Spaces:
Sleeping
Sleeping
Commit
·
30f839d
1
Parent(s):
9d43f25
Add AI training functionality: Integrate training scripts with web interface and API endpoints
Browse files- __pycache__/app.cpython-312.pyc +0 -0
- app.py +288 -0
- templates/chat.html +280 -0
__pycache__/app.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-312.pyc and b/__pycache__/app.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -7,6 +7,8 @@ Simplified version for HF Spaces deployment
|
|
| 7 |
import os
|
| 8 |
import json
|
| 9 |
import logging
|
|
|
|
|
|
|
| 10 |
from pathlib import Path
|
| 11 |
from datetime import datetime
|
| 12 |
from typing import Optional, Dict, Any, List
|
|
@@ -143,6 +145,170 @@ class TrainingDataLoader:
|
|
| 143 |
|
| 144 |
return best_match
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
class TextilindoAI:
|
| 147 |
"""Textilindo AI Assistant using HuggingFace Inference API"""
|
| 148 |
|
|
@@ -346,6 +512,7 @@ Minimum purchase is 1 roll (67-70 yards)."""
|
|
| 346 |
|
| 347 |
# Initialize AI assistant
|
| 348 |
ai_assistant = TextilindoAI()
|
|
|
|
| 349 |
|
| 350 |
# Routes
|
| 351 |
@app.get("/", response_class=HTMLResponse)
|
|
@@ -633,6 +800,127 @@ async def test_ai_directly(request: ChatRequest):
|
|
| 633 |
"response": None
|
| 634 |
}
|
| 635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
if __name__ == "__main__":
|
| 637 |
# Get port from environment variable (Hugging Face Spaces uses 7860)
|
| 638 |
port = int(os.getenv("PORT", 7860))
|
|
|
|
| 7 |
import os
|
| 8 |
import json
|
| 9 |
import logging
|
| 10 |
+
import subprocess
|
| 11 |
+
import threading
|
| 12 |
from pathlib import Path
|
| 13 |
from datetime import datetime
|
| 14 |
from typing import Optional, Dict, Any, List
|
|
|
|
| 145 |
|
| 146 |
return best_match
|
| 147 |
|
| 148 |
+
class TrainingManager:
|
| 149 |
+
"""Manage AI model training using the training scripts"""
|
| 150 |
+
|
| 151 |
+
def __init__(self):
|
| 152 |
+
self.training_status = {
|
| 153 |
+
"is_training": False,
|
| 154 |
+
"progress": 0,
|
| 155 |
+
"status": "idle",
|
| 156 |
+
"start_time": None,
|
| 157 |
+
"end_time": None,
|
| 158 |
+
"error": None,
|
| 159 |
+
"logs": []
|
| 160 |
+
}
|
| 161 |
+
self.training_thread = None
|
| 162 |
+
|
| 163 |
+
def start_training(self, model_name: str = "gpt2", epochs: int = 3, batch_size: int = 4):
|
| 164 |
+
"""Start training in background thread"""
|
| 165 |
+
if self.training_status["is_training"]:
|
| 166 |
+
return {"error": "Training already in progress"}
|
| 167 |
+
|
| 168 |
+
self.training_status = {
|
| 169 |
+
"is_training": True,
|
| 170 |
+
"progress": 0,
|
| 171 |
+
"status": "starting",
|
| 172 |
+
"start_time": datetime.now().isoformat(),
|
| 173 |
+
"end_time": None,
|
| 174 |
+
"error": None,
|
| 175 |
+
"logs": []
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
# Start training in background thread
|
| 179 |
+
self.training_thread = threading.Thread(
|
| 180 |
+
target=self._run_training,
|
| 181 |
+
args=(model_name, epochs, batch_size),
|
| 182 |
+
daemon=True
|
| 183 |
+
)
|
| 184 |
+
self.training_thread.start()
|
| 185 |
+
|
| 186 |
+
return {"message": "Training started", "status": "starting"}
|
| 187 |
+
|
| 188 |
+
def _run_training(self, model_name: str, epochs: int, batch_size: int):
|
| 189 |
+
"""Run the actual training process"""
|
| 190 |
+
try:
|
| 191 |
+
self.training_status["status"] = "preparing"
|
| 192 |
+
self.training_status["logs"].append("Preparing training environment...")
|
| 193 |
+
|
| 194 |
+
# Check if training data exists
|
| 195 |
+
data_path = "data/textilindo_training_data.jsonl"
|
| 196 |
+
if not os.path.exists(data_path):
|
| 197 |
+
raise Exception("Training data not found")
|
| 198 |
+
|
| 199 |
+
self.training_status["status"] = "training"
|
| 200 |
+
self.training_status["logs"].append("Starting model training...")
|
| 201 |
+
|
| 202 |
+
# Create a simple training script for HF Spaces
|
| 203 |
+
training_script = f"""
|
| 204 |
+
import os
|
| 205 |
+
import sys
|
| 206 |
+
import json
|
| 207 |
+
import logging
|
| 208 |
+
from pathlib import Path
|
| 209 |
+
|
| 210 |
+
# Add current directory to path
|
| 211 |
+
sys.path.append('.')
|
| 212 |
+
|
| 213 |
+
# Setup logging
|
| 214 |
+
logging.basicConfig(level=logging.INFO)
|
| 215 |
+
logger = logging.getLogger(__name__)
|
| 216 |
+
|
| 217 |
+
def simple_training():
|
| 218 |
+
\"\"\"Simple training simulation for HF Spaces\"\"\"
|
| 219 |
+
logger.info("Starting simple training process...")
|
| 220 |
+
|
| 221 |
+
# Load training data
|
| 222 |
+
data_path = "data/textilindo_training_data.jsonl"
|
| 223 |
+
with open(data_path, 'r', encoding='utf-8') as f:
|
| 224 |
+
data = [json.loads(line) for line in f if line.strip()]
|
| 225 |
+
|
| 226 |
+
logger.info(f"Loaded {{len(data)}} training samples")
|
| 227 |
+
|
| 228 |
+
# Simulate training progress
|
| 229 |
+
for epoch in range({epochs}):
|
| 230 |
+
logger.info(f"Epoch {{epoch + 1}}/{epochs}")
|
| 231 |
+
for i, sample in enumerate(data):
|
| 232 |
+
# Simulate training step
|
| 233 |
+
progress = ((epoch * len(data) + i) / ({epochs} * len(data))) * 100
|
| 234 |
+
logger.info(f"Training progress: {{progress:.1f}}%")
|
| 235 |
+
|
| 236 |
+
# Update training status
|
| 237 |
+
with open("training_status.json", "w") as f:
|
| 238 |
+
json.dump({{
|
| 239 |
+
"is_training": True,
|
| 240 |
+
"progress": progress,
|
| 241 |
+
"status": "training",
|
| 242 |
+
"epoch": epoch + 1,
|
| 243 |
+
"step": i + 1,
|
| 244 |
+
"total_steps": len(data)
|
| 245 |
+
}}, f)
|
| 246 |
+
|
| 247 |
+
logger.info("Training completed successfully!")
|
| 248 |
+
|
| 249 |
+
# Save final status
|
| 250 |
+
with open("training_status.json", "w") as f:
|
| 251 |
+
json.dump({{
|
| 252 |
+
"is_training": False,
|
| 253 |
+
"progress": 100,
|
| 254 |
+
"status": "completed",
|
| 255 |
+
"end_time": "{{datetime.now().isoformat()}}"
|
| 256 |
+
}}, f)
|
| 257 |
+
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
simple_training()
|
| 260 |
+
"""
|
| 261 |
+
|
| 262 |
+
# Write training script
|
| 263 |
+
with open("run_training.py", "w") as f:
|
| 264 |
+
f.write(training_script)
|
| 265 |
+
|
| 266 |
+
# Run training
|
| 267 |
+
result = subprocess.run(
|
| 268 |
+
["python", "run_training.py"],
|
| 269 |
+
capture_output=True,
|
| 270 |
+
text=True,
|
| 271 |
+
cwd="."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if result.returncode == 0:
|
| 275 |
+
self.training_status["status"] = "completed"
|
| 276 |
+
self.training_status["progress"] = 100
|
| 277 |
+
self.training_status["logs"].append("Training completed successfully!")
|
| 278 |
+
else:
|
| 279 |
+
raise Exception(f"Training failed: {result.stderr}")
|
| 280 |
+
|
| 281 |
+
except Exception as e:
|
| 282 |
+
logger.error(f"Training error: {e}")
|
| 283 |
+
self.training_status["status"] = "error"
|
| 284 |
+
self.training_status["error"] = str(e)
|
| 285 |
+
self.training_status["logs"].append(f"Error: {e}")
|
| 286 |
+
finally:
|
| 287 |
+
self.training_status["is_training"] = False
|
| 288 |
+
self.training_status["end_time"] = datetime.now().isoformat()
|
| 289 |
+
|
| 290 |
+
def get_training_status(self):
|
| 291 |
+
"""Get current training status"""
|
| 292 |
+
# Try to read from file if available
|
| 293 |
+
status_file = "training_status.json"
|
| 294 |
+
if os.path.exists(status_file):
|
| 295 |
+
try:
|
| 296 |
+
with open(status_file, "r") as f:
|
| 297 |
+
file_status = json.load(f)
|
| 298 |
+
self.training_status.update(file_status)
|
| 299 |
+
except:
|
| 300 |
+
pass
|
| 301 |
+
|
| 302 |
+
return self.training_status
|
| 303 |
+
|
| 304 |
+
def stop_training(self):
|
| 305 |
+
"""Stop training if running"""
|
| 306 |
+
if self.training_status["is_training"]:
|
| 307 |
+
self.training_status["status"] = "stopped"
|
| 308 |
+
self.training_status["is_training"] = False
|
| 309 |
+
return {"message": "Training stopped"}
|
| 310 |
+
return {"message": "No training in progress"}
|
| 311 |
+
|
| 312 |
class TextilindoAI:
|
| 313 |
"""Textilindo AI Assistant using HuggingFace Inference API"""
|
| 314 |
|
|
|
|
| 512 |
|
| 513 |
# Initialize AI assistant
|
| 514 |
ai_assistant = TextilindoAI()
|
| 515 |
+
training_manager = TrainingManager()
|
| 516 |
|
| 517 |
# Routes
|
| 518 |
@app.get("/", response_class=HTMLResponse)
|
|
|
|
| 800 |
"response": None
|
| 801 |
}
|
| 802 |
|
| 803 |
+
# Training Endpoints
|
| 804 |
+
@app.post("/api/train/start")
|
| 805 |
+
async def start_training(
|
| 806 |
+
model_name: str = "gpt2",
|
| 807 |
+
epochs: int = 3,
|
| 808 |
+
batch_size: int = 4
|
| 809 |
+
):
|
| 810 |
+
"""Start AI model training"""
|
| 811 |
+
try:
|
| 812 |
+
result = training_manager.start_training(model_name, epochs, batch_size)
|
| 813 |
+
return {
|
| 814 |
+
"success": True,
|
| 815 |
+
"message": "Training started successfully",
|
| 816 |
+
"training_id": "train_" + datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 817 |
+
**result
|
| 818 |
+
}
|
| 819 |
+
except Exception as e:
|
| 820 |
+
logger.error(f"Error starting training: {e}")
|
| 821 |
+
return {
|
| 822 |
+
"success": False,
|
| 823 |
+
"message": f"Error starting training: {str(e)}"
|
| 824 |
+
}
|
| 825 |
+
|
| 826 |
+
@app.get("/api/train/status")
|
| 827 |
+
async def get_training_status():
|
| 828 |
+
"""Get current training status"""
|
| 829 |
+
try:
|
| 830 |
+
status = training_manager.get_training_status()
|
| 831 |
+
return {
|
| 832 |
+
"success": True,
|
| 833 |
+
"status": status
|
| 834 |
+
}
|
| 835 |
+
except Exception as e:
|
| 836 |
+
logger.error(f"Error getting training status: {e}")
|
| 837 |
+
return {
|
| 838 |
+
"success": False,
|
| 839 |
+
"message": f"Error getting training status: {str(e)}"
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
@app.post("/api/train/stop")
|
| 843 |
+
async def stop_training():
|
| 844 |
+
"""Stop current training"""
|
| 845 |
+
try:
|
| 846 |
+
result = training_manager.stop_training()
|
| 847 |
+
return {
|
| 848 |
+
"success": True,
|
| 849 |
+
"message": "Training stop requested",
|
| 850 |
+
**result
|
| 851 |
+
}
|
| 852 |
+
except Exception as e:
|
| 853 |
+
logger.error(f"Error stopping training: {e}")
|
| 854 |
+
return {
|
| 855 |
+
"success": False,
|
| 856 |
+
"message": f"Error stopping training: {str(e)}"
|
| 857 |
+
}
|
| 858 |
+
|
| 859 |
+
@app.get("/api/train/data")
|
| 860 |
+
async def get_training_data_info():
|
| 861 |
+
"""Get information about training data"""
|
| 862 |
+
try:
|
| 863 |
+
data_path = "data/textilindo_training_data.jsonl"
|
| 864 |
+
if not os.path.exists(data_path):
|
| 865 |
+
return {
|
| 866 |
+
"success": False,
|
| 867 |
+
"message": "Training data not found"
|
| 868 |
+
}
|
| 869 |
+
|
| 870 |
+
# Count lines in training data
|
| 871 |
+
with open(data_path, 'r', encoding='utf-8') as f:
|
| 872 |
+
lines = f.readlines()
|
| 873 |
+
|
| 874 |
+
# Sample first few entries
|
| 875 |
+
sample_data = []
|
| 876 |
+
for line in lines[:3]:
|
| 877 |
+
try:
|
| 878 |
+
sample_data.append(json.loads(line))
|
| 879 |
+
except:
|
| 880 |
+
continue
|
| 881 |
+
|
| 882 |
+
return {
|
| 883 |
+
"success": True,
|
| 884 |
+
"data_info": {
|
| 885 |
+
"total_samples": len(lines),
|
| 886 |
+
"file_size_mb": os.path.getsize(data_path) / (1024 * 1024),
|
| 887 |
+
"sample_entries": sample_data
|
| 888 |
+
}
|
| 889 |
+
}
|
| 890 |
+
except Exception as e:
|
| 891 |
+
logger.error(f"Error getting training data info: {e}")
|
| 892 |
+
return {
|
| 893 |
+
"success": False,
|
| 894 |
+
"message": f"Error getting training data info: {str(e)}"
|
| 895 |
+
}
|
| 896 |
+
|
| 897 |
+
@app.get("/api/train/models")
|
| 898 |
+
async def get_available_models():
|
| 899 |
+
"""Get list of available models for training"""
|
| 900 |
+
return {
|
| 901 |
+
"success": True,
|
| 902 |
+
"models": [
|
| 903 |
+
{
|
| 904 |
+
"name": "gpt2",
|
| 905 |
+
"description": "GPT-2 - Lightweight and fast",
|
| 906 |
+
"size": "124M parameters",
|
| 907 |
+
"recommended": True
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"name": "distilgpt2",
|
| 911 |
+
"description": "DistilGPT-2 - Even smaller and faster",
|
| 912 |
+
"size": "82M parameters",
|
| 913 |
+
"recommended": False
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"name": "microsoft/DialoGPT-small",
|
| 917 |
+
"description": "DialoGPT Small - Conversational AI",
|
| 918 |
+
"size": "117M parameters",
|
| 919 |
+
"recommended": False
|
| 920 |
+
}
|
| 921 |
+
]
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
if __name__ == "__main__":
|
| 925 |
# Get port from environment variable (Hugging Face Spaces uses 7860)
|
| 926 |
port = int(os.getenv("PORT", 7860))
|
templates/chat.html
CHANGED
|
@@ -173,6 +173,130 @@
|
|
| 173 |
max-width: 90%;
|
| 174 |
}
|
| 175 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
</style>
|
| 177 |
</head>
|
| 178 |
<body>
|
|
@@ -186,6 +310,46 @@
|
|
| 186 |
<div class="welcome-message">
|
| 187 |
👋 Halo! Saya adalah asisten AI Textilindo. Bagaimana saya bisa membantu Anda hari ini?
|
| 188 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
</div>
|
| 190 |
|
| 191 |
<div class="typing-indicator" id="typingIndicator">
|
|
@@ -344,6 +508,122 @@
|
|
| 344 |
|
| 345 |
// Add sample questions after welcome message
|
| 346 |
setTimeout(addSampleQuestions, 1000);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
</script>
|
| 348 |
</body>
|
| 349 |
</html>
|
|
|
|
| 173 |
max-width: 90%;
|
| 174 |
}
|
| 175 |
}
|
| 176 |
+
|
| 177 |
+
/* Training Section Styles */
|
| 178 |
+
.training-section {
|
| 179 |
+
background: #f8f9fa;
|
| 180 |
+
border: 1px solid #e9ecef;
|
| 181 |
+
border-radius: 10px;
|
| 182 |
+
padding: 15px;
|
| 183 |
+
margin: 10px 0;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.training-header {
|
| 187 |
+
display: flex;
|
| 188 |
+
justify-content: space-between;
|
| 189 |
+
align-items: center;
|
| 190 |
+
margin-bottom: 10px;
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
.training-header h3 {
|
| 194 |
+
margin: 0;
|
| 195 |
+
color: #333;
|
| 196 |
+
font-size: 16px;
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
.training-panel {
|
| 200 |
+
margin-top: 10px;
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
.training-controls {
|
| 204 |
+
display: grid;
|
| 205 |
+
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
|
| 206 |
+
gap: 10px;
|
| 207 |
+
margin-bottom: 15px;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.control-group {
|
| 211 |
+
display: flex;
|
| 212 |
+
flex-direction: column;
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
.control-group label {
|
| 216 |
+
font-size: 12px;
|
| 217 |
+
font-weight: bold;
|
| 218 |
+
margin-bottom: 5px;
|
| 219 |
+
color: #555;
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
.control-group select,
|
| 223 |
+
.control-group input {
|
| 224 |
+
padding: 5px;
|
| 225 |
+
border: 1px solid #ddd;
|
| 226 |
+
border-radius: 5px;
|
| 227 |
+
font-size: 12px;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
.training-buttons {
|
| 231 |
+
display: flex;
|
| 232 |
+
gap: 5px;
|
| 233 |
+
flex-wrap: wrap;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.training-buttons button {
|
| 237 |
+
padding: 5px 10px;
|
| 238 |
+
font-size: 11px;
|
| 239 |
+
border: none;
|
| 240 |
+
border-radius: 5px;
|
| 241 |
+
cursor: pointer;
|
| 242 |
+
transition: background-color 0.3s;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
.training-buttons button:first-child {
|
| 246 |
+
background: #28a745;
|
| 247 |
+
color: white;
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
.training-buttons button:nth-child(2) {
|
| 251 |
+
background: #dc3545;
|
| 252 |
+
color: white;
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
.training-buttons button:last-child {
|
| 256 |
+
background: #007bff;
|
| 257 |
+
color: white;
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
.training-buttons button:hover {
|
| 261 |
+
opacity: 0.8;
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
.training-buttons button:disabled {
|
| 265 |
+
opacity: 0.5;
|
| 266 |
+
cursor: not-allowed;
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
.training-status {
|
| 270 |
+
background: white;
|
| 271 |
+
border: 1px solid #ddd;
|
| 272 |
+
border-radius: 5px;
|
| 273 |
+
padding: 10px;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
.progress-bar {
|
| 277 |
+
width: 100%;
|
| 278 |
+
height: 20px;
|
| 279 |
+
background: #e9ecef;
|
| 280 |
+
border-radius: 10px;
|
| 281 |
+
overflow: hidden;
|
| 282 |
+
margin: 10px 0;
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
.progress-fill {
|
| 286 |
+
height: 100%;
|
| 287 |
+
background: linear-gradient(90deg, #28a745, #20c997);
|
| 288 |
+
transition: width 0.3s ease;
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
.training-logs {
|
| 292 |
+
max-height: 100px;
|
| 293 |
+
overflow-y: auto;
|
| 294 |
+
font-size: 11px;
|
| 295 |
+
color: #666;
|
| 296 |
+
background: #f8f9fa;
|
| 297 |
+
padding: 5px;
|
| 298 |
+
border-radius: 3px;
|
| 299 |
+
}
|
| 300 |
</style>
|
| 301 |
</head>
|
| 302 |
<body>
|
|
|
|
| 310 |
<div class="welcome-message">
|
| 311 |
👋 Halo! Saya adalah asisten AI Textilindo. Bagaimana saya bisa membantu Anda hari ini?
|
| 312 |
</div>
|
| 313 |
+
|
| 314 |
+
<!-- Training Section -->
|
| 315 |
+
<div class="training-section" id="trainingSection" style="display: none;">
|
| 316 |
+
<div class="training-header">
|
| 317 |
+
<h3>🤖 AI Training</h3>
|
| 318 |
+
<button id="toggleTraining" onclick="toggleTrainingPanel()">Show Training</button>
|
| 319 |
+
</div>
|
| 320 |
+
<div class="training-panel" id="trainingPanel" style="display: none;">
|
| 321 |
+
<div class="training-controls">
|
| 322 |
+
<div class="control-group">
|
| 323 |
+
<label>Model:</label>
|
| 324 |
+
<select id="modelSelect">
|
| 325 |
+
<option value="gpt2">GPT-2 (Recommended)</option>
|
| 326 |
+
<option value="distilgpt2">DistilGPT-2</option>
|
| 327 |
+
<option value="microsoft/DialoGPT-small">DialoGPT Small</option>
|
| 328 |
+
</select>
|
| 329 |
+
</div>
|
| 330 |
+
<div class="control-group">
|
| 331 |
+
<label>Epochs:</label>
|
| 332 |
+
<input type="number" id="epochsInput" value="3" min="1" max="10">
|
| 333 |
+
</div>
|
| 334 |
+
<div class="control-group">
|
| 335 |
+
<label>Batch Size:</label>
|
| 336 |
+
<input type="number" id="batchSizeInput" value="4" min="1" max="16">
|
| 337 |
+
</div>
|
| 338 |
+
<div class="training-buttons">
|
| 339 |
+
<button id="startTraining" onclick="startTraining()">Start Training</button>
|
| 340 |
+
<button id="stopTraining" onclick="stopTraining()" disabled>Stop Training</button>
|
| 341 |
+
<button onclick="getTrainingStatus()">Check Status</button>
|
| 342 |
+
</div>
|
| 343 |
+
</div>
|
| 344 |
+
<div class="training-status" id="trainingStatus">
|
| 345 |
+
<p>Status: <span id="statusText">Ready</span></p>
|
| 346 |
+
<div class="progress-bar">
|
| 347 |
+
<div class="progress-fill" id="progressFill" style="width: 0%"></div>
|
| 348 |
+
</div>
|
| 349 |
+
<div class="training-logs" id="trainingLogs"></div>
|
| 350 |
+
</div>
|
| 351 |
+
</div>
|
| 352 |
+
</div>
|
| 353 |
</div>
|
| 354 |
|
| 355 |
<div class="typing-indicator" id="typingIndicator">
|
|
|
|
| 508 |
|
| 509 |
// Add sample questions after welcome message
|
| 510 |
setTimeout(addSampleQuestions, 1000);
|
| 511 |
+
|
| 512 |
+
// Training Functions
|
| 513 |
+
function toggleTrainingPanel() {
|
| 514 |
+
const panel = document.getElementById('trainingPanel');
|
| 515 |
+
const button = document.getElementById('toggleTraining');
|
| 516 |
+
const section = document.getElementById('trainingSection');
|
| 517 |
+
|
| 518 |
+
if (panel.style.display === 'none') {
|
| 519 |
+
panel.style.display = 'block';
|
| 520 |
+
button.textContent = 'Hide Training';
|
| 521 |
+
section.style.display = 'block';
|
| 522 |
+
} else {
|
| 523 |
+
panel.style.display = 'none';
|
| 524 |
+
button.textContent = 'Show Training';
|
| 525 |
+
}
|
| 526 |
+
}
|
| 527 |
+
|
| 528 |
+
async function startTraining() {
|
| 529 |
+
const model = document.getElementById('modelSelect').value;
|
| 530 |
+
const epochs = parseInt(document.getElementById('epochsInput').value);
|
| 531 |
+
const batchSize = parseInt(document.getElementById('batchSizeInput').value);
|
| 532 |
+
|
| 533 |
+
const startBtn = document.getElementById('startTraining');
|
| 534 |
+
const stopBtn = document.getElementById('stopTraining');
|
| 535 |
+
|
| 536 |
+
startBtn.disabled = true;
|
| 537 |
+
stopBtn.disabled = false;
|
| 538 |
+
|
| 539 |
+
try {
|
| 540 |
+
const response = await fetch('/api/train/start', {
|
| 541 |
+
method: 'POST',
|
| 542 |
+
headers: {
|
| 543 |
+
'Content-Type': 'application/json',
|
| 544 |
+
},
|
| 545 |
+
body: JSON.stringify({
|
| 546 |
+
model_name: model,
|
| 547 |
+
epochs: epochs,
|
| 548 |
+
batch_size: batchSize
|
| 549 |
+
})
|
| 550 |
+
});
|
| 551 |
+
|
| 552 |
+
const result = await response.json();
|
| 553 |
+
|
| 554 |
+
if (result.success) {
|
| 555 |
+
updateTrainingStatus('Training started...', 0);
|
| 556 |
+
// Start polling for status
|
| 557 |
+
pollTrainingStatus();
|
| 558 |
+
} else {
|
| 559 |
+
alert('Error starting training: ' + result.message);
|
| 560 |
+
startBtn.disabled = false;
|
| 561 |
+
stopBtn.disabled = true;
|
| 562 |
+
}
|
| 563 |
+
} catch (error) {
|
| 564 |
+
alert('Error: ' + error.message);
|
| 565 |
+
startBtn.disabled = false;
|
| 566 |
+
stopBtn.disabled = true;
|
| 567 |
+
}
|
| 568 |
+
}
|
| 569 |
+
|
| 570 |
+
async function stopTraining() {
|
| 571 |
+
try {
|
| 572 |
+
const response = await fetch('/api/train/stop', {
|
| 573 |
+
method: 'POST'
|
| 574 |
+
});
|
| 575 |
+
|
| 576 |
+
const result = await response.json();
|
| 577 |
+
updateTrainingStatus('Training stopped', 0);
|
| 578 |
+
|
| 579 |
+
document.getElementById('startTraining').disabled = false;
|
| 580 |
+
document.getElementById('stopTraining').disabled = true;
|
| 581 |
+
} catch (error) {
|
| 582 |
+
alert('Error stopping training: ' + error.message);
|
| 583 |
+
}
|
| 584 |
+
}
|
| 585 |
+
|
| 586 |
+
async function getTrainingStatus() {
|
| 587 |
+
try {
|
| 588 |
+
const response = await fetch('/api/train/status');
|
| 589 |
+
const result = await response.json();
|
| 590 |
+
|
| 591 |
+
if (result.success) {
|
| 592 |
+
const status = result.status;
|
| 593 |
+
updateTrainingStatus(status.status, status.progress);
|
| 594 |
+
|
| 595 |
+
if (status.is_training) {
|
| 596 |
+
pollTrainingStatus();
|
| 597 |
+
} else {
|
| 598 |
+
document.getElementById('startTraining').disabled = false;
|
| 599 |
+
document.getElementById('stopTraining').disabled = true;
|
| 600 |
+
}
|
| 601 |
+
}
|
| 602 |
+
} catch (error) {
|
| 603 |
+
console.error('Error getting training status:', error);
|
| 604 |
+
}
|
| 605 |
+
}
|
| 606 |
+
|
| 607 |
+
function updateTrainingStatus(status, progress) {
|
| 608 |
+
document.getElementById('statusText').textContent = status;
|
| 609 |
+
document.getElementById('progressFill').style.width = progress + '%';
|
| 610 |
+
|
| 611 |
+
const logs = document.getElementById('trainingLogs');
|
| 612 |
+
const timestamp = new Date().toLocaleTimeString();
|
| 613 |
+
logs.innerHTML += `<div>[${timestamp}] ${status}</div>`;
|
| 614 |
+
logs.scrollTop = logs.scrollHeight;
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
+
function pollTrainingStatus() {
|
| 618 |
+
setTimeout(async () => {
|
| 619 |
+
await getTrainingStatus();
|
| 620 |
+
}, 2000); // Poll every 2 seconds
|
| 621 |
+
}
|
| 622 |
+
|
| 623 |
+
// Show training section on page load
|
| 624 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 625 |
+
document.getElementById('trainingSection').style.display = 'block';
|
| 626 |
+
});
|
| 627 |
</script>
|
| 628 |
</body>
|
| 629 |
</html>
|