Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
from tqdm import tqdm
|
| 7 |
import urllib
|
| 8 |
-
from
|
| 9 |
-
import spaces
|
| 10 |
-
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
import re
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
async def fetch_data(url):
|
| 20 |
headers = {
|
| 21 |
'Accept': '*/*',
|
| 22 |
'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7',
|
|
@@ -32,38 +38,33 @@ async def fetch_data(url):
|
|
| 32 |
}
|
| 33 |
|
| 34 |
encoding = 'utf-8'
|
| 35 |
-
timeout = 10
|
| 36 |
-
|
| 37 |
try:
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
response_content = await asyncio.get_event_loop().run_in_executor(None, get_content)
|
| 44 |
|
| 45 |
soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding)
|
| 46 |
|
| 47 |
title = soup.find('title').text
|
| 48 |
description = soup.find('meta', attrs={'name': 'description'})
|
| 49 |
-
if description and "content" in description.attrs
|
| 50 |
-
description = description.get("content")
|
| 51 |
-
else:
|
| 52 |
-
description = ""
|
| 53 |
|
| 54 |
keywords = soup.find('meta', attrs={'name': 'keywords'})
|
| 55 |
-
if keywords and "content" in keywords.attrs
|
| 56 |
-
keywords = keywords.get("content")
|
| 57 |
-
else:
|
| 58 |
-
keywords = ""
|
| 59 |
|
| 60 |
-
h1_all = " ".join(h.text for h in soup.find_all('h1'))
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
return {
|
| 69 |
'url': url,
|
|
@@ -77,6 +78,7 @@ async def fetch_data(url):
|
|
| 77 |
'text': allthecontent
|
| 78 |
}
|
| 79 |
except Exception as e:
|
|
|
|
| 80 |
return {
|
| 81 |
'url': url,
|
| 82 |
'title': None,
|
|
@@ -89,45 +91,25 @@ async def fetch_data(url):
|
|
| 89 |
'text': None
|
| 90 |
}
|
| 91 |
|
| 92 |
-
def
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
return
|
| 98 |
-
|
| 99 |
-
def translate_text(text):
|
| 100 |
-
try:
|
| 101 |
-
text = text[:4990]
|
| 102 |
-
translated_text = GoogleTranslator(source='auto', target='en').translate(text)
|
| 103 |
-
return translated_text
|
| 104 |
-
except Exception as e:
|
| 105 |
-
print(f"An error occurred during translation: {e}")
|
| 106 |
-
return None
|
| 107 |
|
| 108 |
|
| 109 |
-
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
|
| 110 |
-
|
| 111 |
-
# Initialize model and tokenizer variables
|
| 112 |
-
model = None
|
| 113 |
-
tokenizer = None
|
| 114 |
-
|
| 115 |
@spaces.GPU()
|
| 116 |
-
def
|
|
|
|
| 117 |
|
| 118 |
global model, tokenizer # Declare model and tokenizer as global variables
|
| 119 |
|
| 120 |
-
# Load the model
|
| 121 |
-
max_seq_length = 2048
|
| 122 |
-
dtype = None
|
| 123 |
-
load_in_4bit = True
|
| 124 |
-
|
| 125 |
if model is None or tokenizer is None:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
# Load the model and tokenizer
|
| 129 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 130 |
-
model_name=
|
| 131 |
max_seq_length=max_seq_length,
|
| 132 |
dtype=dtype,
|
| 133 |
load_in_4bit=load_in_4bit,
|
|
@@ -135,11 +117,14 @@ def summarize_url(url):
|
|
| 135 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 136 |
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
| 143 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 144 |
|
| 145 |
### Instruction:
|
|
@@ -151,7 +136,7 @@ def summarize_url(url):
|
|
| 151 |
### Response:
|
| 152 |
"""
|
| 153 |
|
| 154 |
-
prompt = alpaca_prompt.format(
|
| 155 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 156 |
|
| 157 |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
|
@@ -159,55 +144,229 @@ def summarize_url(url):
|
|
| 159 |
final_answer = summary.split("### Response:")[1].strip()
|
| 160 |
return final_answer
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
#
|
| 168 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
#
|
| 172 |
-
#
|
| 173 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
#
|
| 176 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
# # Define
|
| 179 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
# # Add the `if __name__ == "__main__":` block to launch the interface
|
| 182 |
-
# if __name__ == "__main__":
|
| 183 |
-
# demo.launch()
|
| 184 |
|
| 185 |
|
| 186 |
-
# with gr as demo:
|
| 187 |
-
# # Define Gradio interface
|
| 188 |
-
# demo = demo.Interface(
|
| 189 |
-
# fn=summarize_url,
|
| 190 |
-
# inputs="text",
|
| 191 |
-
# outputs="text",
|
| 192 |
-
# title="Website Summary Generator",
|
| 193 |
-
# description="Enter a URL to get a one-word topic summary of the website content."
|
| 194 |
-
# )
|
| 195 |
|
| 196 |
|
| 197 |
-
# if __name__ == "__main__":
|
| 198 |
-
# demo.launch()
|
| 199 |
|
| 200 |
|
| 201 |
|
| 202 |
-
# Create a Gradio interface
|
| 203 |
-
iface = gr.Interface(
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
)
|
| 210 |
|
| 211 |
-
# Launch the interface
|
| 212 |
-
iface.launch()
|
| 213 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
import logging
|
| 5 |
+
from deep_translator import GoogleTranslator
|
| 6 |
import pandas as pd
|
| 7 |
from tqdm import tqdm
|
| 8 |
import urllib
|
| 9 |
+
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Configure logging to write messages to a file
|
| 12 |
+
logging.basicConfig(filename='app.log', level=logging.ERROR)
|
|
|
|
| 13 |
|
| 14 |
+
# Configuration
|
| 15 |
+
max_seq_length = 2048
|
| 16 |
+
dtype = None # Auto detection of dtype
|
| 17 |
+
load_in_4bit = True # Use 4-bit quantization to reduce memory usage
|
| 18 |
|
| 19 |
+
# peft_model_name = "limitedonly41/website_qwen2_7b_2"
|
| 20 |
+
peft_model_name = "limitedonly41/website_mistral7b_v02"
|
| 21 |
+
# Initialize model and tokenizer variables
|
| 22 |
+
model = None
|
| 23 |
+
tokenizer = None
|
| 24 |
|
| 25 |
+
def fetch_data(url):
|
|
|
|
| 26 |
headers = {
|
| 27 |
'Accept': '*/*',
|
| 28 |
'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7',
|
|
|
|
| 38 |
}
|
| 39 |
|
| 40 |
encoding = 'utf-8'
|
| 41 |
+
timeout = 10 # Set your desired timeout value in seconds
|
|
|
|
| 42 |
try:
|
| 43 |
+
# Make the request using urllib
|
| 44 |
+
req = urllib.request.Request(url, headers=headers)
|
| 45 |
+
with urllib.request.urlopen(req, timeout=timeout) as response:
|
| 46 |
+
response_content = response.read()
|
|
|
|
|
|
|
| 47 |
|
| 48 |
soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding)
|
| 49 |
|
| 50 |
title = soup.find('title').text
|
| 51 |
description = soup.find('meta', attrs={'name': 'description'})
|
| 52 |
+
description = description.get("content") if description and "content" in description.attrs else ""
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
keywords = soup.find('meta', attrs={'name': 'keywords'})
|
| 55 |
+
keywords = keywords.get("content") if keywords and "content" in keywords.attrs else ""
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
h1_all = ". ".join(h.text for h in soup.find_all('h1'))
|
| 58 |
+
paragraphs_all = ". ".join(p.text for p in soup.find_all('p'))
|
| 59 |
+
h2_all = ". ".join(h.text for h in soup.find_all('h2'))
|
| 60 |
+
h3_all = ". ".join(h.text for h in soup.find_all('h3'))
|
| 61 |
|
| 62 |
+
allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"[:4999]
|
| 63 |
+
|
| 64 |
+
# Clean up the text
|
| 65 |
+
h1_all = h1_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
|
| 66 |
+
h2_all = h2_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
|
| 67 |
+
h3_all = h3_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
|
| 68 |
|
| 69 |
return {
|
| 70 |
'url': url,
|
|
|
|
| 78 |
'text': allthecontent
|
| 79 |
}
|
| 80 |
except Exception as e:
|
| 81 |
+
print(url, e)
|
| 82 |
return {
|
| 83 |
'url': url,
|
| 84 |
'title': None,
|
|
|
|
| 91 |
'text': None
|
| 92 |
}
|
| 93 |
|
| 94 |
+
def main(urls):
|
| 95 |
+
results = []
|
| 96 |
+
for url in tqdm(urls):
|
| 97 |
+
result = fetch_data(url)
|
| 98 |
+
results.append(result)
|
| 99 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
@spaces.GPU()
|
| 103 |
+
def classify_website(url):
|
| 104 |
+
from unsloth import FastLanguageModel # Import moved to the top for model loading
|
| 105 |
|
| 106 |
global model, tokenizer # Declare model and tokenizer as global variables
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if model is None or tokenizer is None:
|
| 109 |
+
|
| 110 |
+
# Load the model and tokenizer during initialization (in the main process)
|
|
|
|
| 111 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 112 |
+
model_name=peft_model_name,
|
| 113 |
max_seq_length=max_seq_length,
|
| 114 |
dtype=dtype,
|
| 115 |
load_in_4bit=load_in_4bit,
|
|
|
|
| 117 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 118 |
|
| 119 |
|
| 120 |
+
urls = [url]
|
| 121 |
+
results_shop = main(urls)
|
| 122 |
+
|
| 123 |
+
# Convert results to DataFrame
|
| 124 |
+
df_result_train_more = pd.DataFrame(results_shop)
|
| 125 |
+
text = df_result_train_more['text'][0]
|
| 126 |
+
translated = GoogleTranslator(source='auto', target='en').translate(text[:4990])
|
| 127 |
+
|
| 128 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 129 |
|
| 130 |
### Instruction:
|
|
|
|
| 136 |
### Response:
|
| 137 |
"""
|
| 138 |
|
| 139 |
+
prompt = alpaca_prompt.format(translated)
|
| 140 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 141 |
|
| 142 |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
|
|
|
| 144 |
final_answer = summary.split("### Response:")[1].strip()
|
| 145 |
return final_answer
|
| 146 |
|
| 147 |
+
# Create a Gradio interface
|
| 148 |
+
iface = gr.Interface(
|
| 149 |
+
fn=classify_website,
|
| 150 |
+
inputs="text",
|
| 151 |
+
outputs="text",
|
| 152 |
+
title="Website Topic",
|
| 153 |
+
description="Enter a URL to get a topic summary of the website content."
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Launch the interface
|
| 157 |
+
iface.launch()
|
| 158 |
+
|
| 159 |
|
| 160 |
+
# import gradio as gr
|
| 161 |
+
# import asyncio
|
| 162 |
+
# import requests
|
| 163 |
+
# from bs4 import BeautifulSoup
|
| 164 |
+
# import pandas as pd
|
| 165 |
+
# from tqdm import tqdm
|
| 166 |
+
# import urllib
|
| 167 |
+
# from deep_translator import GoogleTranslator
|
| 168 |
+
# import spaces
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# # from unsloth import FastLanguageModel
|
| 172 |
+
# import torch
|
| 173 |
+
# import re
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# # Define helper functions
|
| 178 |
+
# async def fetch_data(url):
|
| 179 |
+
# headers = {
|
| 180 |
+
# 'Accept': '*/*',
|
| 181 |
+
# 'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7',
|
| 182 |
+
# 'Connection': 'keep-alive',
|
| 183 |
+
# 'Referer': f'{url}',
|
| 184 |
+
# 'Sec-Fetch-Dest': 'empty',
|
| 185 |
+
# 'Sec-Fetch-Mode': 'cors',
|
| 186 |
+
# 'Sec-Fetch-Site': 'cross-site',
|
| 187 |
+
# 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36',
|
| 188 |
+
# 'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',
|
| 189 |
+
# 'sec-ch-ua-mobile': '?0',
|
| 190 |
+
# 'sec-ch-ua-platform': '"macOS"',
|
| 191 |
+
# }
|
| 192 |
+
|
| 193 |
+
# encoding = 'utf-8'
|
| 194 |
+
# timeout = 10
|
| 195 |
|
| 196 |
+
# try:
|
| 197 |
+
# def get_content():
|
| 198 |
+
# req = urllib.request.Request(url, headers=headers)
|
| 199 |
+
# with urllib.request.urlopen(req, timeout=timeout) as response:
|
| 200 |
+
# return response.read()
|
| 201 |
+
|
| 202 |
+
# response_content = await asyncio.get_event_loop().run_in_executor(None, get_content)
|
| 203 |
+
|
| 204 |
+
# soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding)
|
| 205 |
+
|
| 206 |
+
# title = soup.find('title').text
|
| 207 |
+
# description = soup.find('meta', attrs={'name': 'description'})
|
| 208 |
+
# if description and "content" in description.attrs:
|
| 209 |
+
# description = description.get("content")
|
| 210 |
+
# else:
|
| 211 |
+
# description = ""
|
| 212 |
+
|
| 213 |
+
# keywords = soup.find('meta', attrs={'name': 'keywords'})
|
| 214 |
+
# if keywords and "content" in keywords.attrs:
|
| 215 |
+
# keywords = keywords.get("content")
|
| 216 |
+
# else:
|
| 217 |
+
# keywords = ""
|
| 218 |
+
|
| 219 |
+
# h1_all = " ".join(h.text for h in soup.find_all('h1'))
|
| 220 |
+
# h2_all = " ".join(h.text for h in soup.find_all('h2'))
|
| 221 |
+
# h3_all = " ".join(h.text for h in soup.find_all('h3'))
|
| 222 |
+
# paragraphs_all = " ".join(p.text for p in soup.find_all('p'))
|
| 223 |
+
|
| 224 |
+
# allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"
|
| 225 |
+
# allthecontent = allthecontent[:4999]
|
| 226 |
+
|
| 227 |
+
# return {
|
| 228 |
+
# 'url': url,
|
| 229 |
+
# 'title': title,
|
| 230 |
+
# 'description': description,
|
| 231 |
+
# 'keywords': keywords,
|
| 232 |
+
# 'h1': h1_all,
|
| 233 |
+
# 'h2': h2_all,
|
| 234 |
+
# 'h3': h3_all,
|
| 235 |
+
# 'paragraphs': paragraphs_all,
|
| 236 |
+
# 'text': allthecontent
|
| 237 |
+
# }
|
| 238 |
+
# except Exception as e:
|
| 239 |
+
# return {
|
| 240 |
+
# 'url': url,
|
| 241 |
+
# 'title': None,
|
| 242 |
+
# 'description': None,
|
| 243 |
+
# 'keywords': None,
|
| 244 |
+
# 'h1': None,
|
| 245 |
+
# 'h2': None,
|
| 246 |
+
# 'h3': None,
|
| 247 |
+
# 'paragraphs': None,
|
| 248 |
+
# 'text': None
|
| 249 |
+
# }
|
| 250 |
+
|
| 251 |
+
# def concatenate_text(data):
|
| 252 |
+
# text_parts = [str(data[col]) for col in ['url', 'title', 'description', 'keywords', 'h1', 'h2', 'h3'] if data[col]]
|
| 253 |
+
# text = ' '.join(text_parts)
|
| 254 |
+
# text = text.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
|
| 255 |
+
# text = re.sub(r'\s{2,}', ' ', text)
|
| 256 |
+
# return text
|
| 257 |
+
|
| 258 |
+
# def translate_text(text):
|
| 259 |
+
# try:
|
| 260 |
+
# text = text[:4990]
|
| 261 |
+
# translated_text = GoogleTranslator(source='auto', target='en').translate(text)
|
| 262 |
+
# return translated_text
|
| 263 |
+
# except Exception as e:
|
| 264 |
+
# print(f"An error occurred during translation: {e}")
|
| 265 |
+
# return None
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
# model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
|
| 269 |
+
|
| 270 |
+
# # Initialize model and tokenizer variables
|
| 271 |
+
# model = None
|
| 272 |
+
# tokenizer = None
|
| 273 |
+
|
| 274 |
+
# @spaces.GPU()
|
| 275 |
+
# def summarize_url(url):
|
| 276 |
+
|
| 277 |
+
# global model, tokenizer # Declare model and tokenizer as global variables
|
| 278 |
+
|
| 279 |
+
# # Load the model
|
| 280 |
+
# max_seq_length = 2048
|
| 281 |
+
# dtype = None
|
| 282 |
+
# load_in_4bit = True
|
| 283 |
+
|
| 284 |
+
# if model is None or tokenizer is None:
|
| 285 |
+
# from unsloth import FastLanguageModel
|
| 286 |
+
|
| 287 |
+
# # Load the model and tokenizer
|
| 288 |
+
# model, tokenizer = FastLanguageModel.from_pretrained(
|
| 289 |
+
# model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING
|
| 290 |
+
# max_seq_length=max_seq_length,
|
| 291 |
+
# dtype=dtype,
|
| 292 |
+
# load_in_4bit=load_in_4bit,
|
| 293 |
+
# )
|
| 294 |
+
# FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 295 |
+
|
| 296 |
|
| 297 |
+
# result = asyncio.run(fetch_data(url))
|
| 298 |
+
# text = concatenate_text(result)
|
| 299 |
+
# translated_text = translate_text(text)
|
| 300 |
+
# if len(translated_text) < 100:
|
| 301 |
+
# return 'not scraped or short text'
|
| 302 |
+
# alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 303 |
+
|
| 304 |
+
# ### Instruction:
|
| 305 |
+
# Describe the website text into one word topic:
|
| 306 |
+
|
| 307 |
+
# ### Input:
|
| 308 |
+
# {}
|
| 309 |
+
|
| 310 |
+
# ### Response:
|
| 311 |
+
# """
|
| 312 |
|
| 313 |
+
# prompt = alpaca_prompt.format(translated_text)
|
| 314 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 315 |
+
|
| 316 |
+
# outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
| 317 |
+
# summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 318 |
+
# final_answer = summary.split("### Response:")[1].strip()
|
| 319 |
+
# return final_answer
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# # # Create the Gradio interface within a `Blocks` context, like the working example
|
| 323 |
+
# # with gr.Blocks() as demo:
|
| 324 |
+
|
| 325 |
+
# # # Add title and description to the interface
|
| 326 |
+
# # gr.HTML("<h1>Website Summary Generator</h1>")
|
| 327 |
+
# # gr.HTML("<p>Enter a URL to get a one-word topic summary of the website content..</p>")
|
| 328 |
|
| 329 |
+
# # # Define input and output elements
|
| 330 |
+
# # with gr.Row():
|
| 331 |
+
# # prompt = gr.Textbox(label="Enter Website URL", placeholder="https://example.com")
|
| 332 |
+
# # output_text = gr.Textbox(label="Topic", interactive=False)
|
| 333 |
+
|
| 334 |
+
# # # Add the button to trigger the function
|
| 335 |
+
# # submit = gr.Button("Classify")
|
| 336 |
+
|
| 337 |
+
# # # Define the interaction between inputs and outputs
|
| 338 |
+
# # submit.click(fn=summarize_url, inputs=prompt, outputs=output_text)
|
| 339 |
|
| 340 |
+
# # # Add the `if __name__ == "__main__":` block to launch the interface
|
| 341 |
+
# # if __name__ == "__main__":
|
| 342 |
+
# # demo.launch()
|
| 343 |
|
| 344 |
|
| 345 |
+
# # with gr as demo:
|
| 346 |
+
# # # Define Gradio interface
|
| 347 |
+
# # demo = demo.Interface(
|
| 348 |
+
# # fn=summarize_url,
|
| 349 |
+
# # inputs="text",
|
| 350 |
+
# # outputs="text",
|
| 351 |
+
# # title="Website Summary Generator",
|
| 352 |
+
# # description="Enter a URL to get a one-word topic summary of the website content."
|
| 353 |
+
# # )
|
| 354 |
|
| 355 |
|
| 356 |
+
# # if __name__ == "__main__":
|
| 357 |
+
# # demo.launch()
|
| 358 |
|
| 359 |
|
| 360 |
|
| 361 |
+
# # Create a Gradio interface
|
| 362 |
+
# iface = gr.Interface(
|
| 363 |
+
# fn=summarize_url,
|
| 364 |
+
# inputs="text",
|
| 365 |
+
# outputs="text",
|
| 366 |
+
# title="Website Summary Generator",
|
| 367 |
+
# description="Enter a URL to get a one-word topic summary of the website content."
|
| 368 |
+
# )
|
| 369 |
|
| 370 |
+
# # Launch the interface
|
| 371 |
+
# iface.launch()
|
| 372 |
|