Switch to Mistral model
Browse files
README.md
CHANGED
|
@@ -8,6 +8,9 @@ sdk_version: 3.23.0
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
duplicated_from: joaogante/transformers_streaming
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Environment
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
duplicated_from: joaogante/transformers_streaming
|
| 11 |
+
|
| 12 |
+
preload_from_hub:
|
| 13 |
+
- helenai/mistralai-Mistral-7B-Instruct-v0.2-ov
|
| 14 |
---
|
| 15 |
|
| 16 |
# Environment
|
app.py
CHANGED
|
@@ -3,23 +3,24 @@ import subprocess
|
|
| 3 |
from threading import Thread
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
-
from optimum.intel.openvino import
|
| 7 |
from transformers import AutoTokenizer, TextIteratorStreamer
|
| 8 |
|
| 9 |
result = subprocess.run(["lscpu"], text=True, capture_output=True)
|
| 10 |
pprint.pprint(result.stdout)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
model_id = f"helenai/{original_model_id.replace('/','-')}-ov"
|
| 15 |
|
| 16 |
-
model =
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
|
| 19 |
|
| 20 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
| 21 |
-
#
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
| 25 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
|
@@ -65,7 +66,6 @@ with gr.Blocks() as demo:
|
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column(scale=4):
|
| 67 |
user_text = gr.Textbox(
|
| 68 |
-
placeholder="Write an email about an alpaca that likes flan",
|
| 69 |
label="User input",
|
| 70 |
)
|
| 71 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
|
@@ -117,3 +117,5 @@ with gr.Blocks() as demo:
|
|
| 117 |
)
|
| 118 |
|
| 119 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|
|
|
|
|
|
|
|
|
| 3 |
from threading import Thread
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
| 7 |
from transformers import AutoTokenizer, TextIteratorStreamer
|
| 8 |
|
| 9 |
result = subprocess.run(["lscpu"], text=True, capture_output=True)
|
| 10 |
pprint.pprint(result.stdout)
|
| 11 |
|
| 12 |
+
original_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 13 |
+
model_id = "helenai/mistralai-Mistral-7B-Instruct-v0.2-ov"
|
|
|
|
| 14 |
|
| 15 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 17 |
|
| 18 |
|
| 19 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
| 20 |
+
# message = [{"role": "user", "content": "You are a helpful assistant"}, {"role": "assistant", "content": "How can I help?"}, {"role":"user", "content":user_text}]
|
| 21 |
+
message = [{"role": "user", "content": user_text}]
|
| 22 |
+
|
| 23 |
+
model_inputs = tokenizer.apply_chat_template(message, return_tensors="pt", return_dict=True)
|
| 24 |
|
| 25 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
| 26 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
|
|
|
| 66 |
with gr.Row():
|
| 67 |
with gr.Column(scale=4):
|
| 68 |
user_text = gr.Textbox(
|
|
|
|
| 69 |
label="User input",
|
| 70 |
)
|
| 71 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
|
|
|
| 117 |
)
|
| 118 |
|
| 119 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|
| 120 |
+
# For local use:
|
| 121 |
+
# demo.launch(server_name="0.0.0.0")
|