 514 |
+
"x": 1030.3289199948294,
|
| 515 |
+
"y": 636.5914302771178
|
| 516 |
+
},
|
| 517 |
+
"type": "basic",
|
| 518 |
+
"width": 200.0
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"data": {
|
| 522 |
+
"display": null,
|
| 523 |
+
"error": null,
|
| 524 |
+
"meta": {
|
| 525 |
+
"inputs": {
|
| 526 |
+
"results_path": {
|
| 527 |
+
"name": "results_path",
|
| 528 |
+
"position": "left",
|
| 529 |
+
"type": {
|
| 530 |
+
"type": "<class 'str'>"
|
| 531 |
+
}
|
| 532 |
+
}
|
| 533 |
+
},
|
| 534 |
+
"name": "BioNeMo > Load results",
|
| 535 |
+
"outputs": {
|
| 536 |
+
"output": {
|
| 537 |
+
"name": "output",
|
| 538 |
+
"position": "right",
|
| 539 |
+
"type": {
|
| 540 |
+
"type": "None"
|
| 541 |
+
}
|
| 542 |
+
}
|
| 543 |
+
},
|
| 544 |
+
"params": {},
|
| 545 |
+
"position": {
|
| 546 |
+
"x": 1506.0,
|
| 547 |
+
"y": 804.0
|
| 548 |
+
},
|
| 549 |
+
"type": "basic"
|
| 550 |
+
},
|
| 551 |
+
"params": {},
|
| 552 |
+
"status": "done",
|
| 553 |
+
"title": "BioNeMo > Load results"
|
| 554 |
+
},
|
| 555 |
+
"dragHandle": ".bg-primary",
|
| 556 |
+
"height": 200.0,
|
| 557 |
+
"id": "BioNeMo > Load results 1",
|
| 558 |
+
"position": {
|
| 559 |
+
"x": 1316.753212112243,
|
| 560 |
+
"y": 588.3511253627433
|
| 561 |
+
},
|
| 562 |
+
"type": "basic",
|
| 563 |
+
"width": 200.0
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"data": {
|
| 567 |
+
"display": null,
|
| 568 |
+
"error": null,
|
| 569 |
+
"meta": {
|
| 570 |
+
"inputs": {
|
| 571 |
+
"data": {
|
| 572 |
+
"name": "data",
|
| 573 |
+
"position": "left",
|
| 574 |
+
"type": {
|
| 575 |
+
"type": "<class 'inspect._empty'>"
|
| 576 |
+
}
|
| 577 |
+
},
|
| 578 |
+
"labels": {
|
| 579 |
+
"name": "labels",
|
| 580 |
+
"position": "left",
|
| 581 |
+
"type": {
|
| 582 |
+
"type": "<class 'inspect._empty'>"
|
| 583 |
+
}
|
| 584 |
+
}
|
| 585 |
+
},
|
| 586 |
+
"name": "BioNeMo > Run benchmark",
|
| 587 |
+
"outputs": {
|
| 588 |
+
"output": {
|
| 589 |
+
"name": "output",
|
| 590 |
+
"position": "right",
|
| 591 |
+
"type": {
|
| 592 |
+
"type": "None"
|
| 593 |
+
}
|
| 594 |
+
}
|
| 595 |
+
},
|
| 596 |
+
"params": {
|
| 597 |
+
"use_pca": {
|
| 598 |
+
"default": false,
|
| 599 |
+
"name": "use_pca",
|
| 600 |
+
"type": {
|
| 601 |
+
"type": "<class 'bool'>"
|
| 602 |
+
}
|
| 603 |
+
}
|
| 604 |
+
},
|
| 605 |
+
"position": {
|
| 606 |
+
"x": 1698.0,
|
| 607 |
+
"y": 929.0
|
| 608 |
+
},
|
| 609 |
+
"type": "basic"
|
| 610 |
+
},
|
| 611 |
+
"params": {
|
| 612 |
+
"use_pca": false
|
| 613 |
+
},
|
| 614 |
+
"status": "done",
|
| 615 |
+
"title": "BioNeMo > Run benchmark"
|
| 616 |
+
},
|
| 617 |
+
"dragHandle": ".bg-primary",
|
| 618 |
+
"height": 254.0,
|
| 619 |
+
"id": "BioNeMo > Run benchmark 1",
|
| 620 |
+
"position": {
|
| 621 |
+
"x": 1717.5260843687468,
|
| 622 |
+
"y": 601.9085109739857
|
| 623 |
+
},
|
| 624 |
+
"type": "basic",
|
| 625 |
+
"width": 218.0
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"data": {
|
| 629 |
+
"display": null,
|
| 630 |
+
"error": null,
|
| 631 |
+
"meta": {
|
| 632 |
+
"inputs": {
|
| 633 |
+
"results_path": {
|
| 634 |
+
"name": "results_path",
|
| 635 |
+
"position": "left",
|
| 636 |
+
"type": {
|
| 637 |
+
"type": "<class 'str'>"
|
| 638 |
+
}
|
| 639 |
+
}
|
| 640 |
+
},
|
| 641 |
+
"name": "BioNeMo > Load results",
|
| 642 |
+
"outputs": {
|
| 643 |
+
"output": {
|
| 644 |
+
"name": "output",
|
| 645 |
+
"position": "right",
|
| 646 |
+
"type": {
|
| 647 |
+
"type": "None"
|
| 648 |
+
}
|
| 649 |
+
}
|
| 650 |
+
},
|
| 651 |
+
"params": {},
|
| 652 |
+
"position": {
|
| 653 |
+
"x": 1314.0,
|
| 654 |
+
"y": 286.0
|
| 655 |
+
},
|
| 656 |
+
"type": "basic"
|
| 657 |
+
},
|
| 658 |
+
"params": {},
|
| 659 |
+
"status": "done",
|
| 660 |
+
"title": "BioNeMo > Load results"
|
| 661 |
+
},
|
| 662 |
+
"dragHandle": ".bg-primary",
|
| 663 |
+
"height": 200.0,
|
| 664 |
+
"id": "BioNeMo > Load results 2",
|
| 665 |
+
"position": {
|
| 666 |
+
"x": 1371.1643035406682,
|
| 667 |
+
"y": -38.628856650688306
|
| 668 |
+
},
|
| 669 |
+
"type": "basic",
|
| 670 |
+
"width": 200.0
|
| 671 |
+
},
|
| 672 |
+
{
|
| 673 |
+
"data": {
|
| 674 |
+
"display": null,
|
| 675 |
+
"error": null,
|
| 676 |
+
"meta": {
|
| 677 |
+
"inputs": {
|
| 678 |
+
"data": {
|
| 679 |
+
"name": "data",
|
| 680 |
+
"position": "left",
|
| 681 |
+
"type": {
|
| 682 |
+
"type": "<class 'inspect._empty'>"
|
| 683 |
+
}
|
| 684 |
+
},
|
| 685 |
+
"labels": {
|
| 686 |
+
"name": "labels",
|
| 687 |
+
"position": "left",
|
| 688 |
+
"type": {
|
| 689 |
+
"type": "<class 'inspect._empty'>"
|
| 690 |
+
}
|
| 691 |
+
}
|
| 692 |
+
},
|
| 693 |
+
"name": "BioNeMo > Run benchmark",
|
| 694 |
+
"outputs": {
|
| 695 |
+
"output": {
|
| 696 |
+
"name": "output",
|
| 697 |
+
"position": "right",
|
| 698 |
+
"type": {
|
| 699 |
+
"type": "None"
|
| 700 |
+
}
|
| 701 |
+
}
|
| 702 |
+
},
|
| 703 |
+
"params": {
|
| 704 |
+
"use_pca": {
|
| 705 |
+
"default": false,
|
| 706 |
+
"name": "use_pca",
|
| 707 |
+
"type": {
|
| 708 |
+
"type": "<class 'bool'>"
|
| 709 |
+
}
|
| 710 |
+
}
|
| 711 |
+
},
|
| 712 |
+
"position": {
|
| 713 |
+
"x": 1576.0,
|
| 714 |
+
"y": 395.0
|
| 715 |
+
},
|
| 716 |
+
"type": "basic"
|
| 717 |
+
},
|
| 718 |
+
"params": {
|
| 719 |
+
"use_pca": false
|
| 720 |
+
},
|
| 721 |
+
"status": "done",
|
| 722 |
+
"title": "BioNeMo > Run benchmark"
|
| 723 |
+
},
|
| 724 |
+
"dragHandle": ".bg-primary",
|
| 725 |
+
"height": 200.0,
|
| 726 |
+
"id": "BioNeMo > Run benchmark 2",
|
| 727 |
+
"position": {
|
| 728 |
+
"x": 1740.0,
|
| 729 |
+
"y": 120.0
|
| 730 |
+
},
|
| 731 |
+
"type": "basic",
|
| 732 |
+
"width": 200.0
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"data": {
|
| 736 |
+
"display": {
|
| 737 |
+
"grid": {
|
| 738 |
+
"bottom": "10%",
|
| 739 |
+
"height": "70%",
|
| 740 |
+
"left": "20%",
|
| 741 |
+
"right": "10%",
|
| 742 |
+
"top": "10%",
|
| 743 |
+
"width": "70%"
|
| 744 |
+
},
|
| 745 |
+
"series": [
|
| 746 |
+
{
|
| 747 |
+
"data": [
|
| 748 |
+
0.7020536292780548,
|
| 749 |
+
0.843335333719808
|
| 750 |
+
],
|
| 751 |
+
"itemStyle": {
|
| 752 |
+
"color": "#440154"
|
| 753 |
+
},
|
| 754 |
+
"name": "F1 Score",
|
| 755 |
+
"type": "bar"
|
| 756 |
+
},
|
| 757 |
+
{
|
| 758 |
+
"data": [
|
| 759 |
+
[
|
| 760 |
+
0.6853106016807672,
|
| 761 |
+
0.7187966568753424
|
| 762 |
+
],
|
| 763 |
+
[
|
| 764 |
+
0.8270726644727397,
|
| 765 |
+
0.8595980029668762
|
| 766 |
+
]
|
| 767 |
+
],
|
| 768 |
+
"itemStyle": {
|
| 769 |
+
"color": "#1f77b4"
|
| 770 |
+
},
|
| 771 |
+
"name": "Error Bars",
|
| 772 |
+
"type": "errorbar"
|
| 773 |
+
}
|
| 774 |
+
],
|
| 775 |
+
"title": {
|
| 776 |
+
"left": "center",
|
| 777 |
+
"text": "F1 Score Comparison",
|
| 778 |
+
"textStyle": {
|
| 779 |
+
"fontSize": 20,
|
| 780 |
+
"fontWeight": "bold"
|
| 781 |
+
}
|
| 782 |
+
},
|
| 783 |
+
"tooltip": {
|
| 784 |
+
"axisPointer": {
|
| 785 |
+
"type": "shadow"
|
| 786 |
+
},
|
| 787 |
+
"trigger": "axis"
|
| 788 |
+
},
|
| 789 |
+
"xAxis": {
|
| 790 |
+
"axisLabel": {
|
| 791 |
+
"align": "right",
|
| 792 |
+
"rotate": 45,
|
| 793 |
+
"textStyle": {
|
| 794 |
+
"fontSize": 14,
|
| 795 |
+
"fontWeight": "bold"
|
| 796 |
+
}
|
| 797 |
+
},
|
| 798 |
+
"data": [
|
| 799 |
+
"10M parameters",
|
| 800 |
+
"106M parameters"
|
| 801 |
+
],
|
| 802 |
+
"type": "category"
|
| 803 |
+
},
|
| 804 |
+
"yAxis": {
|
| 805 |
+
"axisLabel": {
|
| 806 |
+
"textStyle": {
|
| 807 |
+
"fontSize": 14,
|
| 808 |
+
"fontWeight": "bold"
|
| 809 |
+
}
|
| 810 |
+
},
|
| 811 |
+
"interval": 0.1,
|
| 812 |
+
"max": 1,
|
| 813 |
+
"min": 0,
|
| 814 |
+
"name": "F1 Score",
|
| 815 |
+
"type": "value"
|
| 816 |
+
}
|
| 817 |
+
},
|
| 818 |
+
"error": null,
|
| 819 |
+
"meta": {
|
| 820 |
+
"inputs": {
|
| 821 |
+
"benchmark_output100m": {
|
| 822 |
+
"name": "benchmark_output100m",
|
| 823 |
+
"position": "left",
|
| 824 |
+
"type": {
|
| 825 |
+
"type": "<class 'inspect._empty'>"
|
| 826 |
+
}
|
| 827 |
+
},
|
| 828 |
+
"benchmark_output10m": {
|
| 829 |
+
"name": "benchmark_output10m",
|
| 830 |
+
"position": "left",
|
| 831 |
+
"type": {
|
| 832 |
+
"type": "<class 'inspect._empty'>"
|
| 833 |
+
}
|
| 834 |
+
}
|
| 835 |
+
},
|
| 836 |
+
"name": "BioNeMo > Plot f1 comparison",
|
| 837 |
+
"outputs": {},
|
| 838 |
+
"params": {},
|
| 839 |
+
"position": {
|
| 840 |
+
"x": 1716.0,
|
| 841 |
+
"y": 309.0
|
| 842 |
+
},
|
| 843 |
+
"type": "visualization"
|
| 844 |
+
},
|
| 845 |
+
"params": {},
|
| 846 |
+
"status": "done",
|
| 847 |
+
"title": "BioNeMo > Plot f1 comparison"
|
| 848 |
+
},
|
| 849 |
+
"dragHandle": ".bg-primary",
|
| 850 |
+
"height": 863.0,
|
| 851 |
+
"id": "BioNeMo > Plot f1 comparison 1",
|
| 852 |
+
"position": {
|
| 853 |
+
"x": 2091.687426186124,
|
| 854 |
+
"y": -368.096892874947
|
| 855 |
+
},
|
| 856 |
+
"type": "visualization",
|
| 857 |
+
"width": 1034.0
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"data": {
|
| 861 |
+
"display": {
|
| 862 |
+
"grid": {
|
| 863 |
+
"bottom": "10%",
|
| 864 |
+
"height": "70%",
|
| 865 |
+
"left": "20%",
|
| 866 |
+
"right": "10%",
|
| 867 |
+
"top": "10%",
|
| 868 |
+
"width": "70%"
|
| 869 |
+
},
|
| 870 |
+
"series": [
|
| 871 |
+
{
|
| 872 |
+
"data": [
|
| 873 |
+
0.8385031821273431,
|
| 874 |
+
0.9053958718388249
|
| 875 |
+
],
|
| 876 |
+
"itemStyle": {
|
| 877 |
+
"color": "#440154"
|
| 878 |
+
},
|
| 879 |
+
"name": "Accuracy",
|
| 880 |
+
"type": "bar"
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"data": [
|
| 884 |
+
[
|
| 885 |
+
0.8221974395834195,
|
| 886 |
+
0.8548089246712667
|
| 887 |
+
],
|
| 888 |
+
[
|
| 889 |
+
0.8901141406971089,
|
| 890 |
+
0.9206776029805408
|
| 891 |
+
]
|
| 892 |
+
],
|
| 893 |
+
"itemStyle": {
|
| 894 |
+
"color": "#1f77b4"
|
| 895 |
+
},
|
| 896 |
+
"name": "Error Bars",
|
| 897 |
+
"type": "errorbar"
|
| 898 |
+
}
|
| 899 |
+
],
|
| 900 |
+
"title": {
|
| 901 |
+
"left": "center",
|
| 902 |
+
"text": "Accuracy Comparison",
|
| 903 |
+
"textStyle": {
|
| 904 |
+
"fontSize": 20,
|
| 905 |
+
"fontWeight": "bold"
|
| 906 |
+
}
|
| 907 |
+
},
|
| 908 |
+
"tooltip": {
|
| 909 |
+
"axisPointer": {
|
| 910 |
+
"type": "shadow"
|
| 911 |
+
},
|
| 912 |
+
"trigger": "axis"
|
| 913 |
+
},
|
| 914 |
+
"xAxis": {
|
| 915 |
+
"axisLabel": {
|
| 916 |
+
"align": "right",
|
| 917 |
+
"rotate": 45,
|
| 918 |
+
"textStyle": {
|
| 919 |
+
"fontSize": 14,
|
| 920 |
+
"fontWeight": "bold"
|
| 921 |
+
}
|
| 922 |
+
},
|
| 923 |
+
"data": [
|
| 924 |
+
"10M parameters",
|
| 925 |
+
"106M parameters"
|
| 926 |
+
],
|
| 927 |
+
"type": "category"
|
| 928 |
+
},
|
| 929 |
+
"yAxis": {
|
| 930 |
+
"axisLabel": {
|
| 931 |
+
"textStyle": {
|
| 932 |
+
"fontSize": 14,
|
| 933 |
+
"fontWeight": "bold"
|
| 934 |
+
}
|
| 935 |
+
},
|
| 936 |
+
"interval": 0.1,
|
| 937 |
+
"max": 1,
|
| 938 |
+
"min": 0,
|
| 939 |
+
"name": "Accuracy",
|
| 940 |
+
"type": "value"
|
| 941 |
+
}
|
| 942 |
+
},
|
| 943 |
+
"error": null,
|
| 944 |
+
"meta": {
|
| 945 |
+
"inputs": {
|
| 946 |
+
"benchmark_output100m": {
|
| 947 |
+
"name": "benchmark_output100m",
|
| 948 |
+
"position": "left",
|
| 949 |
+
"type": {
|
| 950 |
+
"type": "<class 'inspect._empty'>"
|
| 951 |
+
}
|
| 952 |
+
},
|
| 953 |
+
"benchmark_output10m": {
|
| 954 |
+
"name": "benchmark_output10m",
|
| 955 |
+
"position": "left",
|
| 956 |
+
"type": {
|
| 957 |
+
"type": "<class 'inspect._empty'>"
|
| 958 |
+
}
|
| 959 |
+
}
|
| 960 |
+
},
|
| 961 |
+
"name": "BioNeMo > Plot accuracy comparison",
|
| 962 |
+
"outputs": {},
|
| 963 |
+
"params": {},
|
| 964 |
+
"position": {
|
| 965 |
+
"x": 1574.0,
|
| 966 |
+
"y": 720.0
|
| 967 |
+
},
|
| 968 |
+
"type": "visualization"
|
| 969 |
+
},
|
| 970 |
+
"params": {},
|
| 971 |
+
"status": "done",
|
| 972 |
+
"title": "BioNeMo > Plot accuracy comparison"
|
| 973 |
+
},
|
| 974 |
+
"dragHandle": ".bg-primary",
|
| 975 |
+
"height": 200.0,
|
| 976 |
+
"id": "BioNeMo > Plot accuracy comparison 1",
|
| 977 |
+
"position": {
|
| 978 |
+
"x": 2160.0,
|
| 979 |
+
"y": 915.0
|
| 980 |
+
},
|
| 981 |
+
"type": "visualization",
|
| 982 |
+
"width": 200.0
|
| 983 |
+
}
|
| 984 |
+
]
|
| 985 |
+
}
|
lynxkite-app/src/lynxkite_app/__main__.py
CHANGED
|
@@ -6,7 +6,13 @@ import os
|
|
| 6 |
def main():
|
| 7 |
port = int(os.environ.get("PORT", "8000"))
|
| 8 |
reload = bool(os.environ.get("LYNXKITE_RELOAD", ""))
|
| 9 |
-
uvicorn.run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
if __name__ == "__main__":
|
|
|
|
| 6 |
def main():
|
| 7 |
port = int(os.environ.get("PORT", "8000"))
|
| 8 |
reload = bool(os.environ.get("LYNXKITE_RELOAD", ""))
|
| 9 |
+
uvicorn.run(
|
| 10 |
+
"lynxkite_app.main:app",
|
| 11 |
+
host="0.0.0.0",
|
| 12 |
+
port=port,
|
| 13 |
+
reload=reload,
|
| 14 |
+
loop="asyncio",
|
| 15 |
+
)
|
| 16 |
|
| 17 |
|
| 18 |
if __name__ == "__main__":
|
lynxkite-app/web/src/workspace/nodes/NodeWithVisualization.tsx
CHANGED
|
@@ -10,8 +10,8 @@ const NodeWithVisualization = (props: any) => {
|
|
| 10 |
if (!opts || !chartsRef.current) return;
|
| 11 |
chartsInstanceRef.current = echarts.init(chartsRef.current, null, {
|
| 12 |
renderer: "canvas",
|
| 13 |
-
width:
|
| 14 |
-
height:
|
| 15 |
});
|
| 16 |
chartsInstanceRef.current.setOption(opts);
|
| 17 |
const onResize = () => chartsInstanceRef.current?.resize();
|
|
|
|
| 10 |
if (!opts || !chartsRef.current) return;
|
| 11 |
chartsInstanceRef.current = echarts.init(chartsRef.current, null, {
|
| 12 |
renderer: "canvas",
|
| 13 |
+
width: 800,
|
| 14 |
+
height: 800,
|
| 15 |
});
|
| 16 |
chartsInstanceRef.current.setOption(opts);
|
| 17 |
const onResize = () => chartsInstanceRef.current?.resize();
|
lynxkite-graph-analytics/.dockerignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lynxkite_data
|
| 2 |
+
lynxkite_crdt_data
|
| 3 |
+
.venv
|
lynxkite-graph-analytics/Dockerfile.bionemo
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvcr.io/nvidia/clara/bionemo-framework:nightly
|
| 2 |
+
|
| 3 |
+
ENV LYNXKITE_BIONEMO_INSTALLED=true
|
| 4 |
+
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Download and install nvm
|
| 8 |
+
RUN curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash
|
| 9 |
+
RUN echo node > .nvmrc
|
| 10 |
+
RUN source /root/.nvm/nvm.sh --install
|
| 11 |
+
|
| 12 |
+
COPY . /app
|
| 13 |
+
|
| 14 |
+
RUN uv pip install -e lynxkite-core/[dev] -e lynxkite-app/[dev] -e lynxkite-graph-analytics/[dev] -e lynxkite-bio -e lynxkite-pillow-example/
|
| 15 |
+
|
| 16 |
+
# bionemo cellxgene_census needs this version of numpy
|
| 17 |
+
RUN uv pip install numpy==1.26.4
|
lynxkite-graph-analytics/README.md
CHANGED
|
@@ -11,3 +11,44 @@ pip install lynxkite lynxkite-graph-analytics
|
|
| 11 |
```
|
| 12 |
|
| 13 |
Run LynxKite with `NX_CUGRAPH_AUTOCONFIG=True` to enable GPU-accelerated graph data science operations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
```
|
| 12 |
|
| 13 |
Run LynxKite with `NX_CUGRAPH_AUTOCONFIG=True` to enable GPU-accelerated graph data science operations.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## BioNemo
|
| 17 |
+
|
| 18 |
+
If you want to use BioNemo operations, then you will have to use the provided Docker image, or
|
| 19 |
+
install BioNemo manually in your environment.
|
| 20 |
+
Take into account that BioNemo needs a GPU to work, you can find the specific requirements
|
| 21 |
+
[here](https://docs.nvidia.com/bionemo-framework/latest/user-guide/getting-started/pre-reqs/).
|
| 22 |
+
|
| 23 |
+
The import of BioNemo operations is gate keeped behing the `LYNXKITE_BIONEMO_INSTALLED` variable.
|
| 24 |
+
BioNemo operations will only be imported if this environment variable is set to true.
|
| 25 |
+
|
| 26 |
+
To build the image:
|
| 27 |
+
|
| 28 |
+
```bash
|
| 29 |
+
# in lynxkite-graph-analytics folder
|
| 30 |
+
$ docker build -f Dockerfile.bionemo -t lynxkite-bionemo ..
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
Take into account that this Dockerfile does not include the lynxkite-lynxscribe package. If you want to include it you will
|
| 34 |
+
need to set up git credentials inside the container.
|
| 35 |
+
|
| 36 |
+
Then, inside the image you can start LynxKite as usual.
|
| 37 |
+
|
| 38 |
+
If you want to do some development, then it is recommend to use the [devcontainers](https://code.visualstudio.com/docs/devcontainers/containers)
|
| 39 |
+
vscode extension. The following is a basic configuration to get started:
|
| 40 |
+
|
| 41 |
+
```json
|
| 42 |
+
// .devcontainer/devcontainer.json
|
| 43 |
+
{
|
| 44 |
+
"name": "Existing Dockerfile",
|
| 45 |
+
"runArgs": [
|
| 46 |
+
"--gpus=all",
|
| 47 |
+
"--shm-size=4g"
|
| 48 |
+
],
|
| 49 |
+
"build": {
|
| 50 |
+
"context": "..",
|
| 51 |
+
"dockerfile": "../lynxkite-graph-analytics/Dockerfile.bionemo"
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
```
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/__init__.py
CHANGED
|
@@ -14,3 +14,6 @@ from .core import * # noqa (easier access for core classes)
|
|
| 14 |
from . import lynxkite_ops # noqa (imported to trigger registration)
|
| 15 |
from . import networkx_ops # noqa (imported to trigger registration)
|
| 16 |
from . import pytorch_model_ops # noqa (imported to trigger registration)
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from . import lynxkite_ops # noqa (imported to trigger registration)
|
| 15 |
from . import networkx_ops # noqa (imported to trigger registration)
|
| 16 |
from . import pytorch_model_ops # noqa (imported to trigger registration)
|
| 17 |
+
|
| 18 |
+
if os.environ.get("LYNXKITE_BIONEMO_INSTALLED", "").strip().lower() == "true":
|
| 19 |
+
from . import bionemo_ops # noqa (imported to trigger registration)
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/bionemo_ops.py
ADDED
|
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""BioNeMo related operations
|
| 2 |
+
|
| 3 |
+
The intention is to showcase how BioNeMo can be integrated with LynxKite. This should be
|
| 4 |
+
considered as a reference implementation and not a production ready code.
|
| 5 |
+
The operations are quite specific for this example notebook:
|
| 6 |
+
https://github.com/NVIDIA/bionemo-framework/blob/main/docs/docs/user-guide/examples/bionemo-geneformer/geneformer-celltype-classification.ipynb
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from lynxkite.core import ops
|
| 10 |
+
import requests
|
| 11 |
+
import tarfile
|
| 12 |
+
import os
|
| 13 |
+
from collections import Counter
|
| 14 |
+
from . import core
|
| 15 |
+
import joblib
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
import random
|
| 20 |
+
from contextlib import contextmanager
|
| 21 |
+
import cellxgene_census # TODO: This needs numpy < 2
|
| 22 |
+
import tempfile
|
| 23 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 24 |
+
from sklearn.pipeline import Pipeline
|
| 25 |
+
from sklearn.model_selection import StratifiedKFold, cross_validate
|
| 26 |
+
from sklearn.metrics import (
|
| 27 |
+
make_scorer,
|
| 28 |
+
accuracy_score,
|
| 29 |
+
precision_score,
|
| 30 |
+
recall_score,
|
| 31 |
+
f1_score,
|
| 32 |
+
roc_auc_score,
|
| 33 |
+
confusion_matrix,
|
| 34 |
+
)
|
| 35 |
+
from sklearn.decomposition import PCA
|
| 36 |
+
from sklearn.model_selection import cross_val_predict
|
| 37 |
+
from sklearn.preprocessing import LabelEncoder
|
| 38 |
+
from bionemo.scdl.io.single_cell_collection import SingleCellCollection
|
| 39 |
+
|
| 40 |
+
import scanpy
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
mem = joblib.Memory("../joblib-cache")
|
| 44 |
+
op = ops.op_registration(core.ENV)
|
| 45 |
+
DATA_PATH = Path("/workspace")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@contextmanager
|
| 49 |
+
def random_seed(seed: int):
|
| 50 |
+
state = random.getstate()
|
| 51 |
+
random.seed(seed)
|
| 52 |
+
try:
|
| 53 |
+
yield
|
| 54 |
+
finally:
|
| 55 |
+
# Go back to previous state
|
| 56 |
+
random.setstate(state)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@op("BioNeMo > Download CELLxGENE dataset")
|
| 60 |
+
@mem.cache()
|
| 61 |
+
def download_cellxgene_dataset(
|
| 62 |
+
*,
|
| 63 |
+
save_path: str,
|
| 64 |
+
census_version: str = "2023-12-15",
|
| 65 |
+
organism: str = "Homo sapiens",
|
| 66 |
+
value_filter='dataset_id=="8e47ed12-c658-4252-b126-381df8d52a3d"',
|
| 67 |
+
max_workers: int = 1,
|
| 68 |
+
use_mp: bool = False,
|
| 69 |
+
) -> None:
|
| 70 |
+
"""Downloads a CELLxGENE dataset"""
|
| 71 |
+
|
| 72 |
+
with cellxgene_census.open_soma(census_version=census_version) as census:
|
| 73 |
+
adata = cellxgene_census.get_anndata(
|
| 74 |
+
census,
|
| 75 |
+
organism,
|
| 76 |
+
obs_value_filter=value_filter,
|
| 77 |
+
)
|
| 78 |
+
with random_seed(32):
|
| 79 |
+
indices = list(range(len(adata)))
|
| 80 |
+
random.shuffle(indices)
|
| 81 |
+
micro_batch_size: int = 32
|
| 82 |
+
num_steps: int = 256
|
| 83 |
+
selection = sorted(indices[: micro_batch_size * num_steps])
|
| 84 |
+
# NOTE: there's a current constraint that predict_step needs to be a function of micro-batch-size.
|
| 85 |
+
# this is something we are working on fixing. A quick hack is to set micro-batch-size=1, but this is
|
| 86 |
+
# slow. In this notebook we are going to use mbs=32 and subsample the anndata.
|
| 87 |
+
adata = adata[selection].copy() # so it's not a view
|
| 88 |
+
h5ad_outfile = DATA_PATH / Path("hs-celltype-bench.h5ad")
|
| 89 |
+
adata.write_h5ad(h5ad_outfile)
|
| 90 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 91 |
+
coll = SingleCellCollection(temp_dir)
|
| 92 |
+
coll.load_h5ad_multi(
|
| 93 |
+
h5ad_outfile.parent, max_workers=max_workers, use_processes=use_mp
|
| 94 |
+
)
|
| 95 |
+
coll.flatten(DATA_PATH / save_path, destroy_on_copy=True)
|
| 96 |
+
return DATA_PATH / save_path
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@op("BioNeMo > Import H5AD file")
|
| 100 |
+
def import_h5ad(*, file_path: str):
|
| 101 |
+
return scanpy.read_h5ad(DATA_PATH / Path(file_path))
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@op("BioNeMo > Download model")
|
| 105 |
+
@mem.cache(verbose=1)
|
| 106 |
+
def download_model(*, model_name: str) -> str:
|
| 107 |
+
"""Downloads a model."""
|
| 108 |
+
model_download_parameters = {
|
| 109 |
+
"geneformer_100m": {
|
| 110 |
+
"name": "geneformer_100m",
|
| 111 |
+
"version": "2.0",
|
| 112 |
+
"path": "geneformer_106M_240530_nemo2",
|
| 113 |
+
},
|
| 114 |
+
"geneformer_10m": {
|
| 115 |
+
"name": "geneformer_10m",
|
| 116 |
+
"version": "2.0",
|
| 117 |
+
"path": "geneformer_10M_240530_nemo2",
|
| 118 |
+
},
|
| 119 |
+
"geneformer_10m2": {
|
| 120 |
+
"name": "geneformer_10m",
|
| 121 |
+
"version": "2.1",
|
| 122 |
+
"path": "geneformer_10M_241113_nemo2",
|
| 123 |
+
},
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
# Define the URL and output file
|
| 127 |
+
url_template = "https://api.ngc.nvidia.com/v2/models/org/nvidia/team/clara/{name}/{version}/files?redirect=true&path={path}.tar.gz"
|
| 128 |
+
url = url_template.format(**model_download_parameters[model_name])
|
| 129 |
+
model_filename = f"{DATA_PATH}/{model_download_parameters[model_name]['path']}"
|
| 130 |
+
output_file = f"{model_filename}.tar.gz"
|
| 131 |
+
|
| 132 |
+
# Send the request
|
| 133 |
+
response = requests.get(url, allow_redirects=True, stream=True)
|
| 134 |
+
response.raise_for_status() # Raise an error for bad responses (4xx and 5xx)
|
| 135 |
+
|
| 136 |
+
# Save the file to disk
|
| 137 |
+
with open(f"{output_file}", "wb") as file:
|
| 138 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 139 |
+
file.write(chunk)
|
| 140 |
+
|
| 141 |
+
# Extract the tar.gz file
|
| 142 |
+
os.makedirs(model_filename, exist_ok=True)
|
| 143 |
+
with tarfile.open(output_file, "r:gz") as tar:
|
| 144 |
+
tar.extractall(path=model_filename)
|
| 145 |
+
|
| 146 |
+
return model_filename
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@op("BioNeMo > Infer")
|
| 150 |
+
@mem.cache(verbose=1)
|
| 151 |
+
def infer(
|
| 152 |
+
dataset_path: str, model_path: str | None = None, *, results_path: str
|
| 153 |
+
) -> str:
|
| 154 |
+
"""Infer on a dataset."""
|
| 155 |
+
# This import is slow, so we only import it when we need it.
|
| 156 |
+
from bionemo.geneformer.scripts.infer_geneformer import infer_model
|
| 157 |
+
|
| 158 |
+
infer_model(
|
| 159 |
+
data_path=dataset_path,
|
| 160 |
+
checkpoint_path=model_path,
|
| 161 |
+
results_path=DATA_PATH / results_path,
|
| 162 |
+
include_hiddens=False,
|
| 163 |
+
micro_batch_size=32,
|
| 164 |
+
include_embeddings=True,
|
| 165 |
+
include_logits=False,
|
| 166 |
+
seq_length=2048,
|
| 167 |
+
precision="bf16-mixed",
|
| 168 |
+
devices=1,
|
| 169 |
+
num_nodes=1,
|
| 170 |
+
num_dataset_workers=10,
|
| 171 |
+
)
|
| 172 |
+
return DATA_PATH / results_path
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@op("BioNeMo > Load results")
|
| 176 |
+
def load_results(results_path: str):
|
| 177 |
+
embeddings = (
|
| 178 |
+
torch.load(f"{results_path}/predictions__rank_0.pt")["embeddings"]
|
| 179 |
+
.float()
|
| 180 |
+
.cpu()
|
| 181 |
+
.numpy()
|
| 182 |
+
)
|
| 183 |
+
return embeddings
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@op("BioNeMo > Get labels")
|
| 187 |
+
def get_labels(adata):
|
| 188 |
+
infer_metadata = adata.obs
|
| 189 |
+
labels = infer_metadata["cell_type"].values
|
| 190 |
+
label_encoder = LabelEncoder()
|
| 191 |
+
integer_labels = label_encoder.fit_transform(labels)
|
| 192 |
+
label_encoder.integer_labels = integer_labels
|
| 193 |
+
return label_encoder
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@op("BioNeMo > Plot labels", view="visualization")
|
| 197 |
+
def plot_labels(adata):
|
| 198 |
+
infer_metadata = adata.obs
|
| 199 |
+
labels = infer_metadata["cell_type"].values
|
| 200 |
+
label_counts = Counter(labels)
|
| 201 |
+
labels = list(label_counts.keys())
|
| 202 |
+
values = list(label_counts.values())
|
| 203 |
+
|
| 204 |
+
options = {
|
| 205 |
+
"title": {
|
| 206 |
+
"text": "Cell type counts for classification dataset",
|
| 207 |
+
"left": "center",
|
| 208 |
+
},
|
| 209 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
| 210 |
+
"xAxis": {
|
| 211 |
+
"type": "category",
|
| 212 |
+
"data": labels,
|
| 213 |
+
"axisLabel": {"rotate": 45, "align": "right"},
|
| 214 |
+
},
|
| 215 |
+
"yAxis": {"type": "value"},
|
| 216 |
+
"series": [
|
| 217 |
+
{
|
| 218 |
+
"name": "Count",
|
| 219 |
+
"type": "bar",
|
| 220 |
+
"data": values,
|
| 221 |
+
"itemStyle": {"color": "#4285F4"},
|
| 222 |
+
}
|
| 223 |
+
],
|
| 224 |
+
}
|
| 225 |
+
return options
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@op("BioNeMo > Run benchmark")
|
| 229 |
+
@mem.cache(verbose=1)
|
| 230 |
+
def run_benchmark(data, labels, *, use_pca: bool = False):
|
| 231 |
+
"""
|
| 232 |
+
data - contains the single cell expression (or whatever feature) in each row.
|
| 233 |
+
labels - contains the string label for each cell
|
| 234 |
+
|
| 235 |
+
data_shape (R, C)
|
| 236 |
+
labels_shape (R,)
|
| 237 |
+
"""
|
| 238 |
+
np.random.seed(1337)
|
| 239 |
+
# Define the target dimension 'n_components'
|
| 240 |
+
n_components = 10 # for example, adjust based on your specific needs
|
| 241 |
+
|
| 242 |
+
# Create a pipeline that includes Gaussian random projection and RandomForestClassifier
|
| 243 |
+
if use_pca:
|
| 244 |
+
pipeline = Pipeline(
|
| 245 |
+
[
|
| 246 |
+
("projection", PCA(n_components=n_components)),
|
| 247 |
+
("classifier", RandomForestClassifier(class_weight="balanced")),
|
| 248 |
+
]
|
| 249 |
+
)
|
| 250 |
+
else:
|
| 251 |
+
pipeline = Pipeline(
|
| 252 |
+
[("classifier", RandomForestClassifier(class_weight="balanced"))]
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# Set up StratifiedKFold to ensure each fold reflects the overall distribution of labels
|
| 256 |
+
cv = StratifiedKFold(n_splits=5)
|
| 257 |
+
|
| 258 |
+
# Define the scoring functions
|
| 259 |
+
scoring = {
|
| 260 |
+
"accuracy": make_scorer(accuracy_score),
|
| 261 |
+
"precision": make_scorer(
|
| 262 |
+
precision_score, average="macro"
|
| 263 |
+
), # 'macro' averages over classes
|
| 264 |
+
"recall": make_scorer(recall_score, average="macro"),
|
| 265 |
+
"f1_score": make_scorer(f1_score, average="macro"),
|
| 266 |
+
# 'roc_auc' requires probability or decision function; hence use multi_class if applicable
|
| 267 |
+
"roc_auc": make_scorer(roc_auc_score, multi_class="ovr"),
|
| 268 |
+
}
|
| 269 |
+
labels = labels.integer_labels
|
| 270 |
+
# Perform stratified cross-validation with multiple metrics using the pipeline
|
| 271 |
+
results = cross_validate(
|
| 272 |
+
pipeline, data, labels, cv=cv, scoring=scoring, return_train_score=False
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Print the cross-validation results
|
| 276 |
+
print("Cross-validation metrics:")
|
| 277 |
+
results_out = {}
|
| 278 |
+
for metric, scores in results.items():
|
| 279 |
+
if metric.startswith("test_"):
|
| 280 |
+
results_out[metric] = (scores.mean(), scores.std())
|
| 281 |
+
print(f"{metric[5:]}: {scores.mean():.3f} (+/- {scores.std():.3f})")
|
| 282 |
+
|
| 283 |
+
predictions = cross_val_predict(pipeline, data, labels, cv=cv)
|
| 284 |
+
|
| 285 |
+
# v Return confusion matrix and metrics.
|
| 286 |
+
conf_matrix = confusion_matrix(labels, predictions)
|
| 287 |
+
|
| 288 |
+
return results_out, conf_matrix
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
@op("BioNeMo > Plot confusion matrix", view="visualization")
|
| 292 |
+
@mem.cache(verbose=1)
|
| 293 |
+
def plot_confusion_matrix(benchmark_output, labels):
|
| 294 |
+
cm = benchmark_output[1]
|
| 295 |
+
labels = labels.classes_
|
| 296 |
+
str_labels = [str(label) for label in labels]
|
| 297 |
+
norm_cm = [[float(val / sum(row)) if sum(row) else 0 for val in row] for row in cm]
|
| 298 |
+
# heatmap has the 0,0 at the bottom left corner
|
| 299 |
+
num_rows = len(str_labels)
|
| 300 |
+
heatmap_data = [
|
| 301 |
+
[j, num_rows - i - 1, norm_cm[i][j]]
|
| 302 |
+
for i in range(len(labels))
|
| 303 |
+
for j in range(len(labels))
|
| 304 |
+
]
|
| 305 |
+
|
| 306 |
+
options = {
|
| 307 |
+
"title": {"text": "Confusion Matrix", "left": "center"},
|
| 308 |
+
"tooltip": {"position": "top"},
|
| 309 |
+
"xAxis": {
|
| 310 |
+
"type": "category",
|
| 311 |
+
"data": str_labels,
|
| 312 |
+
"splitArea": {"show": True},
|
| 313 |
+
"axisLabel": {"rotate": 70, "align": "right"},
|
| 314 |
+
},
|
| 315 |
+
"yAxis": {
|
| 316 |
+
"type": "category",
|
| 317 |
+
"data": list(reversed(str_labels)),
|
| 318 |
+
"splitArea": {"show": True},
|
| 319 |
+
},
|
| 320 |
+
"grid": {
|
| 321 |
+
"height": "70%",
|
| 322 |
+
"width": "70%",
|
| 323 |
+
"left": "20%",
|
| 324 |
+
"right": "10%",
|
| 325 |
+
"bottom": "10%",
|
| 326 |
+
"top": "10%",
|
| 327 |
+
},
|
| 328 |
+
"visualMap": {
|
| 329 |
+
"min": 0,
|
| 330 |
+
"max": 1,
|
| 331 |
+
"calculable": True,
|
| 332 |
+
"orient": "vertical",
|
| 333 |
+
"right": 10,
|
| 334 |
+
"top": "center",
|
| 335 |
+
"inRange": {
|
| 336 |
+
"color": ["#E0F7FA", "#81D4FA", "#29B6F6", "#0288D1", "#01579B"]
|
| 337 |
+
},
|
| 338 |
+
},
|
| 339 |
+
"series": [
|
| 340 |
+
{
|
| 341 |
+
"name": "Confusion matrix",
|
| 342 |
+
"type": "heatmap",
|
| 343 |
+
"data": heatmap_data,
|
| 344 |
+
"emphasis": {"itemStyle": {"borderColor": "#333", "borderWidth": 1}},
|
| 345 |
+
"itemStyle": {"borderColor": "#D3D3D3", "borderWidth": 2},
|
| 346 |
+
}
|
| 347 |
+
],
|
| 348 |
+
}
|
| 349 |
+
return options
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
@op("BioNeMo > Plot accuracy comparison", view="visualization")
|
| 353 |
+
def accuracy_comparison(benchmark_output10m, benchmark_output100m):
|
| 354 |
+
results_10m = benchmark_output10m[0]
|
| 355 |
+
results_106M = benchmark_output100m[0]
|
| 356 |
+
data = {
|
| 357 |
+
"model": ["10M parameters", "106M parameters"],
|
| 358 |
+
"accuracy_mean": [
|
| 359 |
+
results_10m["test_accuracy"][0],
|
| 360 |
+
results_106M["test_accuracy"][0],
|
| 361 |
+
],
|
| 362 |
+
"accuracy_std": [
|
| 363 |
+
results_10m["test_accuracy"][1],
|
| 364 |
+
results_106M["test_accuracy"][1],
|
| 365 |
+
],
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
labels = data["model"] # X-axis labels
|
| 369 |
+
values = data["accuracy_mean"] # Y-axis values
|
| 370 |
+
error_bars = data["accuracy_std"] # Standard deviation for error bars
|
| 371 |
+
|
| 372 |
+
options = {
|
| 373 |
+
"title": {
|
| 374 |
+
"text": "Accuracy Comparison",
|
| 375 |
+
"left": "center",
|
| 376 |
+
"textStyle": {
|
| 377 |
+
"fontSize": 20, # Bigger font for title
|
| 378 |
+
"fontWeight": "bold", # Make title bold
|
| 379 |
+
},
|
| 380 |
+
},
|
| 381 |
+
"grid": {
|
| 382 |
+
"height": "70%",
|
| 383 |
+
"width": "70%",
|
| 384 |
+
"left": "20%",
|
| 385 |
+
"right": "10%",
|
| 386 |
+
"bottom": "10%",
|
| 387 |
+
"top": "10%",
|
| 388 |
+
},
|
| 389 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
| 390 |
+
"xAxis": {
|
| 391 |
+
"type": "category",
|
| 392 |
+
"data": labels,
|
| 393 |
+
"axisLabel": {
|
| 394 |
+
"rotate": 45, # Rotate labels for better readability
|
| 395 |
+
"align": "right",
|
| 396 |
+
"textStyle": {
|
| 397 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
| 398 |
+
"fontWeight": "bold",
|
| 399 |
+
},
|
| 400 |
+
},
|
| 401 |
+
},
|
| 402 |
+
"yAxis": {
|
| 403 |
+
"type": "value",
|
| 404 |
+
"name": "Accuracy",
|
| 405 |
+
"min": 0,
|
| 406 |
+
"max": 1,
|
| 407 |
+
"interval": 0.1, # Matches np.arange(0, 1.05, 0.05)
|
| 408 |
+
"axisLabel": {
|
| 409 |
+
"textStyle": {
|
| 410 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
| 411 |
+
"fontWeight": "bold",
|
| 412 |
+
}
|
| 413 |
+
},
|
| 414 |
+
},
|
| 415 |
+
"series": [
|
| 416 |
+
{
|
| 417 |
+
"name": "Accuracy",
|
| 418 |
+
"type": "bar",
|
| 419 |
+
"data": values,
|
| 420 |
+
"itemStyle": {
|
| 421 |
+
"color": "#440154" # Viridis color palette (dark purple)
|
| 422 |
+
},
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"name": "Error Bars",
|
| 426 |
+
"type": "errorbar",
|
| 427 |
+
"data": [
|
| 428 |
+
[val - err, val + err] for val, err in zip(values, error_bars)
|
| 429 |
+
],
|
| 430 |
+
"itemStyle": {"color": "#1f77b4"},
|
| 431 |
+
},
|
| 432 |
+
],
|
| 433 |
+
}
|
| 434 |
+
return options
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
@op("BioNeMo > Plot f1 comparison", view="visualization")
|
| 438 |
+
def f1_comparison(benchmark_output10m, benchmark_output100m):
|
| 439 |
+
results_10m = benchmark_output10m[0]
|
| 440 |
+
results_106M = benchmark_output100m[0]
|
| 441 |
+
data = {
|
| 442 |
+
"model": ["10M parameters", "106M parameters"],
|
| 443 |
+
"f1_score_mean": [
|
| 444 |
+
results_10m["test_f1_score"][0],
|
| 445 |
+
results_106M["test_f1_score"][0],
|
| 446 |
+
],
|
| 447 |
+
"f1_score_std": [
|
| 448 |
+
results_10m["test_f1_score"][1],
|
| 449 |
+
results_106M["test_f1_score"][1],
|
| 450 |
+
],
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
labels = data["model"] # X-axis labels
|
| 454 |
+
values = data["f1_score_mean"] # Y-axis values
|
| 455 |
+
error_bars = data["f1_score_std"] # Standard deviation for error bars
|
| 456 |
+
|
| 457 |
+
options = {
|
| 458 |
+
"title": {
|
| 459 |
+
"text": "F1 Score Comparison",
|
| 460 |
+
"left": "center",
|
| 461 |
+
"textStyle": {
|
| 462 |
+
"fontSize": 20, # Bigger font for title
|
| 463 |
+
"fontWeight": "bold", # Make title bold
|
| 464 |
+
},
|
| 465 |
+
},
|
| 466 |
+
"grid": {
|
| 467 |
+
"height": "70%",
|
| 468 |
+
"width": "70%",
|
| 469 |
+
"left": "20%",
|
| 470 |
+
"right": "10%",
|
| 471 |
+
"bottom": "10%",
|
| 472 |
+
"top": "10%",
|
| 473 |
+
},
|
| 474 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
| 475 |
+
"xAxis": {
|
| 476 |
+
"type": "category",
|
| 477 |
+
"data": labels,
|
| 478 |
+
"axisLabel": {
|
| 479 |
+
"rotate": 45, # Rotate labels for better readability
|
| 480 |
+
"align": "right",
|
| 481 |
+
"textStyle": {
|
| 482 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
| 483 |
+
"fontWeight": "bold",
|
| 484 |
+
},
|
| 485 |
+
},
|
| 486 |
+
},
|
| 487 |
+
"yAxis": {
|
| 488 |
+
"type": "value",
|
| 489 |
+
"name": "F1 Score",
|
| 490 |
+
"min": 0,
|
| 491 |
+
"max": 1,
|
| 492 |
+
"interval": 0.1, # Matches np.arange(0, 1.05, 0.05),
|
| 493 |
+
"axisLabel": {
|
| 494 |
+
"textStyle": {
|
| 495 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
| 496 |
+
"fontWeight": "bold",
|
| 497 |
+
}
|
| 498 |
+
},
|
| 499 |
+
},
|
| 500 |
+
"series": [
|
| 501 |
+
{
|
| 502 |
+
"name": "F1 Score",
|
| 503 |
+
"type": "bar",
|
| 504 |
+
"data": values,
|
| 505 |
+
"itemStyle": {
|
| 506 |
+
"color": "#440154" # Viridis color palette (dark purple)
|
| 507 |
+
},
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"name": "Error Bars",
|
| 511 |
+
"type": "errorbar",
|
| 512 |
+
"data": [
|
| 513 |
+
[val - err, val + err] for val, err in zip(values, error_bars)
|
| 514 |
+
],
|
| 515 |
+
"itemStyle": {"color": "#1f77b4"},
|
| 516 |
+
},
|
| 517 |
+
],
|
| 518 |
+
}
|
| 519 |
+
return options
|