Spaces:
Sleeping
Sleeping
Commit
·
94aafab
1
Parent(s):
c5e93f3
Integrate training data: Use actual training data instead of mock responses for intelligent AI responses
Browse files
app.py
CHANGED
|
@@ -9,13 +9,15 @@ import json
|
|
| 9 |
import logging
|
| 10 |
from pathlib import Path
|
| 11 |
from datetime import datetime
|
| 12 |
-
from typing import Optional, Dict, Any
|
| 13 |
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks
|
| 14 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
from pydantic import BaseModel
|
| 17 |
import uvicorn
|
| 18 |
import requests
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Setup logging
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -80,14 +82,76 @@ training_status = {
|
|
| 80 |
"error": None
|
| 81 |
}
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
class TextilindoAI:
|
| 84 |
"""Textilindo AI Assistant using HuggingFace Inference API"""
|
| 85 |
|
| 86 |
def __init__(self):
|
| 87 |
self.api_key = os.getenv('HUGGINGFACE_API_KEY')
|
| 88 |
# Use a model available on free HuggingFace Inference API
|
| 89 |
-
self.model = os.getenv('DEFAULT_MODEL', '
|
| 90 |
self.system_prompt = self.load_system_prompt()
|
|
|
|
| 91 |
|
| 92 |
if not self.api_key:
|
| 93 |
logger.warning("HUGGINGFACE_API_KEY not found. Using mock responses.")
|
|
@@ -138,13 +202,21 @@ The company uses yards for sales.
|
|
| 138 |
Minimum purchase is 1 roll (67-70 yards)."""
|
| 139 |
|
| 140 |
def generate_response(self, user_message: str) -> str:
|
| 141 |
-
"""Generate response using HuggingFace Inference API"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
if not self.client:
|
| 143 |
-
logger.warning("No HuggingFace client available, using
|
| 144 |
-
return self.
|
| 145 |
|
| 146 |
try:
|
| 147 |
-
# Use
|
| 148 |
prompt = f"User: {user_message}\nAssistant:"
|
| 149 |
|
| 150 |
logger.info(f"Using model: {self.model}")
|
|
@@ -152,45 +224,55 @@ Minimum purchase is 1 roll (67-70 yards)."""
|
|
| 152 |
|
| 153 |
logger.info(f"Generating response for prompt: {prompt[:100]}...")
|
| 154 |
|
| 155 |
-
# Generate response with
|
| 156 |
response = self.client.text_generation(
|
| 157 |
prompt,
|
| 158 |
-
max_new_tokens=
|
| 159 |
-
temperature=0.
|
| 160 |
top_p=0.9,
|
| 161 |
-
top_k=
|
| 162 |
-
repetition_penalty=1.
|
| 163 |
-
|
|
|
|
| 164 |
)
|
| 165 |
|
| 166 |
logger.info(f"Raw AI response: {response[:200]}...")
|
| 167 |
|
| 168 |
-
# Clean up the response for
|
| 169 |
if "Assistant:" in response:
|
| 170 |
assistant_response = response.split("Assistant:")[-1].strip()
|
| 171 |
else:
|
| 172 |
assistant_response = response.strip()
|
| 173 |
|
| 174 |
-
# Remove any remaining special tokens
|
| 175 |
assistant_response = assistant_response.replace("<|end|>", "").replace("<|user|>", "").strip()
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
logger.info(f"Cleaned AI response: {assistant_response[:100]}...")
|
| 178 |
|
| 179 |
-
# If response is too short or generic, use
|
| 180 |
if len(assistant_response) < 10 or "I don't know" in assistant_response.lower():
|
| 181 |
-
logger.warning("AI response too short, using
|
| 182 |
-
return self.
|
| 183 |
-
|
| 184 |
-
# For testing: if it's a non-Textilindo question, return the AI response directly
|
| 185 |
-
if not any(keyword in user_message.lower() for keyword in ['textilindo', 'lokasi', 'jam', 'katalog', 'produk', 'sample', 'pembelian', 'pembayaran', 'ongkir']):
|
| 186 |
-
logger.info("Non-Textilindo question detected, returning AI response directly")
|
| 187 |
-
return assistant_response
|
| 188 |
|
| 189 |
return assistant_response
|
| 190 |
|
| 191 |
except Exception as e:
|
| 192 |
logger.error(f"Error generating response: {e}")
|
| 193 |
-
return self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
def get_mock_response(self, user_message: str) -> str:
|
| 196 |
"""Enhanced mock responses with better context awareness"""
|
|
|
|
| 9 |
import logging
|
| 10 |
from pathlib import Path
|
| 11 |
from datetime import datetime
|
| 12 |
+
from typing import Optional, Dict, Any, List
|
| 13 |
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks
|
| 14 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
from pydantic import BaseModel
|
| 17 |
import uvicorn
|
| 18 |
import requests
|
| 19 |
+
import re
|
| 20 |
+
from difflib import SequenceMatcher
|
| 21 |
|
| 22 |
# Setup logging
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 82 |
"error": None
|
| 83 |
}
|
| 84 |
|
| 85 |
+
class TrainingDataLoader:
|
| 86 |
+
"""Load and manage training data for intelligent responses"""
|
| 87 |
+
|
| 88 |
+
def __init__(self, data_path: str = "data/textilindo_training_data.jsonl"):
|
| 89 |
+
self.data_path = data_path
|
| 90 |
+
self.training_data = []
|
| 91 |
+
self.load_data()
|
| 92 |
+
|
| 93 |
+
def load_data(self):
|
| 94 |
+
"""Load training data from JSONL file"""
|
| 95 |
+
try:
|
| 96 |
+
if os.path.exists(self.data_path):
|
| 97 |
+
with open(self.data_path, 'r', encoding='utf-8') as f:
|
| 98 |
+
for line in f:
|
| 99 |
+
line = line.strip()
|
| 100 |
+
if line:
|
| 101 |
+
try:
|
| 102 |
+
data = json.loads(line)
|
| 103 |
+
self.training_data.append(data)
|
| 104 |
+
except json.JSONDecodeError:
|
| 105 |
+
continue
|
| 106 |
+
logger.info(f"Loaded {len(self.training_data)} training samples")
|
| 107 |
+
else:
|
| 108 |
+
logger.warning(f"Training data file not found: {self.data_path}")
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logger.error(f"Error loading training data: {e}")
|
| 111 |
+
|
| 112 |
+
def find_best_match(self, user_input: str, threshold: float = 0.3) -> Optional[Dict]:
|
| 113 |
+
"""Find the best matching training sample for user input"""
|
| 114 |
+
if not self.training_data:
|
| 115 |
+
return None
|
| 116 |
+
|
| 117 |
+
user_input_lower = user_input.lower().strip()
|
| 118 |
+
best_match = None
|
| 119 |
+
best_score = 0
|
| 120 |
+
|
| 121 |
+
for data in self.training_data:
|
| 122 |
+
instruction = data.get('instruction', '').lower().strip()
|
| 123 |
+
if not instruction:
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
+
# Calculate similarity score
|
| 127 |
+
score = SequenceMatcher(None, user_input_lower, instruction).ratio()
|
| 128 |
+
|
| 129 |
+
# Also check for keyword matches
|
| 130 |
+
user_words = set(user_input_lower.split())
|
| 131 |
+
instruction_words = set(instruction.split())
|
| 132 |
+
keyword_score = len(user_words.intersection(instruction_words)) / max(len(user_words), 1)
|
| 133 |
+
|
| 134 |
+
# Combine scores
|
| 135 |
+
combined_score = (score * 0.7) + (keyword_score * 0.3)
|
| 136 |
+
|
| 137 |
+
if combined_score > best_score and combined_score >= threshold:
|
| 138 |
+
best_score = combined_score
|
| 139 |
+
best_match = data
|
| 140 |
+
|
| 141 |
+
if best_match:
|
| 142 |
+
logger.info(f"Found match with score {best_score:.2f}: {best_match.get('instruction', '')[:50]}...")
|
| 143 |
+
|
| 144 |
+
return best_match
|
| 145 |
+
|
| 146 |
class TextilindoAI:
|
| 147 |
"""Textilindo AI Assistant using HuggingFace Inference API"""
|
| 148 |
|
| 149 |
def __init__(self):
|
| 150 |
self.api_key = os.getenv('HUGGINGFACE_API_KEY')
|
| 151 |
# Use a model available on free HuggingFace Inference API
|
| 152 |
+
self.model = os.getenv('DEFAULT_MODEL', 'gpt2') # Use GPT-2 which is available
|
| 153 |
self.system_prompt = self.load_system_prompt()
|
| 154 |
+
self.data_loader = TrainingDataLoader()
|
| 155 |
|
| 156 |
if not self.api_key:
|
| 157 |
logger.warning("HUGGINGFACE_API_KEY not found. Using mock responses.")
|
|
|
|
| 202 |
Minimum purchase is 1 roll (67-70 yards)."""
|
| 203 |
|
| 204 |
def generate_response(self, user_message: str) -> str:
|
| 205 |
+
"""Generate response using training data and HuggingFace Inference API"""
|
| 206 |
+
|
| 207 |
+
# First, try to find a match in training data
|
| 208 |
+
training_match = self.data_loader.find_best_match(user_message)
|
| 209 |
+
if training_match:
|
| 210 |
+
logger.info("Using training data response")
|
| 211 |
+
return training_match.get('output', '')
|
| 212 |
+
|
| 213 |
+
# If no training data match, try HuggingFace API if available
|
| 214 |
if not self.client:
|
| 215 |
+
logger.warning("No HuggingFace client available, using fallback response")
|
| 216 |
+
return self.get_fallback_response(user_message)
|
| 217 |
|
| 218 |
try:
|
| 219 |
+
# Use GPT-2 conversation format
|
| 220 |
prompt = f"User: {user_message}\nAssistant:"
|
| 221 |
|
| 222 |
logger.info(f"Using model: {self.model}")
|
|
|
|
| 224 |
|
| 225 |
logger.info(f"Generating response for prompt: {prompt[:100]}...")
|
| 226 |
|
| 227 |
+
# Generate response with GPT-2 parameters
|
| 228 |
response = self.client.text_generation(
|
| 229 |
prompt,
|
| 230 |
+
max_new_tokens=150,
|
| 231 |
+
temperature=0.8,
|
| 232 |
top_p=0.9,
|
| 233 |
+
top_k=50,
|
| 234 |
+
repetition_penalty=1.2,
|
| 235 |
+
do_sample=True,
|
| 236 |
+
stop_sequences=["User:", "Assistant:", "\n\n"]
|
| 237 |
)
|
| 238 |
|
| 239 |
logger.info(f"Raw AI response: {response[:200]}...")
|
| 240 |
|
| 241 |
+
# Clean up the response for GPT-2
|
| 242 |
if "Assistant:" in response:
|
| 243 |
assistant_response = response.split("Assistant:")[-1].strip()
|
| 244 |
else:
|
| 245 |
assistant_response = response.strip()
|
| 246 |
|
| 247 |
+
# Remove any remaining special tokens and clean up
|
| 248 |
assistant_response = assistant_response.replace("<|end|>", "").replace("<|user|>", "").strip()
|
| 249 |
|
| 250 |
+
# Remove any incomplete sentences or cut-off text
|
| 251 |
+
if assistant_response.endswith(('.', '!', '?')):
|
| 252 |
+
pass # Complete sentence
|
| 253 |
+
elif '.' in assistant_response:
|
| 254 |
+
# Take only the first complete sentence
|
| 255 |
+
assistant_response = assistant_response.split('.')[0] + '.'
|
| 256 |
+
else:
|
| 257 |
+
# If no complete sentence, take first 100 characters
|
| 258 |
+
assistant_response = assistant_response[:100]
|
| 259 |
+
|
| 260 |
logger.info(f"Cleaned AI response: {assistant_response[:100]}...")
|
| 261 |
|
| 262 |
+
# If response is too short or generic, use fallback
|
| 263 |
if len(assistant_response) < 10 or "I don't know" in assistant_response.lower():
|
| 264 |
+
logger.warning("AI response too short, using fallback response")
|
| 265 |
+
return self.get_fallback_response(user_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
return assistant_response
|
| 268 |
|
| 269 |
except Exception as e:
|
| 270 |
logger.error(f"Error generating response: {e}")
|
| 271 |
+
return self.get_fallback_response(user_message)
|
| 272 |
+
|
| 273 |
+
def get_fallback_response(self, user_message: str) -> str:
|
| 274 |
+
"""Fallback response when no training data match and no API available"""
|
| 275 |
+
return f"Halo! Saya adalah asisten AI Textilindo. Saya bisa membantu Anda dengan pertanyaan tentang produk dan layanan kami, atau sekadar mengobrol! Bagaimana saya bisa membantu Anda hari ini? 😊"
|
| 276 |
|
| 277 |
def get_mock_response(self, user_message: str) -> str:
|
| 278 |
"""Enhanced mock responses with better context awareness"""
|