Spaces:
Sleeping
Sleeping
Commit
·
701eb48
1
Parent(s):
e207dc8
Add pure API-based training system with GPU support and background processing
Browse files- API_DOCUMENTATION.md +238 -0
- TRAINING_GUIDE.md +210 -0
- app.py +280 -1
- quick_train.py +181 -0
- training_api.py +438 -0
API_DOCUMENTATION.md
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🤖 Textilindo AI Training API Documentation
|
| 2 |
+
|
| 3 |
+
## 🚀 Pure API-Based Training System
|
| 4 |
+
|
| 5 |
+
This is a complete API-based training system that uses your data, configs, and the free GPU tier on Hugging Face Spaces.
|
| 6 |
+
|
| 7 |
+
## 📡 API Endpoints
|
| 8 |
+
|
| 9 |
+
### 1. **Start Training**
|
| 10 |
+
```bash
|
| 11 |
+
POST /api/train/start
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
**Request Body:**
|
| 15 |
+
```json
|
| 16 |
+
{
|
| 17 |
+
"model_name": "distilgpt2",
|
| 18 |
+
"dataset_path": "data/lora_dataset_20250829_113330.jsonl",
|
| 19 |
+
"config_path": "configs/training_config.yaml",
|
| 20 |
+
"max_samples": 10,
|
| 21 |
+
"epochs": 1,
|
| 22 |
+
"batch_size": 1,
|
| 23 |
+
"learning_rate": 5e-5
|
| 24 |
+
}
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
**Response:**
|
| 28 |
+
```json
|
| 29 |
+
{
|
| 30 |
+
"success": true,
|
| 31 |
+
"message": "Training started successfully",
|
| 32 |
+
"training_id": "train_20241025_120000",
|
| 33 |
+
"status": "started"
|
| 34 |
+
}
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### 2. **Check Training Status**
|
| 38 |
+
```bash
|
| 39 |
+
GET /api/train/status
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
**Response:**
|
| 43 |
+
```json
|
| 44 |
+
{
|
| 45 |
+
"is_training": true,
|
| 46 |
+
"progress": 45,
|
| 47 |
+
"status": "training",
|
| 48 |
+
"current_step": 5,
|
| 49 |
+
"total_steps": 10,
|
| 50 |
+
"loss": 2.34,
|
| 51 |
+
"start_time": "2024-10-25T12:00:00",
|
| 52 |
+
"error": null
|
| 53 |
+
}
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### 3. **Get Training Data Info**
|
| 57 |
+
```bash
|
| 58 |
+
GET /api/train/data
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
**Response:**
|
| 62 |
+
```json
|
| 63 |
+
{
|
| 64 |
+
"files": [
|
| 65 |
+
{
|
| 66 |
+
"name": "lora_dataset_20250829_113330.jsonl",
|
| 67 |
+
"size": 12345,
|
| 68 |
+
"lines": 33
|
| 69 |
+
}
|
| 70 |
+
],
|
| 71 |
+
"count": 4
|
| 72 |
+
}
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
### 4. **Check GPU Availability**
|
| 76 |
+
```bash
|
| 77 |
+
GET /api/train/gpu
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
**Response:**
|
| 81 |
+
```json
|
| 82 |
+
{
|
| 83 |
+
"available": true,
|
| 84 |
+
"count": 1,
|
| 85 |
+
"name": "Tesla T4",
|
| 86 |
+
"memory_gb": 15.0
|
| 87 |
+
}
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### 5. **Test Trained Model**
|
| 91 |
+
```bash
|
| 92 |
+
POST /api/train/test
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
**Response:**
|
| 96 |
+
```json
|
| 97 |
+
{
|
| 98 |
+
"success": true,
|
| 99 |
+
"test_prompt": "Question: dimana lokasi textilindo? Answer:",
|
| 100 |
+
"response": "Question: dimana lokasi textilindo? Answer: Textilindo berkantor pusat di Jl. Raya Prancis No.39, Kosambi Tim., Kec. Kosambi, Kabupaten Tangerang, Banten 15213",
|
| 101 |
+
"model_path": "./models/textilindo-trained"
|
| 102 |
+
}
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
## 🧪 Testing the API
|
| 106 |
+
|
| 107 |
+
### 1. **Check GPU Availability**
|
| 108 |
+
```bash
|
| 109 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/gpu"
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
### 2. **View Training Data**
|
| 113 |
+
```bash
|
| 114 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/data"
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
### 3. **Start Training**
|
| 118 |
+
```bash
|
| 119 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/start" \
|
| 120 |
+
-H "Content-Type: application/json" \
|
| 121 |
+
-d '{
|
| 122 |
+
"model_name": "distilgpt2",
|
| 123 |
+
"dataset_path": "data/lora_dataset_20250829_113330.jsonl",
|
| 124 |
+
"config_path": "configs/training_config.yaml",
|
| 125 |
+
"max_samples": 10,
|
| 126 |
+
"epochs": 1,
|
| 127 |
+
"batch_size": 1,
|
| 128 |
+
"learning_rate": 5e-5
|
| 129 |
+
}'
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### 4. **Monitor Training Progress**
|
| 133 |
+
```bash
|
| 134 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/status"
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
### 5. **Test Trained Model**
|
| 138 |
+
```bash
|
| 139 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/test"
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
## 🔧 Training Configuration
|
| 143 |
+
|
| 144 |
+
### Available Models:
|
| 145 |
+
- `distilgpt2` (82M) - Small, fast, good for free tier
|
| 146 |
+
- `gpt2` (124M) - Original GPT-2
|
| 147 |
+
- `microsoft/DialoGPT-small` (117M) - Conversational
|
| 148 |
+
|
| 149 |
+
### Training Parameters:
|
| 150 |
+
- **max_samples**: Limit training data (10 for free tier)
|
| 151 |
+
- **epochs**: Number of training epochs (1-3 recommended)
|
| 152 |
+
- **batch_size**: Batch size (1 for free tier)
|
| 153 |
+
- **learning_rate**: Learning rate (5e-5 recommended)
|
| 154 |
+
|
| 155 |
+
## 🎯 Training Process
|
| 156 |
+
|
| 157 |
+
1. **Start Training**: POST to `/api/train/start`
|
| 158 |
+
2. **Monitor Progress**: GET `/api/train/status`
|
| 159 |
+
3. **Check GPU Usage**: GET `/api/train/gpu`
|
| 160 |
+
4. **Test Model**: POST `/api/train/test`
|
| 161 |
+
|
| 162 |
+
## 📊 Training Status Values
|
| 163 |
+
|
| 164 |
+
- `idle` - No training
|
| 165 |
+
- `starting` - Training initialization
|
| 166 |
+
- `training` - Active training
|
| 167 |
+
- `completed` - Training finished
|
| 168 |
+
- `failed` - Training error
|
| 169 |
+
- `stopped` - Training stopped
|
| 170 |
+
|
| 171 |
+
## ⚡ GPU Usage
|
| 172 |
+
|
| 173 |
+
The API automatically detects and uses GPU if available:
|
| 174 |
+
- **GPU Available**: Uses GPU with fp16 precision
|
| 175 |
+
- **CPU Only**: Falls back to CPU training
|
| 176 |
+
- **Memory Optimization**: Adjusts batch size based on available memory
|
| 177 |
+
|
| 178 |
+
## 🔍 Error Handling
|
| 179 |
+
|
| 180 |
+
### Common Errors:
|
| 181 |
+
- `400` - Training already in progress
|
| 182 |
+
- `404` - Dataset or config file not found
|
| 183 |
+
- `500` - Training failed (check logs)
|
| 184 |
+
|
| 185 |
+
### Error Response:
|
| 186 |
+
```json
|
| 187 |
+
{
|
| 188 |
+
"detail": "Training already in progress"
|
| 189 |
+
}
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
## 📈 Training Monitoring
|
| 193 |
+
|
| 194 |
+
### Real-time Status:
|
| 195 |
+
- **Progress**: 0-100%
|
| 196 |
+
- **Current Step**: Current training step
|
| 197 |
+
- **Total Steps**: Total training steps
|
| 198 |
+
- **Loss**: Current training loss
|
| 199 |
+
- **GPU Usage**: GPU memory and utilization
|
| 200 |
+
|
| 201 |
+
### Training Logs:
|
| 202 |
+
Check the space logs for detailed training information.
|
| 203 |
+
|
| 204 |
+
## 🚀 Quick Start Example
|
| 205 |
+
|
| 206 |
+
```bash
|
| 207 |
+
# 1. Check GPU
|
| 208 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/gpu"
|
| 209 |
+
|
| 210 |
+
# 2. Start training
|
| 211 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/start" \
|
| 212 |
+
-H "Content-Type: application/json" \
|
| 213 |
+
-d '{
|
| 214 |
+
"model_name": "distilgpt2",
|
| 215 |
+
"dataset_path": "data/lora_dataset_20250829_113330.jsonl",
|
| 216 |
+
"max_samples": 5,
|
| 217 |
+
"epochs": 1
|
| 218 |
+
}'
|
| 219 |
+
|
| 220 |
+
# 3. Monitor progress
|
| 221 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/status"
|
| 222 |
+
|
| 223 |
+
# 4. Test when complete
|
| 224 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/test"
|
| 225 |
+
```
|
| 226 |
+
|
| 227 |
+
## 🎉 Success Indicators
|
| 228 |
+
|
| 229 |
+
- ✅ Training starts without errors
|
| 230 |
+
- ✅ GPU is detected and used
|
| 231 |
+
- ✅ Progress increases over time
|
| 232 |
+
- ✅ Model saves to `./models/textilindo-trained`
|
| 233 |
+
- ✅ Test endpoint returns valid responses
|
| 234 |
+
- ✅ Chat interface works with trained model
|
| 235 |
+
|
| 236 |
+
---
|
| 237 |
+
|
| 238 |
+
*Pure API training system - No HTML interfaces! 🚀*
|
TRAINING_GUIDE.md
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🤖 Textilindo AI Training Guide for Hugging Face Spaces
|
| 2 |
+
|
| 3 |
+
## 🚀 Training Options on Hugging Face Spaces
|
| 4 |
+
|
| 5 |
+
### Option 1: **Quick Training (Recommended for HF Spaces)**
|
| 6 |
+
Use the lightweight training script designed for HF Spaces constraints.
|
| 7 |
+
|
| 8 |
+
**Access Training Interface:**
|
| 9 |
+
- Visit: `https://harismlnaslm-Textilindo-AI.hf.space/train`
|
| 10 |
+
- Click "Start Lightweight Training"
|
| 11 |
+
- Monitor progress in the training log
|
| 12 |
+
|
| 13 |
+
**Manual Training:**
|
| 14 |
+
```bash
|
| 15 |
+
python quick_train.py
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
### Option 2: **Use Existing Scripts**
|
| 19 |
+
Run the full training scripts (may be resource-intensive):
|
| 20 |
+
|
| 21 |
+
```bash
|
| 22 |
+
# Check if training is ready
|
| 23 |
+
python scripts/check_training_ready.py
|
| 24 |
+
|
| 25 |
+
# Run lightweight training
|
| 26 |
+
python scripts/train_textilindo_ai_optimized.py
|
| 27 |
+
|
| 28 |
+
# Test the trained model
|
| 29 |
+
python scripts/test_textilindo_ai.py
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
### Option 3: **External Training + Upload**
|
| 33 |
+
Train on external resources and upload the model:
|
| 34 |
+
|
| 35 |
+
1. **Train locally or on cloud:**
|
| 36 |
+
```bash
|
| 37 |
+
python scripts/train_textilindo_ai.py
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
2. **Upload trained model to HF Hub:**
|
| 41 |
+
```bash
|
| 42 |
+
huggingface-cli upload your-username/textilindo-trained-model ./models/trained-model
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
3. **Use the uploaded model in your space**
|
| 46 |
+
|
| 47 |
+
## 🔧 Training Configuration
|
| 48 |
+
|
| 49 |
+
### For HF Spaces (Limited Resources):
|
| 50 |
+
- **Model**: `distilgpt2` (small, fast)
|
| 51 |
+
- **Batch Size**: 1
|
| 52 |
+
- **Epochs**: 1
|
| 53 |
+
- **Max Length**: 128 tokens
|
| 54 |
+
- **Training Time**: ~5 minutes
|
| 55 |
+
|
| 56 |
+
### For External Training (Full Resources):
|
| 57 |
+
- **Model**: `meta-llama/Llama-3.1-8B-Instruct`
|
| 58 |
+
- **Batch Size**: 4-8
|
| 59 |
+
- **Epochs**: 3
|
| 60 |
+
- **Max Length**: 2048 tokens
|
| 61 |
+
- **Training Time**: Hours
|
| 62 |
+
|
| 63 |
+
## 📊 Training Data
|
| 64 |
+
|
| 65 |
+
Your space includes these training datasets:
|
| 66 |
+
- `data/lora_dataset_20250829_113330.jsonl` (33 samples)
|
| 67 |
+
- `data/lora_dataset_20250910_145055.jsonl`
|
| 68 |
+
- `data/textilindo_training_data.jsonl`
|
| 69 |
+
- `data/training_data.jsonl`
|
| 70 |
+
|
| 71 |
+
## 🎯 Training Endpoints
|
| 72 |
+
|
| 73 |
+
### Web Interface:
|
| 74 |
+
- **Training UI**: `/train`
|
| 75 |
+
- **Start Training**: `POST /train/start`
|
| 76 |
+
- **Check Status**: `GET /train/status`
|
| 77 |
+
- **View Data**: `GET /train/data`
|
| 78 |
+
|
| 79 |
+
### API Usage:
|
| 80 |
+
```bash
|
| 81 |
+
# Start training
|
| 82 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/train/start"
|
| 83 |
+
|
| 84 |
+
# Check resources
|
| 85 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/train/status"
|
| 86 |
+
|
| 87 |
+
# View training data
|
| 88 |
+
curl "https://harismlnaslm-Textilindo-AI.hf.space/train/data"
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## ⚠️ Limitations of HF Spaces Training
|
| 92 |
+
|
| 93 |
+
### Resource Constraints:
|
| 94 |
+
- **CPU Only**: No GPU acceleration
|
| 95 |
+
- **Memory**: Limited to ~4GB RAM
|
| 96 |
+
- **Time**: 5-minute timeout for training
|
| 97 |
+
- **Storage**: Limited disk space
|
| 98 |
+
|
| 99 |
+
### Recommended Approach:
|
| 100 |
+
1. **Quick Demo Training**: Use `quick_train.py` for testing
|
| 101 |
+
2. **Full Training**: Use external resources (Google Colab, AWS, etc.)
|
| 102 |
+
3. **Model Upload**: Upload pre-trained models to HF Hub
|
| 103 |
+
|
| 104 |
+
## 🚀 External Training Options
|
| 105 |
+
|
| 106 |
+
### Google Colab (Free GPU):
|
| 107 |
+
```python
|
| 108 |
+
# Upload your training data
|
| 109 |
+
# Run: python scripts/train_textilindo_ai.py
|
| 110 |
+
# Download trained model
|
| 111 |
+
# Upload to HF Hub
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Local Training:
|
| 115 |
+
```bash
|
| 116 |
+
# Setup environment
|
| 117 |
+
python scripts/setup_textilindo_training.py
|
| 118 |
+
|
| 119 |
+
# Download model
|
| 120 |
+
python scripts/download_model.py
|
| 121 |
+
|
| 122 |
+
# Run training
|
| 123 |
+
python scripts/train_textilindo_ai.py
|
| 124 |
+
|
| 125 |
+
# Test model
|
| 126 |
+
python scripts/test_textilindo_ai.py
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Cloud Training (AWS/GCP):
|
| 130 |
+
```bash
|
| 131 |
+
# Use the monitoring script
|
| 132 |
+
python scripts/train_with_monitoring.py
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## 📈 Training Progress Monitoring
|
| 136 |
+
|
| 137 |
+
### On HF Spaces:
|
| 138 |
+
- Check the training log in the web interface
|
| 139 |
+
- Use `/train/status` endpoint for resource monitoring
|
| 140 |
+
|
| 141 |
+
### External Training:
|
| 142 |
+
```bash
|
| 143 |
+
# Use monitoring script
|
| 144 |
+
python scripts/train_with_monitoring.py
|
| 145 |
+
|
| 146 |
+
# Check logs
|
| 147 |
+
tail -f logs/training.log
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
## 🧪 Testing Trained Models
|
| 151 |
+
|
| 152 |
+
### Quick Test:
|
| 153 |
+
```bash
|
| 154 |
+
python quick_train.py # Includes testing
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
### Full Testing:
|
| 158 |
+
```bash
|
| 159 |
+
python scripts/test_textilindo_ai.py
|
| 160 |
+
python scripts/test_model.py
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
### API Testing:
|
| 164 |
+
```bash
|
| 165 |
+
# Test chat endpoint
|
| 166 |
+
curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/chat" \
|
| 167 |
+
-H "Content-Type: application/json" \
|
| 168 |
+
-d '{"message": "dimana lokasi textilindo?"}'
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
## 🔧 Troubleshooting
|
| 172 |
+
|
| 173 |
+
### Common Issues:
|
| 174 |
+
|
| 175 |
+
1. **"Out of Memory"**
|
| 176 |
+
- Use smaller models (distilgpt2)
|
| 177 |
+
- Reduce batch size
|
| 178 |
+
- Use external training
|
| 179 |
+
|
| 180 |
+
2. **"Training Timeout"**
|
| 181 |
+
- HF Spaces has 5-minute limit
|
| 182 |
+
- Use external resources for full training
|
| 183 |
+
|
| 184 |
+
3. **"Model Not Found"**
|
| 185 |
+
- Check if model is downloaded
|
| 186 |
+
- Use `python scripts/download_model.py`
|
| 187 |
+
|
| 188 |
+
4. **"Data Not Found"**
|
| 189 |
+
- Verify data files exist in `data/` directory
|
| 190 |
+
- Check file permissions
|
| 191 |
+
|
| 192 |
+
## 📚 Next Steps
|
| 193 |
+
|
| 194 |
+
1. **Start with Quick Training**: Test the setup with `quick_train.py`
|
| 195 |
+
2. **Monitor Resources**: Use `/train/status` to check available resources
|
| 196 |
+
3. **External Training**: For full training, use external resources
|
| 197 |
+
4. **Model Upload**: Upload trained models to Hugging Face Hub
|
| 198 |
+
5. **Integration**: Use uploaded models in your space
|
| 199 |
+
|
| 200 |
+
## 🎉 Success Indicators
|
| 201 |
+
|
| 202 |
+
- ✅ Training completes without errors
|
| 203 |
+
- ✅ Model saves to `./models/` directory
|
| 204 |
+
- ✅ Test responses are generated
|
| 205 |
+
- ✅ Chat interface works with trained model
|
| 206 |
+
- ✅ API endpoints respond correctly
|
| 207 |
+
|
| 208 |
+
---
|
| 209 |
+
|
| 210 |
+
*Happy Training! 🚀*
|
app.py
CHANGED
|
@@ -9,7 +9,7 @@ import json
|
|
| 9 |
import logging
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import Optional, Dict, Any
|
| 12 |
-
from fastapi import FastAPI, HTTPException, Request
|
| 13 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 14 |
from fastapi.staticfiles import StaticFiles
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
|
@@ -17,6 +17,7 @@ from pydantic import BaseModel
|
|
| 17 |
import uvicorn
|
| 18 |
from huggingface_hub import InferenceClient
|
| 19 |
import requests
|
|
|
|
| 20 |
|
| 21 |
# Setup logging
|
| 22 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -272,6 +273,284 @@ async def get_info():
|
|
| 272 |
"client_initialized": bool(ai_assistant.client)
|
| 273 |
}
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
# Mount static files if they exist
|
| 276 |
if Path("static").exists():
|
| 277 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
|
|
| 9 |
import logging
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import Optional, Dict, Any
|
| 12 |
+
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks
|
| 13 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 14 |
from fastapi.staticfiles import StaticFiles
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 17 |
import uvicorn
|
| 18 |
from huggingface_hub import InferenceClient
|
| 19 |
import requests
|
| 20 |
+
from datetime import datetime
|
| 21 |
|
| 22 |
# Setup logging
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 273 |
"client_initialized": bool(ai_assistant.client)
|
| 274 |
}
|
| 275 |
|
| 276 |
+
# Import training API
|
| 277 |
+
from training_api import (
|
| 278 |
+
TrainingRequest, TrainingResponse, training_status,
|
| 279 |
+
train_model_async, load_training_config, load_training_data, check_gpu_availability
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Training API endpoints
|
| 283 |
+
@app.post("/api/train/start", response_model=TrainingResponse)
|
| 284 |
+
async def start_training_api(request: TrainingRequest, background_tasks: BackgroundTasks):
|
| 285 |
+
"""Start training process via API"""
|
| 286 |
+
if training_status["is_training"]:
|
| 287 |
+
raise HTTPException(status_code=400, detail="Training already in progress")
|
| 288 |
+
|
| 289 |
+
# Validate inputs
|
| 290 |
+
if not Path(request.dataset_path).exists():
|
| 291 |
+
raise HTTPException(status_code=404, detail=f"Dataset not found: {request.dataset_path}")
|
| 292 |
+
|
| 293 |
+
if not Path(request.config_path).exists():
|
| 294 |
+
raise HTTPException(status_code=404, detail=f"Config not found: {request.config_path}")
|
| 295 |
+
|
| 296 |
+
# Start training in background
|
| 297 |
+
training_id = f"train_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 298 |
+
|
| 299 |
+
background_tasks.add_task(
|
| 300 |
+
train_model_async,
|
| 301 |
+
request.model_name,
|
| 302 |
+
request.dataset_path,
|
| 303 |
+
request.config_path,
|
| 304 |
+
request.max_samples,
|
| 305 |
+
request.epochs,
|
| 306 |
+
request.batch_size,
|
| 307 |
+
request.learning_rate
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
return TrainingResponse(
|
| 311 |
+
success=True,
|
| 312 |
+
message="Training started successfully",
|
| 313 |
+
training_id=training_id,
|
| 314 |
+
status="started"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
@app.get("/api/train/status")
|
| 318 |
+
async def get_training_status_api():
|
| 319 |
+
"""Get current training status"""
|
| 320 |
+
return training_status
|
| 321 |
+
|
| 322 |
+
@app.get("/api/train/data")
|
| 323 |
+
async def get_training_data_info_api():
|
| 324 |
+
"""Get information about available training data"""
|
| 325 |
+
data_dir = Path("data")
|
| 326 |
+
if not data_dir.exists():
|
| 327 |
+
return {"files": [], "count": 0}
|
| 328 |
+
|
| 329 |
+
jsonl_files = list(data_dir.glob("*.jsonl"))
|
| 330 |
+
files_info = []
|
| 331 |
+
|
| 332 |
+
for file in jsonl_files:
|
| 333 |
+
try:
|
| 334 |
+
with open(file, 'r', encoding='utf-8') as f:
|
| 335 |
+
lines = f.readlines()
|
| 336 |
+
files_info.append({
|
| 337 |
+
"name": file.name,
|
| 338 |
+
"size": file.stat().st_size,
|
| 339 |
+
"lines": len(lines)
|
| 340 |
+
})
|
| 341 |
+
except Exception as e:
|
| 342 |
+
files_info.append({
|
| 343 |
+
"name": file.name,
|
| 344 |
+
"error": str(e)
|
| 345 |
+
})
|
| 346 |
+
|
| 347 |
+
return {
|
| 348 |
+
"files": files_info,
|
| 349 |
+
"count": len(jsonl_files)
|
| 350 |
+
}
|
| 351 |
+
|
| 352 |
+
@app.get("/api/train/gpu")
|
| 353 |
+
async def get_gpu_info_api():
|
| 354 |
+
"""Get GPU information"""
|
| 355 |
+
try:
|
| 356 |
+
import torch
|
| 357 |
+
gpu_available = torch.cuda.is_available()
|
| 358 |
+
if gpu_available:
|
| 359 |
+
gpu_count = torch.cuda.device_count()
|
| 360 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 361 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 362 |
+
return {
|
| 363 |
+
"available": True,
|
| 364 |
+
"count": gpu_count,
|
| 365 |
+
"name": gpu_name,
|
| 366 |
+
"memory_gb": round(gpu_memory, 2)
|
| 367 |
+
}
|
| 368 |
+
else:
|
| 369 |
+
return {"available": False}
|
| 370 |
+
except Exception as e:
|
| 371 |
+
return {"error": str(e)}
|
| 372 |
+
|
| 373 |
+
@app.post("/api/train/test")
|
| 374 |
+
async def test_trained_model_api():
|
| 375 |
+
"""Test the trained model"""
|
| 376 |
+
model_path = "./models/textilindo-trained"
|
| 377 |
+
if not Path(model_path).exists():
|
| 378 |
+
return {"error": "No trained model found"}
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 382 |
+
import torch
|
| 383 |
+
|
| 384 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 385 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 386 |
+
|
| 387 |
+
# Test prompt
|
| 388 |
+
test_prompt = "Question: dimana lokasi textilindo? Answer:"
|
| 389 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 390 |
+
|
| 391 |
+
with torch.no_grad():
|
| 392 |
+
outputs = model.generate(
|
| 393 |
+
**inputs,
|
| 394 |
+
max_length=inputs.input_ids.shape[1] + 30,
|
| 395 |
+
temperature=0.7,
|
| 396 |
+
do_sample=True,
|
| 397 |
+
pad_token_id=tokenizer.eos_token_id
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 401 |
+
|
| 402 |
+
return {
|
| 403 |
+
"success": True,
|
| 404 |
+
"test_prompt": test_prompt,
|
| 405 |
+
"response": response,
|
| 406 |
+
"model_path": model_path
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
except Exception as e:
|
| 410 |
+
return {"error": str(e)}
|
| 411 |
+
|
| 412 |
+
# Legacy training endpoints (for backward compatibility)
|
| 413 |
+
@app.get("/train")
|
| 414 |
+
async def training_interface():
|
| 415 |
+
"""Training interface"""
|
| 416 |
+
try:
|
| 417 |
+
with open("templates/training.html", "r", encoding="utf-8") as f:
|
| 418 |
+
return HTMLResponse(content=f.read())
|
| 419 |
+
except FileNotFoundError:
|
| 420 |
+
return HTMLResponse(content="""
|
| 421 |
+
<!DOCTYPE html>
|
| 422 |
+
<html>
|
| 423 |
+
<head>
|
| 424 |
+
<title>Textilindo AI Training</title>
|
| 425 |
+
<meta charset="utf-8">
|
| 426 |
+
<style>
|
| 427 |
+
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
|
| 428 |
+
.container { background: #f5f5f5; padding: 20px; border-radius: 10px; margin: 20px 0; }
|
| 429 |
+
button { background: #2196f3; color: white; border: none; padding: 10px 20px; border-radius: 5px; cursor: pointer; }
|
| 430 |
+
button:hover { background: #1976d2; }
|
| 431 |
+
.log { background: #000; color: #0f0; padding: 10px; border-radius: 5px; font-family: monospace; height: 300px; overflow-y: auto; }
|
| 432 |
+
</style>
|
| 433 |
+
</head>
|
| 434 |
+
<body>
|
| 435 |
+
<h1>🤖 Textilindo AI Training Interface</h1>
|
| 436 |
+
|
| 437 |
+
<div class="container">
|
| 438 |
+
<h2>Training Options</h2>
|
| 439 |
+
<p>Choose your training method:</p>
|
| 440 |
+
|
| 441 |
+
<button onclick="startLightweightTraining()">Start Lightweight Training</button>
|
| 442 |
+
<button onclick="checkResources()">Check Resources</button>
|
| 443 |
+
<button onclick="viewData()">View Training Data</button>
|
| 444 |
+
</div>
|
| 445 |
+
|
| 446 |
+
<div class="container">
|
| 447 |
+
<h2>Training Log</h2>
|
| 448 |
+
<div id="log" class="log">Ready to start training...</div>
|
| 449 |
+
</div>
|
| 450 |
+
|
| 451 |
+
<script>
|
| 452 |
+
function addLog(message) {
|
| 453 |
+
const log = document.getElementById('log');
|
| 454 |
+
const timestamp = new Date().toLocaleTimeString();
|
| 455 |
+
log.innerHTML += `[${timestamp}] ${message}\\n`;
|
| 456 |
+
log.scrollTop = log.scrollHeight;
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
async function startLightweightTraining() {
|
| 460 |
+
addLog('Starting lightweight training...');
|
| 461 |
+
try {
|
| 462 |
+
const response = await fetch('/train/start', {
|
| 463 |
+
method: 'POST',
|
| 464 |
+
headers: { 'Content-Type': 'application/json' }
|
| 465 |
+
});
|
| 466 |
+
const result = await response.json();
|
| 467 |
+
addLog(`Training result: ${result.message}`);
|
| 468 |
+
} catch (error) {
|
| 469 |
+
addLog(`Error: ${error.message}`);
|
| 470 |
+
}
|
| 471 |
+
}
|
| 472 |
+
|
| 473 |
+
async function checkResources() {
|
| 474 |
+
addLog('Checking resources...');
|
| 475 |
+
try {
|
| 476 |
+
const response = await fetch('/train/status');
|
| 477 |
+
const result = await response.json();
|
| 478 |
+
addLog(`Resources: ${JSON.stringify(result, null, 2)}`);
|
| 479 |
+
} catch (error) {
|
| 480 |
+
addLog(`Error: ${error.message}`);
|
| 481 |
+
}
|
| 482 |
+
}
|
| 483 |
+
|
| 484 |
+
async function viewData() {
|
| 485 |
+
addLog('Loading training data...');
|
| 486 |
+
try {
|
| 487 |
+
const response = await fetch('/train/data');
|
| 488 |
+
const result = await response.json();
|
| 489 |
+
addLog(`Data files: ${result.files.join(', ')}`);
|
| 490 |
+
} catch (error) {
|
| 491 |
+
addLog(`Error: ${error.message}`);
|
| 492 |
+
}
|
| 493 |
+
}
|
| 494 |
+
</script>
|
| 495 |
+
</body>
|
| 496 |
+
</html>
|
| 497 |
+
""")
|
| 498 |
+
|
| 499 |
+
@app.post("/train/start")
|
| 500 |
+
async def start_training():
|
| 501 |
+
"""Start lightweight training"""
|
| 502 |
+
try:
|
| 503 |
+
# Import training script
|
| 504 |
+
import subprocess
|
| 505 |
+
import sys
|
| 506 |
+
|
| 507 |
+
# Run the training script
|
| 508 |
+
result = subprocess.run([
|
| 509 |
+
sys.executable, "train_on_space.py"
|
| 510 |
+
], capture_output=True, text=True, timeout=300) # 5 minute timeout
|
| 511 |
+
|
| 512 |
+
if result.returncode == 0:
|
| 513 |
+
return {"message": "Training completed successfully!", "output": result.stdout}
|
| 514 |
+
else:
|
| 515 |
+
return {"message": "Training failed", "error": result.stderr}
|
| 516 |
+
|
| 517 |
+
except subprocess.TimeoutExpired:
|
| 518 |
+
return {"message": "Training timed out (5 minutes limit)"}
|
| 519 |
+
except Exception as e:
|
| 520 |
+
return {"message": f"Training error: {str(e)}"}
|
| 521 |
+
|
| 522 |
+
@app.get("/train/status")
|
| 523 |
+
async def training_status():
|
| 524 |
+
"""Get training status and resources"""
|
| 525 |
+
try:
|
| 526 |
+
import psutil
|
| 527 |
+
|
| 528 |
+
return {
|
| 529 |
+
"status": "ready",
|
| 530 |
+
"cpu_count": psutil.cpu_count(),
|
| 531 |
+
"memory_total_gb": round(psutil.virtual_memory().total / (1024**3), 2),
|
| 532 |
+
"memory_available_gb": round(psutil.virtual_memory().available / (1024**3), 2),
|
| 533 |
+
"disk_free_gb": round(psutil.disk_usage('.').free / (1024**3), 2)
|
| 534 |
+
}
|
| 535 |
+
except Exception as e:
|
| 536 |
+
return {"status": "error", "message": str(e)}
|
| 537 |
+
|
| 538 |
+
@app.get("/train/data")
|
| 539 |
+
async def training_data():
|
| 540 |
+
"""Get training data information"""
|
| 541 |
+
try:
|
| 542 |
+
data_dir = Path("data")
|
| 543 |
+
if data_dir.exists():
|
| 544 |
+
jsonl_files = list(data_dir.glob("*.jsonl"))
|
| 545 |
+
return {
|
| 546 |
+
"files": [f.name for f in jsonl_files],
|
| 547 |
+
"count": len(jsonl_files)
|
| 548 |
+
}
|
| 549 |
+
else:
|
| 550 |
+
return {"files": [], "count": 0}
|
| 551 |
+
except Exception as e:
|
| 552 |
+
return {"error": str(e)}
|
| 553 |
+
|
| 554 |
# Mount static files if they exist
|
| 555 |
if Path("static").exists():
|
| 556 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
quick_train.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Quick training script for Hugging Face Spaces
|
| 4 |
+
Optimized for CPU-only training with limited resources
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
|
| 13 |
+
# Setup logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
def quick_training():
|
| 18 |
+
"""Quick training suitable for HF Spaces"""
|
| 19 |
+
print("🚀 Starting Quick Training for Hugging Face Spaces")
|
| 20 |
+
print("=" * 60)
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
# Import required libraries
|
| 24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 25 |
+
from datasets import Dataset
|
| 26 |
+
import torch
|
| 27 |
+
|
| 28 |
+
print("✅ Successfully imported training libraries")
|
| 29 |
+
|
| 30 |
+
# Use a very small model for HF Spaces
|
| 31 |
+
model_name = "distilgpt2" # Small, fast model
|
| 32 |
+
print(f"📥 Loading model: {model_name}")
|
| 33 |
+
|
| 34 |
+
# Load tokenizer and model
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
if tokenizer.pad_token is None:
|
| 37 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 38 |
+
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 40 |
+
print("✅ Model loaded successfully")
|
| 41 |
+
|
| 42 |
+
# Load training data (limit to small amount for HF Spaces)
|
| 43 |
+
data_file = Path("data/lora_dataset_20250829_113330.jsonl")
|
| 44 |
+
if not data_file.exists():
|
| 45 |
+
print("❌ Training data not found")
|
| 46 |
+
return False
|
| 47 |
+
|
| 48 |
+
# Load and prepare data
|
| 49 |
+
training_data = []
|
| 50 |
+
with open(data_file, 'r', encoding='utf-8') as f:
|
| 51 |
+
for i, line in enumerate(f):
|
| 52 |
+
if i >= 5: # Limit to 5 samples for quick training
|
| 53 |
+
break
|
| 54 |
+
if line.strip():
|
| 55 |
+
data = json.loads(line)
|
| 56 |
+
# Create simple training text
|
| 57 |
+
text = f"Question: {data.get('instruction', '')} Answer: {data.get('output', '')}"
|
| 58 |
+
training_data.append({"text": text})
|
| 59 |
+
|
| 60 |
+
print(f"✅ Loaded {len(training_data)} training samples")
|
| 61 |
+
|
| 62 |
+
if not training_data:
|
| 63 |
+
print("❌ No training data found")
|
| 64 |
+
return False
|
| 65 |
+
|
| 66 |
+
# Convert to dataset
|
| 67 |
+
dataset = Dataset.from_list(training_data)
|
| 68 |
+
|
| 69 |
+
def tokenize_function(examples):
|
| 70 |
+
return tokenizer(
|
| 71 |
+
examples["text"],
|
| 72 |
+
truncation=True,
|
| 73 |
+
padding=True,
|
| 74 |
+
max_length=128 # Short sequences for quick training
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
| 78 |
+
|
| 79 |
+
# Training arguments optimized for HF Spaces
|
| 80 |
+
training_args = TrainingArguments(
|
| 81 |
+
output_dir="./models/quick-trained",
|
| 82 |
+
num_train_epochs=1, # Single epoch
|
| 83 |
+
per_device_train_batch_size=1, # Small batch
|
| 84 |
+
gradient_accumulation_steps=2,
|
| 85 |
+
learning_rate=5e-5,
|
| 86 |
+
warmup_steps=2,
|
| 87 |
+
save_steps=10,
|
| 88 |
+
logging_steps=1,
|
| 89 |
+
save_total_limit=1,
|
| 90 |
+
prediction_loss_only=True,
|
| 91 |
+
remove_unused_columns=False,
|
| 92 |
+
fp16=False, # Disable fp16 for CPU
|
| 93 |
+
dataloader_pin_memory=False,
|
| 94 |
+
report_to=None, # Disable wandb/tensorboard
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Create trainer
|
| 98 |
+
trainer = Trainer(
|
| 99 |
+
model=model,
|
| 100 |
+
args=training_args,
|
| 101 |
+
train_dataset=tokenized_dataset,
|
| 102 |
+
tokenizer=tokenizer,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
print("🚀 Starting training...")
|
| 106 |
+
print("⚠️ This is a quick demo training with limited data")
|
| 107 |
+
|
| 108 |
+
# Train
|
| 109 |
+
trainer.train()
|
| 110 |
+
|
| 111 |
+
# Save the model
|
| 112 |
+
model.save_pretrained("./models/quick-trained")
|
| 113 |
+
tokenizer.save_pretrained("./models/quick-trained")
|
| 114 |
+
|
| 115 |
+
print("✅ Quick training completed successfully!")
|
| 116 |
+
print("📁 Model saved to: ./models/quick-trained")
|
| 117 |
+
|
| 118 |
+
# Test the model
|
| 119 |
+
print("\n🧪 Testing the trained model...")
|
| 120 |
+
test_prompt = "Question: dimana lokasi textilindo? Answer:"
|
| 121 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 122 |
+
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
outputs = model.generate(
|
| 125 |
+
**inputs,
|
| 126 |
+
max_length=inputs.input_ids.shape[1] + 20,
|
| 127 |
+
temperature=0.7,
|
| 128 |
+
do_sample=True,
|
| 129 |
+
pad_token_id=tokenizer.eos_token_id
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 133 |
+
print(f"📝 Test response: {response}")
|
| 134 |
+
|
| 135 |
+
return True
|
| 136 |
+
|
| 137 |
+
except ImportError as e:
|
| 138 |
+
print(f"❌ Missing required library: {e}")
|
| 139 |
+
print("💡 Install with: pip install transformers datasets torch")
|
| 140 |
+
return False
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"❌ Training failed: {e}")
|
| 143 |
+
return False
|
| 144 |
+
|
| 145 |
+
def main():
|
| 146 |
+
"""Main function"""
|
| 147 |
+
print("🤖 Textilindo AI - Quick Training on Hugging Face Spaces")
|
| 148 |
+
print("=" * 70)
|
| 149 |
+
|
| 150 |
+
# Check if we're on HF Spaces
|
| 151 |
+
if os.getenv('SPACE_ID'):
|
| 152 |
+
print("✅ Running on Hugging Face Spaces")
|
| 153 |
+
else:
|
| 154 |
+
print("⚠️ Not running on Hugging Face Spaces")
|
| 155 |
+
|
| 156 |
+
# Check available data
|
| 157 |
+
data_dir = Path("data")
|
| 158 |
+
if data_dir.exists():
|
| 159 |
+
jsonl_files = list(data_dir.glob("*.jsonl"))
|
| 160 |
+
print(f"📊 Found {len(jsonl_files)} training data files")
|
| 161 |
+
for file in jsonl_files:
|
| 162 |
+
print(f" - {file.name}")
|
| 163 |
+
else:
|
| 164 |
+
print("❌ No data directory found")
|
| 165 |
+
return 1
|
| 166 |
+
|
| 167 |
+
# Run quick training
|
| 168 |
+
if quick_training():
|
| 169 |
+
print("\n🎉 Quick training completed successfully!")
|
| 170 |
+
print("📋 Next steps:")
|
| 171 |
+
print("1. Check the trained model in ./models/quick-trained/")
|
| 172 |
+
print("2. Test the model with your chat interface")
|
| 173 |
+
print("3. For full training, use external resources")
|
| 174 |
+
return 0
|
| 175 |
+
else:
|
| 176 |
+
print("\n❌ Quick training failed")
|
| 177 |
+
return 1
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
import sys
|
| 181 |
+
sys.exit(main())
|
training_api.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Textilindo AI Training API
|
| 4 |
+
Pure API-based training system for Hugging Face Spaces
|
| 5 |
+
Uses free GPU tier and your training data/configs
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import json
|
| 10 |
+
import yaml
|
| 11 |
+
import logging
|
| 12 |
+
import torch
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from typing import Dict, Any, Optional
|
| 16 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 17 |
+
from pydantic import BaseModel
|
| 18 |
+
import uvicorn
|
| 19 |
+
|
| 20 |
+
# Setup logging
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
# Training API
|
| 25 |
+
training_app = FastAPI(title="Textilindo AI Training API")
|
| 26 |
+
|
| 27 |
+
# Training status storage
|
| 28 |
+
training_status = {
|
| 29 |
+
"is_training": False,
|
| 30 |
+
"progress": 0,
|
| 31 |
+
"status": "idle",
|
| 32 |
+
"current_step": 0,
|
| 33 |
+
"total_steps": 0,
|
| 34 |
+
"loss": 0.0,
|
| 35 |
+
"start_time": None,
|
| 36 |
+
"end_time": None,
|
| 37 |
+
"error": None
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
class TrainingRequest(BaseModel):
|
| 41 |
+
model_name: str = "distilgpt2" # Start with small model
|
| 42 |
+
dataset_path: str = "data/lora_dataset_20250829_113330.jsonl"
|
| 43 |
+
config_path: str = "configs/training_config.yaml"
|
| 44 |
+
max_samples: int = 10 # Limit for free tier
|
| 45 |
+
epochs: int = 1
|
| 46 |
+
batch_size: int = 1
|
| 47 |
+
learning_rate: float = 5e-5
|
| 48 |
+
|
| 49 |
+
class TrainingResponse(BaseModel):
|
| 50 |
+
success: bool
|
| 51 |
+
message: str
|
| 52 |
+
training_id: str
|
| 53 |
+
status: str
|
| 54 |
+
|
| 55 |
+
def load_training_config(config_path: str) -> Dict[str, Any]:
|
| 56 |
+
"""Load training configuration"""
|
| 57 |
+
try:
|
| 58 |
+
with open(config_path, 'r') as f:
|
| 59 |
+
config = yaml.safe_load(f)
|
| 60 |
+
return config
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.error(f"Error loading config: {e}")
|
| 63 |
+
return {}
|
| 64 |
+
|
| 65 |
+
def load_training_data(dataset_path: str, max_samples: int = 10) -> list:
|
| 66 |
+
"""Load training data from JSONL file"""
|
| 67 |
+
data = []
|
| 68 |
+
try:
|
| 69 |
+
with open(dataset_path, 'r', encoding='utf-8') as f:
|
| 70 |
+
for i, line in enumerate(f):
|
| 71 |
+
if i >= max_samples:
|
| 72 |
+
break
|
| 73 |
+
if line.strip():
|
| 74 |
+
item = json.loads(line)
|
| 75 |
+
# Create training text
|
| 76 |
+
instruction = item.get('instruction', '')
|
| 77 |
+
output = item.get('output', '')
|
| 78 |
+
text = f"Question: {instruction} Answer: {output}"
|
| 79 |
+
data.append({"text": text})
|
| 80 |
+
logger.info(f"Loaded {len(data)} training samples")
|
| 81 |
+
return data
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Error loading data: {e}")
|
| 84 |
+
return []
|
| 85 |
+
|
| 86 |
+
def check_gpu_availability() -> bool:
|
| 87 |
+
"""Check if GPU is available"""
|
| 88 |
+
try:
|
| 89 |
+
if torch.cuda.is_available():
|
| 90 |
+
gpu_count = torch.cuda.device_count()
|
| 91 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 92 |
+
logger.info(f"GPU available: {gpu_name} (Count: {gpu_count})")
|
| 93 |
+
return True
|
| 94 |
+
else:
|
| 95 |
+
logger.info("No GPU available, using CPU")
|
| 96 |
+
return False
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logger.error(f"Error checking GPU: {e}")
|
| 99 |
+
return False
|
| 100 |
+
|
| 101 |
+
def train_model_async(
|
| 102 |
+
model_name: str,
|
| 103 |
+
dataset_path: str,
|
| 104 |
+
config_path: str,
|
| 105 |
+
max_samples: int,
|
| 106 |
+
epochs: int,
|
| 107 |
+
batch_size: int,
|
| 108 |
+
learning_rate: float
|
| 109 |
+
):
|
| 110 |
+
"""Async training function"""
|
| 111 |
+
global training_status
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
training_status.update({
|
| 115 |
+
"is_training": True,
|
| 116 |
+
"status": "starting",
|
| 117 |
+
"progress": 0,
|
| 118 |
+
"start_time": datetime.now().isoformat(),
|
| 119 |
+
"error": None
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
logger.info("🚀 Starting training...")
|
| 123 |
+
|
| 124 |
+
# Import training libraries
|
| 125 |
+
from transformers import (
|
| 126 |
+
AutoTokenizer,
|
| 127 |
+
AutoModelForCausalLM,
|
| 128 |
+
TrainingArguments,
|
| 129 |
+
Trainer,
|
| 130 |
+
DataCollatorForLanguageModeling
|
| 131 |
+
)
|
| 132 |
+
from datasets import Dataset
|
| 133 |
+
|
| 134 |
+
# Check GPU
|
| 135 |
+
gpu_available = check_gpu_availability()
|
| 136 |
+
|
| 137 |
+
# Load model and tokenizer
|
| 138 |
+
logger.info(f"📥 Loading model: {model_name}")
|
| 139 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 140 |
+
if tokenizer.pad_token is None:
|
| 141 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 142 |
+
|
| 143 |
+
# Load model with GPU if available
|
| 144 |
+
if gpu_available:
|
| 145 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 146 |
+
model_name,
|
| 147 |
+
torch_dtype=torch.float16,
|
| 148 |
+
device_map="auto"
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 152 |
+
|
| 153 |
+
logger.info("✅ Model loaded successfully")
|
| 154 |
+
|
| 155 |
+
# Load training data
|
| 156 |
+
training_data = load_training_data(dataset_path, max_samples)
|
| 157 |
+
if not training_data:
|
| 158 |
+
raise Exception("No training data loaded")
|
| 159 |
+
|
| 160 |
+
# Convert to dataset
|
| 161 |
+
dataset = Dataset.from_list(training_data)
|
| 162 |
+
|
| 163 |
+
def tokenize_function(examples):
|
| 164 |
+
return tokenizer(
|
| 165 |
+
examples["text"],
|
| 166 |
+
truncation=True,
|
| 167 |
+
padding=True,
|
| 168 |
+
max_length=256,
|
| 169 |
+
return_tensors="pt"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
| 173 |
+
|
| 174 |
+
# Training arguments
|
| 175 |
+
training_args = TrainingArguments(
|
| 176 |
+
output_dir="./models/textilindo-trained",
|
| 177 |
+
num_train_epochs=epochs,
|
| 178 |
+
per_device_train_batch_size=batch_size,
|
| 179 |
+
gradient_accumulation_steps=2,
|
| 180 |
+
learning_rate=learning_rate,
|
| 181 |
+
warmup_steps=5,
|
| 182 |
+
save_steps=10,
|
| 183 |
+
logging_steps=1,
|
| 184 |
+
save_total_limit=1,
|
| 185 |
+
prediction_loss_only=True,
|
| 186 |
+
remove_unused_columns=False,
|
| 187 |
+
fp16=gpu_available, # Use fp16 only if GPU available
|
| 188 |
+
dataloader_pin_memory=gpu_available,
|
| 189 |
+
report_to=None,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Data collator
|
| 193 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 194 |
+
tokenizer=tokenizer,
|
| 195 |
+
mlm=False,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Create trainer
|
| 199 |
+
trainer = Trainer(
|
| 200 |
+
model=model,
|
| 201 |
+
args=training_args,
|
| 202 |
+
train_dataset=tokenized_dataset,
|
| 203 |
+
data_collator=data_collator,
|
| 204 |
+
tokenizer=tokenizer,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Custom callback for progress tracking
|
| 208 |
+
class ProgressCallback:
|
| 209 |
+
def __init__(self):
|
| 210 |
+
self.step = 0
|
| 211 |
+
self.total_steps = len(tokenized_dataset) * epochs
|
| 212 |
+
|
| 213 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
| 214 |
+
global training_status
|
| 215 |
+
if logs:
|
| 216 |
+
training_status.update({
|
| 217 |
+
"current_step": state.global_step,
|
| 218 |
+
"total_steps": self.total_steps,
|
| 219 |
+
"progress": min(100, (state.global_step / self.total_steps) * 100),
|
| 220 |
+
"loss": logs.get('loss', 0.0),
|
| 221 |
+
"status": "training"
|
| 222 |
+
})
|
| 223 |
+
|
| 224 |
+
# Add callback
|
| 225 |
+
trainer.add_callback(ProgressCallback())
|
| 226 |
+
|
| 227 |
+
# Start training
|
| 228 |
+
training_status["status"] = "training"
|
| 229 |
+
trainer.train()
|
| 230 |
+
|
| 231 |
+
# Save model
|
| 232 |
+
model.save_pretrained("./models/textilindo-trained")
|
| 233 |
+
tokenizer.save_pretrained("./models/textilindo-trained")
|
| 234 |
+
|
| 235 |
+
# Update status
|
| 236 |
+
training_status.update({
|
| 237 |
+
"is_training": False,
|
| 238 |
+
"status": "completed",
|
| 239 |
+
"progress": 100,
|
| 240 |
+
"end_time": datetime.now().isoformat()
|
| 241 |
+
})
|
| 242 |
+
|
| 243 |
+
logger.info("✅ Training completed successfully!")
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.error(f"Training failed: {e}")
|
| 247 |
+
training_status.update({
|
| 248 |
+
"is_training": False,
|
| 249 |
+
"status": "failed",
|
| 250 |
+
"error": str(e),
|
| 251 |
+
"end_time": datetime.now().isoformat()
|
| 252 |
+
})
|
| 253 |
+
|
| 254 |
+
# API Endpoints
|
| 255 |
+
|
| 256 |
+
@training_app.post("/train/start", response_model=TrainingResponse)
|
| 257 |
+
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
|
| 258 |
+
"""Start training process"""
|
| 259 |
+
global training_status
|
| 260 |
+
|
| 261 |
+
if training_status["is_training"]:
|
| 262 |
+
raise HTTPException(status_code=400, detail="Training already in progress")
|
| 263 |
+
|
| 264 |
+
# Validate inputs
|
| 265 |
+
if not Path(request.dataset_path).exists():
|
| 266 |
+
raise HTTPException(status_code=404, detail=f"Dataset not found: {request.dataset_path}")
|
| 267 |
+
|
| 268 |
+
if not Path(request.config_path).exists():
|
| 269 |
+
raise HTTPException(status_code=404, detail=f"Config not found: {request.config_path}")
|
| 270 |
+
|
| 271 |
+
# Start training in background
|
| 272 |
+
training_id = f"train_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 273 |
+
|
| 274 |
+
background_tasks.add_task(
|
| 275 |
+
train_model_async,
|
| 276 |
+
request.model_name,
|
| 277 |
+
request.dataset_path,
|
| 278 |
+
request.config_path,
|
| 279 |
+
request.max_samples,
|
| 280 |
+
request.epochs,
|
| 281 |
+
request.batch_size,
|
| 282 |
+
request.learning_rate
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
return TrainingResponse(
|
| 286 |
+
success=True,
|
| 287 |
+
message="Training started successfully",
|
| 288 |
+
training_id=training_id,
|
| 289 |
+
status="started"
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
@training_app.get("/train/status")
|
| 293 |
+
async def get_training_status():
|
| 294 |
+
"""Get current training status"""
|
| 295 |
+
return training_status
|
| 296 |
+
|
| 297 |
+
@training_app.get("/train/data")
|
| 298 |
+
async def get_training_data_info():
|
| 299 |
+
"""Get information about available training data"""
|
| 300 |
+
data_dir = Path("data")
|
| 301 |
+
if not data_dir.exists():
|
| 302 |
+
return {"files": [], "count": 0}
|
| 303 |
+
|
| 304 |
+
jsonl_files = list(data_dir.glob("*.jsonl"))
|
| 305 |
+
files_info = []
|
| 306 |
+
|
| 307 |
+
for file in jsonl_files:
|
| 308 |
+
try:
|
| 309 |
+
with open(file, 'r', encoding='utf-8') as f:
|
| 310 |
+
lines = f.readlines()
|
| 311 |
+
files_info.append({
|
| 312 |
+
"name": file.name,
|
| 313 |
+
"size": file.stat().st_size,
|
| 314 |
+
"lines": len(lines)
|
| 315 |
+
})
|
| 316 |
+
except Exception as e:
|
| 317 |
+
files_info.append({
|
| 318 |
+
"name": file.name,
|
| 319 |
+
"error": str(e)
|
| 320 |
+
})
|
| 321 |
+
|
| 322 |
+
return {
|
| 323 |
+
"files": files_info,
|
| 324 |
+
"count": len(jsonl_files)
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
@training_app.get("/train/config")
|
| 328 |
+
async def get_training_config():
|
| 329 |
+
"""Get current training configuration"""
|
| 330 |
+
config_path = "configs/training_config.yaml"
|
| 331 |
+
if not Path(config_path).exists():
|
| 332 |
+
return {"error": "Config file not found"}
|
| 333 |
+
|
| 334 |
+
try:
|
| 335 |
+
config = load_training_config(config_path)
|
| 336 |
+
return config
|
| 337 |
+
except Exception as e:
|
| 338 |
+
return {"error": str(e)}
|
| 339 |
+
|
| 340 |
+
@training_app.get("/train/models")
|
| 341 |
+
async def get_available_models():
|
| 342 |
+
"""Get list of available models"""
|
| 343 |
+
return {
|
| 344 |
+
"models": [
|
| 345 |
+
{
|
| 346 |
+
"name": "distilgpt2",
|
| 347 |
+
"size": "82M",
|
| 348 |
+
"description": "Small, fast model for quick training"
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"name": "gpt2",
|
| 352 |
+
"size": "124M",
|
| 353 |
+
"description": "Original GPT-2 model"
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"name": "microsoft/DialoGPT-small",
|
| 357 |
+
"size": "117M",
|
| 358 |
+
"description": "Conversational model"
|
| 359 |
+
}
|
| 360 |
+
]
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
@training_app.get("/train/gpu")
|
| 364 |
+
async def get_gpu_info():
|
| 365 |
+
"""Get GPU information"""
|
| 366 |
+
try:
|
| 367 |
+
gpu_available = torch.cuda.is_available()
|
| 368 |
+
if gpu_available:
|
| 369 |
+
gpu_count = torch.cuda.device_count()
|
| 370 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 371 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 372 |
+
return {
|
| 373 |
+
"available": True,
|
| 374 |
+
"count": gpu_count,
|
| 375 |
+
"name": gpu_name,
|
| 376 |
+
"memory_gb": round(gpu_memory, 2)
|
| 377 |
+
}
|
| 378 |
+
else:
|
| 379 |
+
return {"available": False}
|
| 380 |
+
except Exception as e:
|
| 381 |
+
return {"error": str(e)}
|
| 382 |
+
|
| 383 |
+
@training_app.post("/train/stop")
|
| 384 |
+
async def stop_training():
|
| 385 |
+
"""Stop current training"""
|
| 386 |
+
global training_status
|
| 387 |
+
|
| 388 |
+
if not training_status["is_training"]:
|
| 389 |
+
return {"message": "No training in progress"}
|
| 390 |
+
|
| 391 |
+
training_status.update({
|
| 392 |
+
"is_training": False,
|
| 393 |
+
"status": "stopped",
|
| 394 |
+
"end_time": datetime.now().isoformat()
|
| 395 |
+
})
|
| 396 |
+
|
| 397 |
+
return {"message": "Training stopped"}
|
| 398 |
+
|
| 399 |
+
@training_app.get("/train/test")
|
| 400 |
+
async def test_trained_model():
|
| 401 |
+
"""Test the trained model"""
|
| 402 |
+
model_path = "./models/textilindo-trained"
|
| 403 |
+
if not Path(model_path).exists():
|
| 404 |
+
return {"error": "No trained model found"}
|
| 405 |
+
|
| 406 |
+
try:
|
| 407 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 408 |
+
|
| 409 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 410 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 411 |
+
|
| 412 |
+
# Test prompt
|
| 413 |
+
test_prompt = "Question: dimana lokasi textilindo? Answer:"
|
| 414 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 415 |
+
|
| 416 |
+
with torch.no_grad():
|
| 417 |
+
outputs = model.generate(
|
| 418 |
+
**inputs,
|
| 419 |
+
max_length=inputs.input_ids.shape[1] + 30,
|
| 420 |
+
temperature=0.7,
|
| 421 |
+
do_sample=True,
|
| 422 |
+
pad_token_id=tokenizer.eos_token_id
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 426 |
+
|
| 427 |
+
return {
|
| 428 |
+
"success": True,
|
| 429 |
+
"test_prompt": test_prompt,
|
| 430 |
+
"response": response,
|
| 431 |
+
"model_path": model_path
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
except Exception as e:
|
| 435 |
+
return {"error": str(e)}
|
| 436 |
+
|
| 437 |
+
if __name__ == "__main__":
|
| 438 |
+
uvicorn.run(training_app, host="0.0.0.0", port=7861)
|